Use Kafka between two services

This guide describes how to use Kafka for communication between 2 services. It assumes that you created the project using the Implementing Microservices with Akka tutorial, and it describes the changes required to replace the Projection over gRPC used for Service-to-service Eventing that is used in the tutorial to make the Shopping Cart events available to the Analytics Service. It focuses on the Kafka producer in the PublishEventsProjection and the Kafka consumer in ShoppingAnalyticsService. On this page you will learn how to:

  • send messages to a Kafka topic from a Projection

  • consume messages from a Kafka topic

Source downloads

If you prefer to simply view and run the example, download a zip file containing the completed code:

Java
  • Source that includes the full shopping-cart-service and shopping-analytics-service examples from the tutorial completed with the steps from this page.

Scala
  • Source that includes the full shopping-cart-service example from the tutorial completed with the steps from this page.

Producer side

We will need to change our shopping-cart-service to send the events to a Kafka topic instead of making them available over gRPC. We will use the same public external representation for the events specified in shopping_cart_events.proto and write them to a Kafka topic.

Send to Kafka from a Projection

We will use the Alpakka Kafka new tab connector to send the events to Kafka. The Alpakka project implements a stream-aware and reactive integration pipelines for Java and Scala. It is built on top of Akka Streams, and has been designed from the ground up to understand streaming natively and provide a DSL for reactive and stream-oriented programming, with built-in support for backpressure.

  1. Start by adding the required dependency on Alpakka Kafka:

    pom.xml:
    <dependency>
        <groupId>com.typesafe.akka</groupId>
        <artifactId>akka-stream-kafka_${scala.binary.version}</artifactId>
    </dependency>
    build.sbt:
    val AlpakkaKafkaVersion = "6.0.0"
    libraryDependencies ++= Seq(
      // ...
      "com.typesafe.akka" %% "akka-stream-kafka" % AlpakkaKafkaVersion
  2. Add a PublishEventsProjectionFlow class that creates a FlowWithContext for processing and converting the events:

Java
src/main/java/shopping/cart/PublishEventsProjectionFlow.java:
package shopping.cart;

import akka.Done;
import akka.NotUsed;
import akka.actor.typed.ActorSystem;
import akka.kafka.ProducerMessage;
import akka.kafka.ProducerSettings;
import akka.kafka.javadsl.Producer;
import akka.persistence.query.typed.EventEnvelope;
import akka.projection.ProjectionContext;
import akka.stream.javadsl.FlowWithContext;
import com.google.protobuf.Any;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.ByteArraySerializer;
import org.apache.kafka.common.serialization.StringSerializer;

public final class PublishEventsProjectionFlow {

  public static FlowWithContext<
          EventEnvelope<ShoppingCart.Event>, ProjectionContext, Done, ProjectionContext, NotUsed>
      createProducerFlow(String topic, ActorSystem<?> system) {
    var producerSettings =
        ProducerSettings.create(system, new StringSerializer(), new ByteArraySerializer());

    (1)
    return FlowWithContext.<EventEnvelope<ShoppingCart.Event>, ProjectionContext>create()
        .map(
            envelope -> {
              ShoppingCart.Event event = envelope.event();

              // using the cartId as the key and `DefaultPartitioner` will select partition based on
              // the key so that events for same cart always ends up in same partition
              String key = event.cartId();
              var producerRecord = new ProducerRecord<>(topic, key, serialize(event)); (2)
              system.log().info("Publishing event [{}] to topic {}", envelope.event(), topic);
              return ProducerMessage.single(producerRecord);
            })
        .via(Producer.flowWithContext(producerSettings))
        .map(__ -> Done.getInstance());
  }

  private static byte[] serialize(ShoppingCart.Event event) {
    var pbEvent =
        switch (event) {
          case ShoppingCart.ItemAdded(String cartId, String itemId, int qtd) ->
              shopping.cart.proto.ItemAdded.newBuilder()
                  .setCartId(cartId)
                  .setItemId(itemId)
                  .setQuantity(qtd)
                  .build();
          case ShoppingCart.CheckedOut(String cartId, var __) ->
              shopping.cart.proto.CheckedOut.newBuilder().setCartId(cartId).build();
          case null ->
              throw new IllegalArgumentException("Unknown event type: " + event.getClass());
        };

    // pack in Any so that type information is included for deserialization
    return Any.pack(pbEvent).toByteArray(); (3)
  }
}
1 Using a Producer.flowWithContext from Alpakka Kafka.
2 The events are serialized to Protobuf and sent to the given topic.
3 Wrap in Protobuf Any to include type information.
Scala
src/main/scala/shopping/cart/PublishEventsProjectionFlow.scala:
package shopping.cart

import akka.Done
import akka.NotUsed
import akka.actor.typed.ActorSystem
import akka.kafka.ProducerMessage
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.persistence.query.typed.EventEnvelope
import akka.projection.ProjectionContext
import akka.stream.scaladsl.FlowWithContext
import com.google.protobuf.any.{ Any => ScalaPBAny }
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.ByteArraySerializer
import org.apache.kafka.common.serialization.StringSerializer
import org.slf4j.LoggerFactory

object PublishEventsProjectionFlow {
  private val log = LoggerFactory.getLogger(getClass)

  def createProducerFlow(
      topic: String,
      system: ActorSystem[_]): FlowWithContext[
    EventEnvelope[ShoppingCart.Event],
    ProjectionContext,
    Done,
    ProjectionContext,
    NotUsed] = {

    val producerSettings =
      ProducerSettings(system, new StringSerializer, new ByteArraySerializer)

    (1)
    FlowWithContext[EventEnvelope[ShoppingCart.Event], ProjectionContext]
      .map(envelope => {
        // using the cartId as the key and `DefaultPartitioner` will select partition based on the key
        // so that events for same cart always ends up in same partition
        val key = envelope.event.cartId
        val record =
          new ProducerRecord(topic, key, serialize(envelope.event)) (2)
        log.info("Publishing event [{}] to topic {}", envelope.event, topic)
        ProducerMessage.single(record)
      })
      .via(Producer.flowWithContext(producerSettings))
      .map(_ => Done)
  }

  private def serialize(event: ShoppingCart.Event): Array[Byte] = {
    val protoMessage = event match {
      case ShoppingCart.ItemAdded(cartId, itemId, quantity) =>
        proto.ItemAdded(cartId, itemId, quantity)
      case ShoppingCart.CheckedOut(cartId, _) =>
        proto.CheckedOut(cartId)
    }
    // pack in Any so that type information is included for deserialization
    ScalaPBAny.pack(protoMessage).toByteArray (3)
  }
}
1 Using a Producer.flowWithContext from Alpakka Kafka.
2 The events are serialized to Protobuf and sent to the given topic.
3 Wrap in Protobuf Any to include type information.

The serialization converts the ShoppingCart.Event classes to the Protobuf representation. Since several types of messages are sent to the same topic we must include some type information that the consumers of the topic can use when deserializing the messages. Protobuf provides a built-in type called Any for this purpose. That is why it is wrapped with ScalaPBAny.pack.

Initialize the Projection

Now, we will use a similar projection as before, but this time we will send the events to the recently created Kafka handler.

  1. Place the initialization code of the Projection in a PublishEventsProjection object class:

    Java
    src/main/java/shopping/cart/PublishEventsProjection.java:
    package shopping.cart;
    
    import static shopping.cart.PublishEventsProjectionFlow.createProducerFlow;
    
    import akka.actor.typed.ActorSystem;
    import akka.cluster.sharding.typed.ShardedDaemonProcessSettings;
    import akka.cluster.sharding.typed.javadsl.ShardedDaemonProcess;
    import akka.japi.Pair;
    import akka.persistence.query.Offset;
    import akka.persistence.query.typed.EventEnvelope;
    import akka.persistence.r2dbc.query.javadsl.R2dbcReadJournal;
    import akka.projection.ProjectionBehavior;
    import akka.projection.ProjectionId;
    import akka.projection.eventsourced.javadsl.EventSourcedProvider;
    import akka.projection.javadsl.AtLeastOnceFlowProjection;
    import akka.projection.javadsl.SourceProvider;
    import akka.projection.r2dbc.R2dbcProjectionSettings;
    import akka.projection.r2dbc.javadsl.R2dbcProjection;
    import java.util.List;
    import java.util.Optional;
    
    public class PublishEventsProjection {
    
      private PublishEventsProjection() {}
    
      public static void init(ActorSystem<?> system) {
    
        String topic = system.settings().config().getString("shopping-cart-service.kafka.topic");
    
        ShardedDaemonProcess.get(system)
            .initWithContext( (1)
                ProjectionBehavior.Command.class,
                "PublishEventsProjection",
                4,
                daemonContext -> {
                  List<Pair<Integer, Integer>> sliceRanges = (2)
                      EventSourcedProvider.sliceRanges(
                          system, R2dbcReadJournal.Identifier(), daemonContext.totalProcesses());
                  Pair<Integer, Integer> sliceRange = sliceRanges.get(daemonContext.processNumber());
                  return ProjectionBehavior.create(createProjection(system, sliceRange, topic));
                },
                ShardedDaemonProcessSettings.create(system),
                Optional.of(ProjectionBehavior.stopMessage()));
      }
    
      private static AtLeastOnceFlowProjection<Offset, EventEnvelope<ShoppingCart.Event>>
          createProjection(ActorSystem<?> system, Pair<Integer, Integer> sliceRange, String topic) {
    
        int minSlice = sliceRange.first();
        int maxSlice = sliceRange.second();
    
        SourceProvider<Offset, EventEnvelope<ShoppingCart.Event>> sourceProvider = (3)
            EventSourcedProvider.eventsBySlices(
                system,
                R2dbcReadJournal.Identifier(), (4)
                "ShoppingCart",
                minSlice,
                maxSlice);
    
        String slice = "carts-" + minSlice + "-" + maxSlice;
        Optional<R2dbcProjectionSettings> settings = Optional.empty();
        return R2dbcProjection.atLeastOnceFlow( (5)
            ProjectionId.of("PublishEventsProjection", slice),
            settings,
            sourceProvider,
            createProducerFlow(topic, system), (6)
            system);
      }
    }
    1 ShardedDaemonProcess manages the Projection instances. It ensures the Projection instances are always running and distributes them over the nodes in the Akka Cluster.
    2 The slice ranges are calculated based on the number active Projection instances, given by daemonContext.totalProcesses(). Then, the specific slice range for this instance is identified by its processNumber.
    3 The source of the Projection is EventSourcedProvider.eventsBySlices with the selected slice range, defined by a minSlice and a maxSlice.
    4 Using the R2DBC event journal.
    5 Using R2DBC for offset storage of the Projection using exactly-once strategy. Offset and projected model will be persisted in the same transaction.
    6 Defining a Projection Handler factory for the handler we wrote in the beginning of this part.
    Scala
    src/main/scala/shopping/cart/PublishEventsProjection.scala:
    package shopping.cart
    
    import akka.actor.typed.ActorSystem
    import akka.cluster.sharding.typed.ShardedDaemonProcessSettings
    import akka.cluster.sharding.typed.scaladsl.ShardedDaemonProcess
    import akka.persistence.query.Offset
    import akka.persistence.query.typed.EventEnvelope
    import akka.persistence.r2dbc.query.scaladsl.R2dbcReadJournal
    import akka.projection.eventsourced.scaladsl.EventSourcedProvider
    import akka.projection.r2dbc.scaladsl.R2dbcProjection
    import akka.projection.scaladsl.SourceProvider
    import akka.projection.{ Projection, ProjectionBehavior, ProjectionId }
    
    object PublishEventsProjection {
    
      def init(system: ActorSystem[_]): Unit = {
    
        val topic =
          system.settings.config.getString("shopping-cart-service.kafka.topic")
    
        def sourceProvider(sliceRange: Range)
            : SourceProvider[Offset, EventEnvelope[ShoppingCart.Event]] =
          EventSourcedProvider (1)
            .eventsBySlices[ShoppingCart.Event](
              system,
              readJournalPluginId = R2dbcReadJournal.Identifier, (2)
              "ShoppingCart",
              sliceRange.min,
              sliceRange.max)
    
        def projection(
            sliceRange: Range): Projection[EventEnvelope[ShoppingCart.Event]] = {
          val minSlice = sliceRange.min
          val maxSlice = sliceRange.max
          val projectionId =
            ProjectionId("PublishEventsProjection", s"carts-$minSlice-$maxSlice")
    
          R2dbcProjection.atLeastOnceFlow( (3)
            projectionId,
            settings = None,
            sourceProvider(sliceRange),
            handler =
              PublishEventsProjectionFlow.createProducerFlow(topic, system) (4)
          )(system)
        }
    
        ShardedDaemonProcess(system).initWithContext( (5)
          name = "PublishEventsProjection",
          initialNumberOfInstances = 4,
          behaviorFactory = { daemonContext =>
            val sliceRanges = (6)
              EventSourcedProvider.sliceRanges(
                system,
                R2dbcReadJournal.Identifier,
                daemonContext.totalProcesses)
            val sliceRange = sliceRanges(daemonContext.processNumber)
            ProjectionBehavior(projection(sliceRange))
          },
          ShardedDaemonProcessSettings(system),
          stopMessage = ProjectionBehavior.Stop)
      }
    }
    1 The source of the Projection is EventSourcedProvider.eventsBySlices with the selected slice range, defined by a minSlice and a maxSlice.
    2 Using the R2DBC event journal.
    3 Using R2DBC for offset storage of the Projection using exactly-once strategy. Offset and projected model will be persisted in the same transaction.
    4 Defining a Projection Handler factory for the handler we wrote in the beginning of this part.
    5 ShardedDaemonProcess manages the Projection instances. It ensures the Projection instances are always running and distributes them over the nodes in the Akka Cluster.
    6 The slice ranges are calculated based on the number active Projection instances, given by daemonContext.totalProcesses(). Then, the specific slice range for this instance is identified by its processNumber.

    The SendProducer is initialized using some configuration that we need to add. It defines how to connect to the Kafka broker.

  2. Add the following to a new src/main/resources/kafka.conf file:

    shopping-cart-service {
      kafka.topic = "shopping-cart-events"
    }
    
    # common config for akka.kafka.producer.kafka-clients and akka.kafka.consumer.kafka-clients
    kafka-connection-settings {
      # This and other connection settings may have to be changed depending on environment.
      bootstrap.servers = "localhost:9092"
    }
    akka.kafka.producer {
      kafka-clients = ${kafka-connection-settings}
    }
    akka.kafka.consumer {
      kafka-clients = ${kafka-connection-settings}
    }
  3. Include kafka.conf in application.conf.

  4. For local development add the following to src/main/resources/local-shared.conf, which is loaded when running locally:

    # common config for akka.kafka.producer.kafka-clients and akka.kafka.consumer.kafka-clients
    kafka-connection-settings {
      bootstrap.servers = "localhost:9092"
    }
    akka.kafka.producer {
      kafka-clients = ${kafka-connection-settings}
    }
    akka.kafka.consumer {
      kafka-clients = ${kafka-connection-settings}
    }
  5. Call PublishEventsProjection.init from Main:

    Java
    PublishEventsProjection.init(system);
    Scala
    PublishEventsProjection.init(system)
In this scenario, the Projection over gRPC is not used anymore. You can remove it by deleting PublishEventsGrpc, removing the initialization code from Main and the associated parameter in ShoppingCartServer.

Consume the events

We need to update our shopping-analytics-service to consume the events from the Kafka topic instead.

The service will still receive the events in the Protobuf format defined in the shopping_cart_events.proto from the shopping-cart-service so we can keep it.

Different services should not share code, but we can copy the Protobuf specification since that is the published interface of the service.

To add the service, follow these steps:

  1. Open the shopping-analytics-service in IntelliJ just as you did with the shopping-cart-service.

  2. Copy the shopping_cart_events.proto from the shopping-cart-service to the shopping-analytics-service/src/main/protobuf and generate code by compiling the project:

    sbt compile
    mvn compile
  3. Modify the ShoppingCartEventConsumer object class in shopping-analytics-service. It should run an Akka Stream with a Kafka Consumer.committableSource from Alpakka Kafka.

    Java
    src/main/java/shopping/analytics/ShoppingCartEventConsumer.java:
    package shopping.analytics;
    
    import akka.Done;
    import akka.actor.typed.ActorSystem;
    import akka.kafka.CommitterSettings;
    import akka.kafka.ConsumerSettings;
    import akka.kafka.Subscriptions;
    import akka.kafka.javadsl.Committer;
    import akka.kafka.javadsl.Consumer;
    import akka.stream.RestartSettings;
    import akka.stream.javadsl.RestartSource;
    import com.google.protobuf.Any;
    import com.google.protobuf.CodedInputStream;
    import com.google.protobuf.InvalidProtocolBufferException;
    import java.time.Duration;
    import java.util.concurrent.CompletableFuture;
    import java.util.concurrent.CompletionStage;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.common.serialization.ByteArrayDeserializer;
    import org.apache.kafka.common.serialization.StringDeserializer;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import shopping.cart.proto.CheckedOut;
    import shopping.cart.proto.ItemAdded;
    import shopping.cart.proto.ItemQuantityAdjusted;
    import shopping.cart.proto.ItemRemoved;
    
    class ShoppingCartEventConsumer {
      private static final Logger log = LoggerFactory.getLogger(ShoppingCartEventConsumer.class);
    
      static void init(ActorSystem<?> system) {
        String topic =
            system
                .settings()
                .config()
                .getString("shopping-analytics-service.shopping-cart-kafka-topic");
        ConsumerSettings<String, byte[]> consumerSettings =
            ConsumerSettings.create(system, new StringDeserializer(), new ByteArrayDeserializer())
                .withGroupId("shopping-cart-analytics");
        CommitterSettings committerSettings = CommitterSettings.create(system);
    
        Duration minBackoff = Duration.ofSeconds(1);
        Duration maxBackoff = Duration.ofSeconds(30);
        double randomFactor = 0.1;
    
        RestartSource (1)
            .onFailuresWithBackoff(
                RestartSettings.create(minBackoff, maxBackoff, randomFactor),
                () -> {
                  return Consumer.committableSource(
                          consumerSettings, Subscriptions.topics(topic)) (2)
                      .mapAsync(
                          1,
                          msg -> handleRecord(msg.record()).thenApply(done -> msg.committableOffset()))
                      .via(Committer.flow(committerSettings)); (3)
                })
            .run(system);
      }
    
      private static CompletionStage<Done> handleRecord(ConsumerRecord<String, byte[]> record)
          throws InvalidProtocolBufferException {
        byte[] bytes = record.value();
        Any x = Any.parseFrom(bytes); (4)
        String typeUrl = x.getTypeUrl();
        CodedInputStream inputBytes = x.getValue().newCodedInput();
        try {
          switch (typeUrl) {
            case "shopping-cart-service/shoppingcart.ItemAdded":
              {
                ItemAdded event = ItemAdded.parseFrom(inputBytes);
                log.info(
                    "ItemAdded: {} {} to cart {}",
                    event.getQuantity(),
                    event.getItemId(),
                    event.getCartId());
                break;
              }
            case "shopping-cart-service/shoppingcart.CheckedOut":
              {
                CheckedOut event = CheckedOut.parseFrom(inputBytes);
                log.info("CheckedOut: cart {} checked out", event.getCartId());
                break;
              }
            default:
              throw new IllegalArgumentException("unknown record type " + typeUrl);
          }
        } catch (Exception e) {
          log.error("Could not process event of type [{}]", typeUrl, e);
          // continue with next
        }
        return CompletableFuture.completedFuture(Done.getInstance());
      }
    }
    1 RestartSource will restart the stream in case of failures.
    2 Kafka Consumer stream.
    3 Offset is committed to Kafka when records have been processed.
    4 Protobuf Any for type information.
    Scala
    src/main/scala/shopping/analytics/ShoppingCartEventConsumer.scala:
    package shopping.analytics
    
    import scala.concurrent.ExecutionContext
    import scala.concurrent.Future
    import scala.concurrent.duration._
    import scala.util.control.NonFatal
    import akka.Done
    import akka.actor.typed.ActorSystem
    import akka.kafka.CommitterSettings
    import akka.kafka.ConsumerSettings
    import akka.kafka.Subscriptions
    import akka.kafka.scaladsl.{ Committer, Consumer }
    import akka.stream.RestartSettings
    import akka.stream.scaladsl.RestartSource
    import com.google.protobuf.any.{ Any => ScalaPBAny }
    import org.apache.kafka.clients.consumer.ConsumerRecord
    import org.apache.kafka.common.serialization.ByteArrayDeserializer
    import org.apache.kafka.common.serialization.StringDeserializer
    import org.slf4j.LoggerFactory
    import shopping.cart.proto
    
    object ShoppingCartEventConsumer {
    
      private val log =
        LoggerFactory.getLogger("shopping.analytics.ShoppingCartEventConsumer")
    
      def init(system: ActorSystem[_]): Unit = {
        implicit val sys: ActorSystem[_] = system
        implicit val ec: ExecutionContext =
          system.executionContext
    
        val topic = system.settings.config
          .getString("shopping-analytics-service.shopping-cart-kafka-topic")
        val consumerSettings =
          ConsumerSettings(
            system,
            new StringDeserializer,
            new ByteArrayDeserializer).withGroupId("shopping-cart-analytics")
        val committerSettings = CommitterSettings(system)
    
        RestartSource (1)
          .onFailuresWithBackoff(
            RestartSettings(
              minBackoff = 1.second,
              maxBackoff = 30.seconds,
              randomFactor = 0.1)) { () =>
            Consumer
              .committableSource(
                consumerSettings,
                Subscriptions.topics(topic)
              ) (2)
              .mapAsync(1) { msg =>
                handleRecord(msg.record).map(_ => msg.committableOffset)
              }
              .via(Committer.flow(committerSettings)) (3)
          }
          .run()
      }
    
      private def handleRecord(
          record: ConsumerRecord[String, Array[Byte]]): Future[Done] = {
        val bytes = record.value()
        val x = ScalaPBAny.parseFrom(bytes) (4)
        val typeUrl = x.typeUrl
        try {
          val inputBytes = x.value.newCodedInput()
          val event =
            typeUrl match {
              case "shopping-cart-service/shoppingcart.ItemAdded" =>
                proto.ItemAdded.parseFrom(inputBytes)
              case "shopping-cart-service/shoppingcart.CheckedOut" =>
                proto.CheckedOut.parseFrom(inputBytes)
              case _ =>
                throw new IllegalArgumentException(
                  s"unknown record type [$typeUrl]")
            }
    
          event match {
            case proto.ItemAdded(cartId, itemId, quantity, _) =>
              log.info("ItemAdded: {} {} to cart {}", quantity, itemId, cartId)
            case proto.CheckedOut(cartId, _) =>
              log.info("CheckedOut: cart {} checked out", cartId)
          }
    
          Future.successful(Done)
        } catch {
          case NonFatal(e) =>
            log.error("Could not process event of type [{}]", typeUrl, e)
            // continue with next
            Future.successful(Done)
        }
      }
    
    }
    1 RestartSource will restart the stream in case of failures.
    2 Kafka Consumer stream.
    3 Offset is committed to Kafka when records have been processed.
    4 Protobuf Any for type information.
The deserialization is using the type information from the Protobuf Any to decide which type of event to deserialize.

Configuration

We need to add configuration to initialize the Consumer and define how to connect to the Kafka broker.

Add the following to a new src/main/resources/kafka.conf file in shopping-analytics-service:

shopping-analytics-service {
  shopping-cart-kafka-topic = "shopping-cart-events"
}

# common config for akka.kafka.producer.kafka-clients and akka.kafka.consumer.kafka-clients
kafka-connection-settings {
  # This and other connection settings may have to be changed depending on environment.
  bootstrap.servers = "localhost:9092"
}
akka.kafka.producer {
  kafka-clients = ${kafka-connection-settings}
}
akka.kafka.consumer {
  kafka-clients = ${kafka-connection-settings}
  kafka-clients {
    auto.offset.reset = "earliest"
  }
}

Include kafka.conf from application.conf.

And for local development add the following to src/main/resources/local-shared.conf, which is loaded when running locally:

shopping-analytics-service.kafka.bootstrap-servers = "localhost:9092"

Main

Edit the Main class that is included from the template project. It should initialize the ActorSystem and the ShoppingCartEventConsumer like this:

Java
package shopping.analytics;

import akka.actor.typed.ActorSystem;
import akka.actor.typed.javadsl.Behaviors;
import akka.management.cluster.bootstrap.ClusterBootstrap;
import akka.management.javadsl.AkkaManagement;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Main {

  private static final Logger logger = LoggerFactory.getLogger(Main.class);

  public static void main(String[] args) {
    ActorSystem<Void> system = ActorSystem.create(Behaviors.empty(), "ShoppingAnalyticsService");
    try {
      init(system);
    } catch (Exception e) {
      logger.error("Terminating due to initialization failure.", e);
      system.terminate();
    }
  }

  public static void init(ActorSystem<Void> system) {
    AkkaManagement.get(system).start();
    ClusterBootstrap.get(system).start();

    ShoppingCartEventConsumer.init(system);
  }
}
Scala
package shopping.analytics

import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.ActorSystem
import akka.management.cluster.bootstrap.ClusterBootstrap
import akka.management.scaladsl.AkkaManagement
import org.slf4j.LoggerFactory
import scala.util.control.NonFatal

object Main {

  val logger = LoggerFactory.getLogger("shopping.analytics.Main")

  def main(args: Array[String]): Unit = {
    val system =
      ActorSystem[Nothing](Behaviors.empty, "ShoppingAnalyticsService")
    try {
      init(system)
    } catch {
      case NonFatal(e) =>
        logger.error("Terminating due to initialization failure.", e)
        system.terminate()
    }
  }

  def init(system: ActorSystem[_]): Unit = {
    AkkaManagement(system).start()
    ClusterBootstrap(system).start()

    ShoppingCartEventConsumer.init(system)
  }

}

Run locally

In addition to PostgreSQL we now also need Kafka. The docker-compose script starts PostgreSQL and Kafka:

  1. Start PostgreSQL and Kafka, unless it’s already running, from the shopping-cart-service:

    docker compose up -d
  2. Run the shopping-cart-service with:

    # make sure to compile before running exec:exec
    mvn compile exec:exec -DAPP_CONFIG=local1.conf
    sbt -Dconfig.resource=local1.conf run
  3. In another terminal, run the new shopping-analytics-service with:

    # make sure to compile before running exec:exec
    mvn compile exec:exec -DAPP_CONFIG=local1.conf
    sbt -Dconfig.resource=local1.conf run

Exercise the service

Use grpcurl to exercise the service:

  1. Start another terminal, and use grpcurl to add 1 pencil to a cart:

    grpcurl -d '{"cartId":"cart4", "itemId":"pencil", "quantity":1}' -plaintext 127.0.0.1:8101 shoppingcart.ShoppingCartService.AddItem
  2. Look at the log output in the terminal of the shopping-analytics-service. You should see the logging from the AddItem, showing that the new service consumed the event from Kafka:

    ItemAdded: 1 pencil to cart cart4

Stop the service

When finished, stop the shopping-cart-service and shopping-analytics-service with ctrl-c. Stop PostgreSQL and Kafka with:

docker compose stop