MQTT Streaming
MQTT stands for MQ Telemetry Transport. It is a publish/subscribe messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. The design principles are to minimize network bandwidth and device resource requirements whilst also attempting to ensure reliability and some degree of assurance of delivery. These principles also turn out to make the protocol ideal of the emerging “machine-to-machine” (M2M) or “Internet of Things” world of connected devices, and for mobile applications where bandwidth and battery power are at a premium.
Further information on mqtt.org.
Alpakka contains another MQTT connector which is based on the Eclipse Paho client. Unlike the Paho version, this library has no dependencies other than those of Akka Streams i.e. it is entirely reactive. As such, there should be a significant performance advantage given its pure-Akka foundations in terms of memory usage given its diligent use of threads.
This library also differs in that it separates out the concern of how MQTT is connected. Unlike Paho, where TCP is assumed, this library can join in any flow. The end result is that by using this library, Unix Domain Sockets, TCP, UDP or anything else can be used to transport MQTT.
The Alpakka MQTT Streaming connector provides an Akka Stream flow to connect to MQTT brokers. In addition, a flow is provided so that you can implement your own MQTT server in the case where you do not wish to use a broker–MQTT is a fine protocol for directed client/server interactions, as well as having an intermediary broker.
Alpakka MQTT Streaming implements the MQTT 3.1.1 protocol.
Project Info: Alpakka MQTT Streaming | |
---|---|
Artifact | com.lightbend.akka
akka-stream-alpakka-mqtt-streaming
8.0.0
|
JDK versions | Eclipse Temurin JDK 11 Eclipse Temurin JDK 17 |
Scala versions | 2.13.12 |
JPMS module name | akka.stream.alpakka.mqttStreaming |
License | |
Readiness level |
Since 1.0-M2, 2019-01-17
|
Home page | https://doc.akka.io/docs/alpakka/current |
API documentation | |
Forums | |
Release notes | GitHub releases |
Issues | Github issues |
Sources | https://github.com/akka/alpakka |
Artifacts
The Akka dependencies are available from Akka’s library repository. To access them there, you need to configure the URL for this repository.
- sbt
resolvers += "Akka library repository".at("https://repo.akka.io/maven")
- Maven
<project> ... <repositories> <repository> <id>akka-repository</id> <name>Akka library repository</name> <url>https://repo.akka.io/maven</url> </repository> </repositories> </project>
- Gradle
repositories { mavenCentral() maven { url "https://repo.akka.io/maven" } }
Additionally, add the dependencies as below.
- sbt
val AkkaVersion = "2.9.3" libraryDependencies ++= Seq( "com.lightbend.akka" %% "akka-stream-alpakka-mqtt-streaming" % "8.0.0", "com.typesafe.akka" %% "akka-stream" % AkkaVersion, "com.typesafe.akka" %% "akka-actor-typed" % AkkaVersion )
- Maven
<properties> <akka.version>2.9.3</akka.version> <scala.binary.version>2.13</scala.binary.version> </properties> <dependencies> <dependency> <groupId>com.lightbend.akka</groupId> <artifactId>akka-stream-alpakka-mqtt-streaming_${scala.binary.version}</artifactId> <version>8.0.0</version> </dependency> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-stream_${scala.binary.version}</artifactId> <version>${akka.version}</version> </dependency> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-actor-typed_${scala.binary.version}</artifactId> <version>${akka.version}</version> </dependency> </dependencies>
- Gradle
def versions = [ AkkaVersion: "2.9.3", ScalaBinary: "2.13" ] dependencies { implementation "com.lightbend.akka:akka-stream-alpakka-mqtt-streaming_${versions.ScalaBinary}:8.0.0" implementation "com.typesafe.akka:akka-stream_${versions.ScalaBinary}:${versions.AkkaVersion}" implementation "com.typesafe.akka:akka-actor-typed_${versions.ScalaBinary}:${versions.AkkaVersion}" }
The table below shows direct dependencies of this module and the second tab shows all libraries it depends on transitively.
- Direct dependencies
Organization Artifact Version com.typesafe.akka akka-actor-typed_2.13 2.9.3 com.typesafe.akka akka-stream-typed_2.13 2.9.3 com.typesafe.akka akka-stream_2.13 2.9.3 org.scala-lang scala-library 2.13.12 - Dependency tree
com.typesafe.akka akka-actor-typed_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 com.typesafe.akka akka-slf4j_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.slf4j slf4j-api 1.7.36 org.scala-lang scala-library 2.13.12 Apache-2.0 org.slf4j slf4j-api 1.7.36 com.typesafe.akka akka-stream-typed_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor-typed_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 com.typesafe.akka akka-slf4j_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.slf4j slf4j-api 1.7.36 org.scala-lang scala-library 2.13.12 Apache-2.0 org.slf4j slf4j-api 1.7.36 com.typesafe.akka akka-stream_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 com.typesafe.akka akka-protobuf-v3_2.13 2.9.3 BUSL-1.1 org.reactivestreams reactive-streams 1.0.4 MIT-0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 com.typesafe.akka akka-stream_2.13 2.9.3 BUSL-1.1 com.typesafe.akka akka-actor_2.13 2.9.3 BUSL-1.1 com.typesafe config 1.4.3 Apache-2.0 org.scala-lang.modules scala-java8-compat_2.13 1.0.2 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0 com.typesafe.akka akka-protobuf-v3_2.13 2.9.3 BUSL-1.1 org.reactivestreams reactive-streams 1.0.4 MIT-0 org.scala-lang scala-library 2.13.12 Apache-2.0 org.scala-lang scala-library 2.13.12 Apache-2.0
Flow through a client session
The following code illustrates how to establish an MQTT client session and join it with a TCP connection:
- Scala
-
source
val settings = MqttSessionSettings() val session = ActorMqttClientSession(settings) val connection = Tcp().outgoingConnection("localhost", 1883) val mqttFlow: Flow[Command[Nothing], Either[MqttCodec.DecodeError, Event[Nothing]], NotUsed] = Mqtt .clientSessionFlow(session, ByteString("1")) .join(connection)
- Java
-
source
MqttSessionSettings settings = MqttSessionSettings.create(); MqttClientSession session = ActorMqttClientSession.create(settings, system); Flow<ByteString, ByteString, CompletionStage<Tcp.OutgoingConnection>> connection = Tcp.get(system).outgoingConnection("localhost", 1883); Flow<Command<Object>, DecodeErrorOrEvent<Object>, NotUsed> mqttFlow = Mqtt.clientSessionFlow(session, ByteString.fromString("1")).join(connection);
The resulting flow’s type shows how Command
s are received and Event
s are emitted. With Event
, they can be either decoded successfully or not.
Run the flow by connecting a source of messages to be published via a queue:
- Scala
-
source
val (commands: SourceQueueWithComplete[Command[Nothing]], events: Future[Publish]) = Source .queue(2, OverflowStrategy.fail) .via(mqttFlow) .collect { case Right(Event(p: Publish, _)) => p } .toMat(Sink.head)(Keep.both) .run() commands.offer(Command(Connect(clientId, ConnectFlags.CleanSession))) commands.offer(Command(Subscribe(topic))) session ! Command( Publish(ControlPacketFlags.RETAIN | PublishQoSFlags.QoSAtLeastOnceDelivery, topic, ByteString("ohi")) ) // for shutting down properly commands.complete() commands.watchCompletion().foreach(_ => session.shutdown())
- Java
-
source
Pair<SourceQueueWithComplete<Command<Object>>, CompletionStage<Publish>> run = Source.<Command<Object>>queue(3, OverflowStrategy.fail()) .via(mqttFlow) .collect( new JavaPartialFunction<DecodeErrorOrEvent<Object>, Publish>() { @Override public Publish apply(DecodeErrorOrEvent<Object> x, boolean isCheck) { if (x.getEvent().isPresent() && x.getEvent().get().event() instanceof Publish) return (Publish) x.getEvent().get().event(); else throw noMatch(); } }) .toMat(Sink.head(), Keep.both()) .run(system); SourceQueueWithComplete<Command<Object>> commands = run.first(); commands.offer(new Command<>(new Connect(clientId, ConnectFlags.CleanSession()))); commands.offer(new Command<>(new Subscribe(topic))); session.tell( new Command<>( new Publish( ControlPacketFlags.RETAIN() | PublishQoSFlags.QoSAtLeastOnceDelivery(), topic, ByteString.fromString("ohi")))); // for shutting down properly commands.complete(); commands.watchCompletion().thenAccept(done -> session.shutdown());
Note that the Publish
command is not offered to the command flow given MQTT QoS requirements. Instead, the session is told to perform Publish
given that it can retry continuously with buffering until a command flow is established.
We filter the events received as there will be ACKs to our connect, subscribe and publish. The collected event is the publication to the topic we just subscribed to.
To shut down the flow after use, the command queue commands
is completed and after its completion the session
is shut down.
Flow through a server session
The following code illustrates how to establish an MQTT server session and join it with a TCP binding:
- Scala
-
source
val settings = MqttSessionSettings() val session = ActorMqttServerSession(settings) val maxConnections = 1 val bindSource: Source[Either[MqttCodec.DecodeError, Event[Nothing]], Future[Tcp.ServerBinding]] = Tcp() .bind(host, 0) .flatMapMerge( maxConnections, { connection => val mqttFlow: Flow[Command[Nothing], Either[MqttCodec.DecodeError, Event[Nothing]], NotUsed] = Mqtt .serverSessionFlow(session, ByteString(connection.remoteAddress.getAddress.getAddress)) .join(connection.flow) val (queue, source) = Source .queue[Command[Nothing]](3, OverflowStrategy.dropHead) .via(mqttFlow) .toMat(BroadcastHub.sink)(Keep.both) .run() val subscribed = Promise[Done]() source .runForeach { case Right(Event(_: Connect, _)) => queue.offer(Command(ConnAck(ConnAckFlags.None, ConnAckReturnCode.ConnectionAccepted))) case Right(Event(cp: Subscribe, _)) => queue.offer(Command(SubAck(cp.packetId, cp.topicFilters.map(_._2)), Some(subscribed), None)) case Right(Event(publish @ Publish(flags, _, Some(packetId), _), _)) if flags.contains(ControlPacketFlags.RETAIN) => queue.offer(Command(PubAck(packetId))) subscribed.future.foreach(_ => session ! Command(publish)) case _ => // Ignore everything else } source } )
- Java
-
source
MqttSessionSettings settings = MqttSessionSettings.create(); MqttServerSession session = ActorMqttServerSession.create(settings, system); int maxConnections = 1; Source<DecodeErrorOrEvent<Object>, CompletionStage<Tcp.ServerBinding>> bindSource = Tcp.get(system) .bind(host, port) .flatMapMerge( maxConnections, connection -> { Flow<Command<Object>, DecodeErrorOrEvent<Object>, NotUsed> mqttFlow = Mqtt.serverSessionFlow( session, ByteString.fromArray( connection.remoteAddress().getAddress().getAddress())) .join(connection.flow()); Pair< SourceQueueWithComplete<Command<Object>>, Source<DecodeErrorOrEvent<Object>, NotUsed>> run = Source.<Command<Object>>queue(2, OverflowStrategy.dropHead()) .via(mqttFlow) .toMat(BroadcastHub.of(DecodeErrorOrEvent.classOf()), Keep.both()) .run(system); SourceQueueWithComplete<Command<Object>> queue = run.first(); Source<DecodeErrorOrEvent<Object>, NotUsed> source = run.second(); CompletableFuture<Done> subscribed = new CompletableFuture<>(); source.runForeach( deOrE -> { if (deOrE.getEvent().isPresent()) { Event<Object> event = deOrE.getEvent().get(); ControlPacket cp = event.event(); if (cp instanceof Connect) { queue.offer( new Command<>( new ConnAck( ConnAckFlags.None(), ConnAckReturnCode.ConnectionAccepted()))); } else if (cp instanceof Subscribe) { Subscribe subscribe = (Subscribe) cp; Collection<Tuple2<String, ControlPacketFlags>> topicFilters = JavaConverters.asJavaCollectionConverter(subscribe.topicFilters()) .asJavaCollection(); List<Integer> flags = topicFilters.stream() .map(x -> x._2().underlying()) .collect(Collectors.toList()); queue.offer( new Command<>( new SubAck(subscribe.packetId(), flags), Optional.of(subscribed), Optional.empty())); } else if (cp instanceof Publish) { Publish publish = (Publish) cp; if ((publish.flags() & ControlPacketFlags.RETAIN()) != 0) { int packetId = publish.packetId().get().underlying(); queue.offer(new Command<>(new PubAck(packetId))); subscribed.thenRun(() -> session.tell(new Command<>(publish))); } } // Ignore everything else } }, system); return source; });
The resulting source’s type shows how Event
s are received and Command
s are queued in reply. Our example acknowledges a connection, subscription and publication. Upon receiving a publication, it is re-published from the server so that any client that is subscribed will receive it. An additional detail is that we hold off re-publishing until we have a subscription from the client. Note also how the session is told to perform Publish
commands directly as they will be broadcasted to all clients subscribed to the topic.
Run the flow:
- Scala
-
source
val (bound: Future[Tcp.ServerBinding], server: UniqueKillSwitch) = bindSource .viaMat(KillSwitches.single)(Keep.both) .to(Sink.ignore) .run() // for shutting down properly server.shutdown() session.shutdown()
- Java
-
source
Pair<CompletionStage<Tcp.ServerBinding>, UniqueKillSwitch> bindingAndSwitch = bindSource.viaMat(KillSwitches.single(), Keep.both()).to(Sink.ignore()).run(system); CompletionStage<Tcp.ServerBinding> bound = bindingAndSwitch.first(); UniqueKillSwitch server = bindingAndSwitch.second(); // for shutting down properly server.shutdown(); commands.watchCompletion().thenAccept(done -> session.shutdown());
To shut down the server after use, the server flow is shut down via a KillSwitch
and the session
is shut down.