Binary Compatibility Rules

Akka maintains and verifies backwards binary compatibility across versions of modules.

In the rest of this document whenever binary compatibility is mentioned “backwards binary compatibility” is meant (as opposed to forward compatibility).

This means that the new JARs are a drop-in replacement for the old one (but not the other way around) as long as your build does not enable the inliner (Scala-only restriction).

Because of this approach applications can upgrade to the latest version of Akka even when intermediate satellite projects are not yet upgraded

Binary compatibility rules explained

Binary compatibility is maintained between:

  • minor and patch versions - please note that the meaning of “minor” has shifted to be more restrictive with Akka 2.4.0, read Change in versioning scheme for details.

Binary compatibility is NOT maintained between:

Specific examples (please read Change in versioning scheme to understand the difference in “before 2.4 era” and “after 2.4 era”):

# [epoch.major.minor] era
OK:  2.2.0 --> 2.2.1 --> ... --> 2.2.x
NO:  2.2.y --x 2.3.y
OK:  2.3.0 --> 2.3.1 --> ... --> 2.3.x
OK:  2.3.x --> 2.4.x (special case, migration to new versioning scheme)
# [major.minor.patch] era
OK:  2.4.0 --> 2.5.x
OK:  2.5.0 --> 2.6.x
NO:  2.x.y --x 3.x.y
OK:  3.0.0 --> 3.0.1 --> ... --> 3.0.n
OK:  3.0.n --> 3.1.0 --> ... --> 3.1.n
OK:  3.1.n --> 3.2.0 ...
     ...

Cases where binary compatibility is not retained

If a security vulnerability is reported in Akka or a transient dependency of Akka and it cannot be solved without breaking binary compatibility then fixing the security issue is more important. In such cases binary compatibility might not be retained when releasing a minor version. Such exception is always noted in the release announcement.

We do not guarantee binary compatibility with versions that are EOL, though in practice this does not make a big difference: only in rare cases would a change be binary compatible with recent previous releases but not with older ones.

Some modules are excluded from the binary compatibility guarantees, such as:

  • *-testkit modules - since these are to be used only in tests, which usually are re-compiled and run on demand
  • *-tck modules - since they may want to add new tests (or force configuring something), in order to discover possible failures in an existing implementation that the TCK is supposed to be testing. Compatibility here is not guaranteed, however it is attempted to make the upgrade process as smooth as possible.
  • all may change modules - which by definition are subject to rapid iteration and change. Read more about that in Modules marked “May Change”

When will a deprecated method be removed entirely

Once a method has been deprecated then the guideline* is that it will be kept, at minimum, for one full minor version release. For example, if it is deprecated in version 2.5.2 then it will remain through the rest of 2.5, as well as the entirety of 2.6.

*This is a guideline because in rare instances, after careful consideration, an exception may be made and the method removed earlier.

Change in versioning scheme, stronger compatibility since 2.4

Since the release of Akka 2.4.0 a new versioning scheme is in effect.

Historically, Akka has been following the Java or Scala style of versioning in which the first number would mean “epoch”, the second one would mean major, and third be the minor, thus: epoch.major.minor (versioning scheme followed until and during 2.3.x).

Currently, since Akka 2.4.0, the new versioning applies which is closer to semantic versioning many have come to expect, in which the version number is deciphered as major.minor.patch. This also means that Akka 2.5.x is binary compatible with the 2.4 series releases (with the exception of “may change” APIs).

In addition to that, Akka 2.4.x has been made binary compatible with the 2.3.x series, so there is no reason to remain on Akka 2.3.x, since upgrading is completely compatible (and many issues have been fixed ever since).

Mixed versioning is not allowed

Modules that are released together under the Akka project are intended to be upgraded together. For example, it is not legal to mix Akka Actor 2.6.2 with Akka Cluster 2.6.5 even though “Akka 2.6.2” and “Akka 2.6.5are binary compatible.

This is because modules may assume internals changes across module boundaries, for example some feature in Clustering may have required an internals change in Actor, however it is not public API, thus such change is considered safe.

If you accidentally mix Akka versions, for example through transitive dependencies, you might get a warning at run time such as:

You are using version 2.6.6 of Akka, but it appears you (perhaps indirectly) also depend on older versions 
of related artifacts. You can solve this by adding an explicit dependency on version 2.6.6 of the 
[akka-persistence-query] artifacts to your project. Here's a complete collection of detected 
artifacts: (2.5.3, [akka-persistence-query]), (2.6.6, [akka-actor, akka-cluster]).
See also: https://doc.akka.io/libraries/akka-core/current/common/binary-compatibility-rules.html#mixed-versioning-is-not-allowed

The fix is typically to pick the highest Akka version, and add explicit dependencies to your project as needed. For example, in the example above you might want to add akka-persistence-query dependency for 2.6.6.

Note

We recommend keeping an akkaVersion variable in your build file, and re-use it for all included modules, so when you upgrade you can simply change it in this one place.

The warning includes a full list of Akka runtime dependencies in the classpath, and the version detected. You can use that information to include an explicit list of Akka artifacts you depend on into your build. If you use Maven or Gradle, you can include the Akka Maven BOM (bill of materials) to help you keep all the versions of your Akka dependencies in sync.

The meaning of “may change”

May change is used in module descriptions and docs in order to signify that the API that they contain is subject to change without any prior warning and is not covered by the binary compatibility promise. Read more in Modules marked “May Change”.

API stability annotations and comments

Akka gives a very strong binary compatibility promise to end-users. However some parts of Akka are excluded from these rules, for example internal or known evolving APIs may be marked as such and shipped as part of an overall stable module. As general rule any breakage is avoided and handled via deprecation and method addition, however certain APIs which are known to not yet be fully frozen (or are fully internal) are marked as such and subject to change at any time (even if best-effort is taken to keep them compatible).

The INTERNAL API and @InternalAPI marker

When browsing the source code and/or looking for methods available to be called, especially from Java which does not have as rich of an access protection system as Scala has, you may sometimes find methods or classes annotated with the /** INTERNAL API */ comment or the @InternalApi annotation.

No compatibility guarantees are given about these classes. They may change or even disappear in minor versions, and user code is not supposed to call them.

Side-note on JVM representation details of the Scala private[akka] pattern that Akka is using extensively in its internals: Such methods or classes, which act as “accessible only from the given package” in Scala, are compiled down to public (!) in raw Java bytecode. The access restriction, that Scala understands is carried along as metadata stored in the classfile. Thus, such methods are safely guarded from being accessed from Scala, however Java users will not be warned about this fact by the javac compiler. Please be aware of this and do not call into Internal APIs, as they are subject to change without any warning.

The @DoNotInherit and @ApiMayChange markers

In addition to the special internal API marker two annotations exist in Akka and specifically address the following use cases:

  • @ApiMayChange – which marks APIs which are known to be not fully stable yet. Read more in Modules marked “May Change”
  • @DoNotInherit – which marks APIs that are designed under a closed-world assumption, and thus must not be extended outside Akka itself (or such code will risk facing binary incompatibilities). E.g. an interface may be marked using this annotation, and while the type is public, it is not meant for extension by user-code. This allows adding new methods to these interfaces without risking to break client code. Examples of such API are the FlowOps trait or the Akka HTTP domain model.

Please note that a best-effort approach is always taken when having to change APIs and breakage is avoided as much as possible, however these markers allow to experiment, gather feedback and stabilize the best possible APIs we could build.

Binary Compatibility Checking Toolchain

Akka uses the Lightbend maintained MiMa, for enforcing binary compatibility is kept where it was promised.

All Pull Requests must pass MiMa validation (which happens automatically), and if failures are detected, manual exception overrides may be put in place if the change happened to be in an Internal API for example.

Serialization compatibility across Scala versions

Scala does not maintain serialization compatibility across major versions. This means that if Java serialization is used there is no guarantee objects can be cleanly deserialized if serialized with a different version of Scala.

Found an error in this documentation? The source code for this page can be found here. Please feel free to edit and contribute a pull request.