Sharded Daemon Process
Module info
To use Akka Sharded Daemon Process, you must add the following dependency in your project:
- sbt
val AkkaVersion = "2.8.2+4-5f2c5985-SNAPSHOT" libraryDependencies += "com.typesafe.akka" %% "akka-cluster-sharding-typed" % AkkaVersion
- Maven
<properties> <scala.binary.version>2.13</scala.binary.version> </properties> <dependencyManagement> <dependencies> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-bom_${scala.binary.version}</artifactId> <version>2.8.2+4-5f2c5985-SNAPSHOT</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-cluster-sharding-typed_${scala.binary.version}</artifactId> </dependency> </dependencies>
- Gradle
def versions = [ ScalaBinary: "2.13" ] dependencies { implementation platform("com.typesafe.akka:akka-bom_${versions.ScalaBinary}:2.8.2+4-5f2c5985-SNAPSHOT") implementation "com.typesafe.akka:akka-cluster-sharding-typed_${versions.ScalaBinary}" }
Project Info: Akka Cluster Sharding (typed) | |
---|---|
Artifact | com.typesafe.akka
akka-cluster-sharding-typed
2.8.2+4-5f2c5985-SNAPSHOT
|
JDK versions | Adopt OpenJDK 8 Adopt OpenJDK 11 |
Scala versions | 2.13.10, 2.12.17, 3.2.2 |
JPMS module name | akka.cluster.sharding.typed |
License | |
Readiness level | Supported, Lightbend Subscription provides support
Since 2.6.0, 2019-11-06
|
Home page | https://akka.io/ |
API documentation | |
Forums | |
Release notes | akka.io blog |
Issues | Github issues |
Sources | https://github.com/akka/akka |
Introduction
Sharded Daemon Process provides a way to run N
actors, each given a numeric id starting from 0
that are then kept alive and balanced across the cluster. When a rebalance is needed the actor is stopped and, triggered by a keep alive running on all nodes, started on a new node (the keep alive should be seen as an implementation detail and may change in future versions).
The intended use case is for splitting data processing workloads across a set number of workers that each get to work on a subset of the data that needs to be processed. This is commonly needed to create projections based on the event streams available from all the EventSourcedBehaviors in a CQRS application. Events are tagged with one out of N
tags used to split the workload of consuming and updating a projection between N
workers.
For cases where a single actor needs to be kept alive see Cluster Singleton
Basic example
To set up a set of actors running with Sharded Daemon process each node in the cluster needs to run the same initialization when starting up:
- Scala
-
source
val tags = Vector("tag-1", "tag-2", "tag-3") ShardedDaemonProcess(system).init("TagProcessors", tags.size, id => TagProcessor(tags(id)))
- Java
-
source
List<String> tags = Arrays.asList("tag-1", "tag-2", "tag-3"); ShardedDaemonProcess.get(system) .init( TagProcessor.Command.class, "TagProcessors", tags.size(), id -> TagProcessor.create(tags.get(id)));
An additional factory method is provided for further configurability and providing a graceful stop message for the actor.
Addressing the actors
In use cases where you need to send messages to the daemon process actors it is recommended to use the system receptionist either with a single ServiceKey
which all daemon process actors register themeselves to for broadcasts or individual keys if more fine grained messaging is needed.
Dynamic scaling of number of workers
Starting the sharded daemon process with initWithContext
returns an ActorRef[ShardedDaemonProcessCommand]
that accepts a ChangeNumberOfProcesses
ChangeNumberOfProcesses
command to rescale the process to a new number of workers.
The rescaling process among other things includes the process actors stopping themselves in response to a stop message so may be a relatively slow operation. If a subsequent request to rescale is sent while one is in progress it is responded to with a failure response.
A rolling upgrade switching from a static number of workers to a dynamic number is possible. It is not safe to do a rolling upgrade from dynamic number of workers to static without a full cluster shutdown.
Scalability
This cluster tool is intended for small numbers of consumers and will not scale well to a large set. In large clusters it is recommended to limit the nodes the sharded daemon process will run on using a role.
Configuration
The following configuration properties are read by the ShardedDaemonProcessSettings
ShardedDaemonProcessSettings
when created with a ActorSystem
ActorSystem
parameter:
sourceakka.cluster.sharded-daemon-process {
# Settings for the sharded dameon process internal usage of sharding are using the akka.cluste.sharding defaults.
# Some of the settings can be overriden specifically for the sharded daemon process here. For example can the
# `role` setting limit what nodes the daemon processes and the keep alive pingers will run on.
# Some settings can not be changed (remember-entitites and related settings, passivation, number-of-shards),
# overriding those settings will be ignored.
sharding = ${akka.cluster.sharding}
# Each entity is pinged at this interval from a few nodes in the
# cluster to trigger a start if it has stopped, for example during
# rebalancing.
# See also keep-alive-from-number-of-nodes and keep-alive-throttle-interval
# Note: How the set of actors is kept alive may change in the future meaning this setting may go away.
keep-alive-interval = 10s
# Keep alive messages from this number of nodes.
keep-alive-from-number-of-nodes = 3
# Keep alive messages are sent with this delay between each message.
keep-alive-throttle-interval = 100 ms
}