Integration Patterns

Many Enterprise Integration Patterns can be implemented with Akka Streams (see Akka Streams documentation).

PassThrough

Use PassThroughFlow when you have a message that should be used in a flow that transform it but you want to maintain the original message for another following flow. For example when consuming messages from Kafka (CommittableMessage), the message can be used inside a flow (transform it, save it inside a database, …) and then you need again the original message to commit the offset.

It can be used whenever you have 2 flows:

  • Flow1 that takes a message A and returns B
  • Flow2 that takes a message A and return C

If you want to execute first Flow1 and then Flow2 you need a way to maintain/passthrough message A.

                    a=>transform=>a1
                   /                 \
                  /                   \
a=>(a, a)=>unzip -                     zip=>(a1, a)=> a
                  \                   /
                   \                 /
                    --------a--------
Scala
sourceobject PassThroughFlow {
  def apply[A, T](processingFlow: Flow[A, T, NotUsed]): Graph[FlowShape[A, (T, A)], NotUsed] =
    apply[A, T, (T, A)](processingFlow, Keep.both)

  def apply[A, T, O](processingFlow: Flow[A, T, NotUsed], output: (T, A) => O): Graph[FlowShape[A, O], NotUsed] =
    Flow.fromGraph(GraphDSL.create() { implicit builder =>
      {
        import GraphDSL.Implicits._

        val broadcast = builder.add(Broadcast[A](2))
        val zip = builder.add(ZipWith[T, A, O]((left, right) => output(left, right)))

        // format: off
        broadcast.out(0) ~> processingFlow ~> zip.in0
        broadcast.out(1)         ~>           zip.in1
        // format: on

        FlowShape(broadcast.in, zip.out)
      }
    })
}
Java
sourceclass PassThroughFlow {

  public static <A, T> Graph<FlowShape<A, Pair<T, A>>, NotUsed> create(Flow<A, T, NotUsed> flow) {
    return create(flow, Keep.both());
  }

  public static <A, T, O> Graph<FlowShape<A, O>, NotUsed> create(
      Flow<A, T, NotUsed> flow, Function2<T, A, O> output) {
    return Flow.fromGraph(
        GraphDSL.create(
            builder -> {
              UniformFanOutShape<A, A> broadcast = builder.add(Broadcast.create(2));
              FanInShape2<T, A, O> zip = builder.add(ZipWith.create(output));
              builder.from(broadcast.out(0)).via(builder.add(flow)).toInlet(zip.in0());
              builder.from(broadcast.out(1)).toInlet(zip.in1());
              return FlowShape.apply(broadcast.in(), zip.out());
            }));
  }
}

A sample usage:

Scala
source//Sample Source
val source = Source(List(1, 2, 3))

// Pass through this flow maintaining the original message
val passThroughMe =
  Flow[Int]
    .map(_ * 10)

val ret = source
  .via(PassThroughFlow(passThroughMe))
  .runWith(Sink.seq)

//Verify results
ret.futureValue should be(Vector((10, 1), (20, 2), (30, 3)))
Java
source// Sample Source
Source<Integer, NotUsed> source = Source.from(Arrays.asList(1, 2, 3));

// Pass through this flow maintaining the original message
Flow<Integer, Integer, NotUsed> passThroughMe = Flow.of(Integer.class).map(i -> i * 10);

CompletionStage<List<Pair<Integer, Integer>>> ret =
    source.via(PassThroughFlow.create(passThroughMe)).runWith(Sink.seq(), system);

// Verify results
List<Pair<Integer, Integer>> list = ret.toCompletableFuture().get();
assert list.equals(
    Arrays.asList(
        new Pair<Integer, Integer>(10, 1),
        new Pair<Integer, Integer>(20, 2),
        new Pair<Integer, Integer>(30, 3)));

Using Keep you can choose what it the return value:

  • PassThroughFlow(passThroughMe, Keep.right): to only output the original message
  • PassThroughFlow(passThroughMe, Keep.both): to output both values as a Tuple
  • Keep.left/Keep.none: are not very useful in this use case, there isn’t a pass-through …

You can also write your own output function to combine in different ways the two outputs.

Scala
source//Sample Source
val source = Source(List(1, 2, 3))

// Pass through this flow maintaining the original message
val passThroughMe =
  Flow[Int]
    .map(_ * 10)

val ret = source
  .via(PassThroughFlow(passThroughMe, Keep.right))
  .runWith(Sink.seq)

//Verify results
ret.futureValue should be(Vector(1, 2, 3))
Java
source// Sample Source
Source<Integer, NotUsed> source = Source.from(Arrays.asList(1, 2, 3));

// Pass through this flow maintaining the original message
Flow<Integer, Integer, NotUsed> passThroughMe = Flow.of(Integer.class).map(i -> i * 10);

CompletionStage<List<Integer>> ret =
    source.via(PassThroughFlow.create(passThroughMe, Keep.right())).runWith(Sink.seq(), system);

// Verify results
List<Integer> list = ret.toCompletableFuture().get();
assert list.equals(Arrays.asList(1, 2, 3));

This pattern is useful when integrating Alpakka connectors together. Here an example with Kafka:

Scala
sourceval writeFlow = Flow[ConsumerMessage.CommittableMessage[String, Array[Byte]]].map(_ => ???)

val consumerSettings =
  ConsumerSettings(system, new StringDeserializer, new ByteArrayDeserializer)
val committerSettings = CommitterSettings(system)

Consumer
  .committableSource(consumerSettings, Subscriptions.topics("topic1"))
  .via(PassThroughFlow(writeFlow, Keep.right))
  .map(_.committableOffset)
  .toMat(Committer.sink(committerSettings))(DrainingControl.apply)
  .run()
Java
sourceFlow<ConsumerMessage.CommittableMessage<String, byte[]>, String, NotUsed> writeFlow =
    Flow.fromFunction(i -> i.record().value().toString());

ConsumerSettings<String, byte[]> consumerSettings =
    ConsumerSettings.create(system, new StringDeserializer(), new ByteArrayDeserializer());
CommitterSettings comitterSettings = CommitterSettings.create(system);
Consumer.DrainingControl<Done> control =
    Consumer.committableSource(consumerSettings, Subscriptions.topics("topic1"))
        .via(PassThroughFlow.create(writeFlow, Keep.right()))
        .map(i -> i.committableOffset())
        .toMat(Committer.sink(comitterSettings), Keep.both())
        .mapMaterializedValue(Consumer::createDrainingControl)
        .run(system);
Found an error in this documentation? The source code for this page can be found here. Please feel free to edit and contribute a pull request.