Akka Java Documentation
Release 2.4.20

Lightbend Inc

August 10, 2017

CONTENTS

Security Announcements 1
1.1 Receiving Security AdVISOTIES o v v it e e e e e e e e e e e 1
1.2 Reporting Vulnerabilities L e 1
1.3 Security Related Documentation it e e e e e 1
1.4 Fixed Security Vulnerabilities e e 1
Introduction 4
2.1 Whatis AKka? L e e e e 4
22 Why AKKa? e e e 5
2.3 Getting Started L. e e e e e e e e e e 6
24 The Obligatory HelloWorld 10
2.5 Use-case and Deployment Scenarios ot 10
2.6 Examples of use-casesfor Akka e 11
General 13
3.1 Terminology, CONCePLs« v v v vt e e e e e e e e 13
3.2 ACIOr SYSIEMS & o v o v v e 15
33 Whatis an ACtOr? o e e e e e e e 17
3.4 Supervision and Monitoring oL e e e e e 19
3.5 Actor References, Paths and Addresses e e 24
3.6 Location Transparency v v v v v v ittt e e e e e e e e e e e e 30
3.7 Akkaandthe JavaMemory Model 31
3.8 Message Delivery Reliability 0 e e 33
3.9 Configuration e e e e e e e e e e e 38
Actors 102
4.1 ACIOTS . o o e e e e e e e 102
42 Typed ACLOTS . . . v v ot e e e e e e e e e e e e e e e e e 122
43 FaultTolerance o e e e e e e 131
4.4 Dispatchers e e 146
45 MailboXes e e e 149
4.6 ROULNG . . . o o o e e e e e e e e e e e e 156
4.7 Building Finite State Machine Actors e 176
4.8 PersiStence e e e e e e e e e e e 179
4.9 Persistence - Schema Evolution 210
4.10 Persistence QUEIY o oL L e e e e e e 224
4.11 Persistence Query for LevelDB 234
4,12 Testing ACtOr SYSIBIMS v v v v o e 237
Actors (Java with Lambda Support) 254
5.1 Actors (Java with Lambda Support) e 254
5.2 Fault Tolerance (Java with Lambda Support) 274
5.3 FSM (Java with Lambda Support) 288
5.4 Persistence (Java with Lambda Support)o oo o 297

6 Futures and Agents 330

6.1 Futures e e e e e e 330
6.2 AZENS e e e e e e e 337
7 Networking 340
7.1 Cluster Specification o v i e e e e e e e e e e e e e 340
7.2 Cluster Usage v v v i e e e e e e e e e e e e e e e e 346
7.3 Cluster Singleton L e 366
7.4 Distributed Publish Subscribe in Cluster 369
7.5 Cluster Client o 0o e e e e e e e 373
7.6 Cluster Sharding o e e e e e e e e e e e e 378
7.7 Cluster Metrics Extension e 389
7.8 Distributed Data e e 396
7.9 Remoting e e e e e e e 416
7.10 Remoting (codename AItery) o v v vt e e e e e e e e 427
T.11 Serialization e e e e e e e e e e e e e e 442
T2 VO o e e e 448
713 Using TCP o o e e e e e 450
7.14 Using UDP o .. e 461
TAS5 Camel. e e e e 465
8 Utilities 478
8.1 EventBus. e e 478
8.2 Logging. e 485
83 Scheduler e 492
84 Duration e e e e e e e 494
85 CircuitBreaker e e 496
8.6 AKkaEXtensions e e e e e e e e e e 500
8.7 Use-case and Deployment SCENArios o v v vt v vttt e e e e 503
9 Streams 505
9.1 Introduction e e e e e e e e e 505
9.2 Quick Start Guide e 506
0.3 Reactive TWEELS o ittt e e e e e e e e e 508
9.4 Design Principles behind Akka Streams L e 513
9.5 Basics and working with Flowso o 516
9.6 Workingwith Graphs e 523
9.7 Modularity, Composition and Hierarchy 535
9.8 Buffers and working withrate e e 546
9.9 Dynamic stream handling L e e e 549
9.10 Custom Stream proCessiNg v v v v vttt e e e e e e e e e e e e 554
O0.11 Integration i e e e e e 574
9.12 ErrorHandling e 588
9.13 Working with streaming IO L 590
9.14 Pipelining and Parallelism e 593
0.15 Testing StreamsS . .« . v v v v v e i e 596
9.16 Overview of built-in stages and their semantics 599
9.17 Streams Cookbook e e e 624
0.18 Configuration it e e e e e e e e e e e 638
9.19 Migration Guide 1.0t02.X v v i it e e e e e e e e e e e e e e e 640
9.20 Migration Guide 2.0.X 10 2.4.X . . . o v v i i e e e e e e e e e e e e e e e e 640
10 Akka HTTP Documentation (Java) moved! 644
11 HowTo: Common Patterns 645
11.1 Scheduling Periodic Messages o vttt e 645
11.2 Single-Use Actor Trees with High-Level Error Reporting 646
12 Experimental Modules 650

12.1
12.2
12.3
12.4
12.5

Multi Node Testing v v it e
Actors (Java with Lambda Support) e
FSM (Java with Lambda Support)
Persistence Query L L e
External Contributions L e e

13 Information for Akka Developers

13.1
13.2
13.3
13.4
13.5

Building Akka L e e
MultiJVM Testing o o ot e e e e e e e e e e
I/OLayer Design oo o e
Developer Guidelines e e e e e e e e e
Documentation Guidelines e

14 Project Information

14.1
14.2
14.3
14.4
14.5

Migration GUides o e e e e e e e e e e e e e e e
Issue Tracking o o . e e e e e
Licenses o o e e e e e e e
SPONSOTS . . v v o ot e it e
Project

15 Additional Information

15.1
15.2
15.3
15.4
15.5

Binary Compatibility Rules
Frequently Asked QUestions i e e e e e e e e e e
BOOKs . . . e
VIideos e e

716
716
718
721
723
724

727
727
745
746
746
746

CHAPTER
ONE

SECURITY ANNOUNCEMENTS

1.1 Receiving Security Advisories

The best way to receive any and all security announcements is to subscribe to the Akka security list.

The mailing list is very low traffic, and receives notifications only after security reports have been managed by the
core team and fixes are publicly available.

1.2 Reporting Vulnerabilities

We strongly encourage people to report such problems to our private security mailing list first, before disclosing
them in a public forum.

Following best practice, we strongly encourage anyone to report potential security vulnerabilities to secu-
rity @akka.io before disclosing them in a public forum like the mailing list or as a Github issue.

Reports to this email address will be handled by our security team, who will work together with you to ensure that
a fix can be provided without delay.

1.3 Security Related Documentation

e disable-java-serializer-scala
* remote-deployment-whitelist-scala

* remote-security-scala

1.4 Fixed Security Vulnerabilities

1.4.1 Java Serialization, Fixed in Akka 2.4.17

Date

10 Feburary 2017

Description of Vulnerability

An attacker that can connect to an ActorSystem exposed via Akka Remote over TCP can gain remote code
execution capabilities in the context of the JVM process that runs the ActorSystem if:

e JavaSerializer isenabled (default in Akka 2.4.x)

https://groups.google.com/forum/#!forum/akka-security
mailto:security@akka.io
mailto:security@akka.io

Akka Java Documentation, Release 2.4.20

e and TLS is disabled or TLS is enabled with akka .remote.netty.ssl.security.require-mutual—-authentic
= false (which is still the default in Akka 2.4.x)

 or if TLS is enabled with mutual authentication and the authentication keys of a host that is allowed to
connect have been compromised, an attacker gained access to a valid certificate (e.g. by compromising a
node with certificates issued by the same internal PKI tree to get access of the certificate)

* regardless of whether unt rusted mode is enabled or not
Java deserialization is known to be vulnerable to attacks when attacker can provide arbitrary types.

Akka Remoting uses Java serialiser as default configuration which makes it vulnerable in its default form. The
documentation of how to disable Java serializer was not complete. The documentation of how to enable mutual
authentication was missing (only described in reference.conf).

To protect against such attacks the system should be updated to Akka 2.4.17 or later and be configured with
disabled Java serializer. Additional protection can be achieved when running in an untrusted network by enabling
TLS with mutual authentication.

Please subscribe to the akka-security mailing list to be notified promptly about future security issues.

Severity

The CVSS score of this vulnerability is 6.8 (Medium), based on vector
AV:A/AC:M/Au:N/C:C/T:C/A:C/E:F/RL:TF/RC:C.

Rationale for the score:

* AV:A - Best practice is that Akka remoting nodes should only be accessible from the adjacent network, so
in good setups, this will be adjacent.

* AC:M - Any one in the adjacent network can launch the attack with non-special access privileges.

* C:C, I:C, A:C - Remote Code Execution vulnerabilities are by definition CIA:C.

Affected Versions

* Akka 2.4.16 and prior

* Akka 2.5-M1 (milestone not intended for production)

Fixed Versions

We have prepared patches for the affected versions, and have released the following versions which resolve the
issue:

e Akka 2.4.17 (Scala 2.11, 2.12)

Binary and source compatibility has been maintained for the patched releases so the upgrade procedure is as
simple as changing the library dependency.

It will also be fixed in 2.5-M2 or 2.5.0-RC1.

Acknowledgements

We would like to thank Alvaro Munoz at Hewlett Packard Enterprise Security & Adrian Bravo at Workday for
their thorough investigation and bringing this issue to our attention.

1.4. Fixed Security Vulnerabilities 2

https://community.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-p/6838995
https://groups.google.com/forum/#!forum/akka-security
https://en.wikipedia.org/wiki/CVSS
https://nvd.nist.gov/cvss.cfm?calculator&version=2&vector=(AV:A/AC:M/Au:N/C:C/I:C/A:C/E:F/RL:TF/RC:C)

Akka Java Documentation, Release 2.4.20

1.4.2 Camel Dependency, Fixed in Akka 2.4.20

Date

9 August 2017

Description of Vulnerability

Apache Camel’s Validation Component is vulnerable against SSRF via remote DTDs and XXE, as described in
CVE-2017-5643

To protect against such attacks the system should be updated to Akka 2.4.20, 2.5.4 or later. Dependencies to
Camel libraries should be updated to version 2.7.17.

Severity

The CVSS score of this vulnerability is 7.4 (High), according to CVE-2017-5643.

Affected Versions
* Akka 2.4.19 and prior
* Akka 2.5.3 and prior
Fixed Versions

We have prepared patches for the affected versions, and have released the following versions which resolve the
issue:

* Akka 2.4.20 (Scala 2.11, 2.12)
* Akka 2.5.4 (Scala 2.11, 2.12)

Acknowledgements

We would like to thank Thomas Szymanski for bringing this issue to our attention.

1.4. Fixed Security Vulnerabilities 3

https://nvd.nist.gov/vuln/detail/CVE-2017-5643
https://en.wikipedia.org/wiki/CVSS
https://nvd.nist.gov/vuln/detail/CVE-2017-5643

CHAPTER
TWO

INTRODUCTION

2.1 What is Akka?

«resilient elastic distributed real-time transaction processing»

We believe that writing correct distributed, concurrent, fault-tolerant and scalable applications is too hard. Most
of the time it’s because we are using the wrong tools and the wrong level of abstraction. Akka is here to change
that. Using the Actor Model we raise the abstraction level and provide a better platform to build scalable, resilient
and responsive applications—see the Reactive Manifesto for more details. For fault-tolerance we adopt the “let
it crash” model which the telecom industry has used with great success to build applications that self-heal and
systems that never stop. Actors also provide the abstraction for transparent distribution and the basis for truly
scalable and fault-tolerant applications.

Akka is Open Source and available under the Apache 2 License.
Download from http://akka.io/downloads.

Please note that all code samples compile, so if you want direct access to the sources, have a look over at the Akka
Docs subproject on github: for Java and Scala.

2.1.1 Akka implements a unique hybrid
Actors

Actors give you:
» Simple and high-level abstractions for distribution, concurrency and parallelism.
* Asynchronous, non-blocking and highly performant message-driven programming model.
* Very lightweight event-driven processes (several million actors per GB of heap memory).

See the chapter for Scala or Java.

Fault Tolerance

 Supervisor hierarchies with “let-it-crash” semantics.
* Actor systems can span over multiple JVMs to provide truly fault-tolerant systems.
* Excellent for writing highly fault-tolerant systems that self-heal and never stop.

See Fault Tolerance (Scala) and Fault Tolerance (Java).

http://reactivemanifesto.org/
http://akka.io/downloads
http://github.com/akka/akka/tree/v2.4.20/akka-docs/rst/java/code/docs
http://github.com/akka/akka/tree/v2.4.20/akka-docs/rst/scala/code/docs

Akka Java Documentation, Release 2.4.20

Location Transparency
Everything in Akka is designed to work in a distributed environment: all interactions of actors use pure message
passing and everything is asynchronous.

For an overview of the cluster support see the Java and Scala documentation chapters.

Persistence

State changes experienced by an actor can optionally be persisted and replayed when the actor is started or
restarted. This allows actors to recover their state, even after JVM crashes or when being migrated to another
node.

You can find more details in the respective chapter for Java or Scala.

2.1.2 Scala and Java APIs

Akka has both a scala-api and a Java Documentation.

2.1.3 Akka can be used in different ways

Akka is a toolkit, not a framework: you integrate it into your build like any other library without having to follow
a particular source code layout. When expressing your systems as collaborating Actors you may feel pushed more
towards proper encapsulation of internal state, you may find that there is a natural separation between business
logic and inter-component communication.

Akka applications are typically deployed as follows:
e as alibrary: used as a regular JAR on the classpath or in a web app.
* packaged with sbt-native-packager.

* packaged and deployed using Lightbend ConductR.

2.1.4 Commercial Support

Akka is available from Lightbend Inc. under a commercial license which includes development or production
support, read more here.

2.2 Why Akka?

2.2.1 What features can the Akka platform offer, over the competition?

Akka provides scalable real-time transaction processing.
Akka is an unified runtime and programming model for:
¢ Scale up (Concurrency)
* Scale out (Remoting)
¢ Fault tolerance
One thing to learn and admin, with high cohesion and coherent semantics.

Akka is a very scalable piece of software, not only in the context of performance but also in the size of applications
it is useful for. The core of Akka, akka-actor, is very small and easily dropped into an existing project where you
need asynchronicity and lockless concurrency without hassle.

2.2. Why Akka? 5

https://github.com/sbt/sbt-native-packager
http://www.lightbend.com/products/conductr
http://www.lightbend.com/how/subscription

Akka Java Documentation, Release 2.4.20

You can choose to include only the parts of Akka you need in your application. With CPUs growing more and
more cores every cycle, Akka is the alternative that provides outstanding performance even if you’re only running
it on one machine. Akka also supplies a wide array of concurrency-paradigms, allowing users to choose the right
tool for the job.

2.2.2 What’s a good use-case for Akka?

We see Akka being adopted by many large organizations in a big range of industries:
¢ Investment and Merchant Banking
* Retail
* Social Media
* Simulation
* Gaming and Betting
* Automobile and Traffic Systems
* Health Care
* Data Analytics

and much more. Any system with the need for high-throughput and low latency is a good candidate for using
Akka.

Actors let you manage service failures (Supervisors), load management (back-off strategies, timeouts and
processing-isolation), as well as both horizontal and vertical scalability (add more cores and/or add more ma-
chines).

Here’s what some of the Akka wusers have to say about how they are wusing Akka:
http://stackoverflow.com/questions/4493001/good-use-case-for-akka

All this in the ApacheV2-licensed open source project.

2.3 Getting Started

2.3.1 Prerequisites

Akka requires that you have Java 8§ or later installed on your machine.

Lightbend Inc. provides a commercial build of Akka and related projects such as Scala or Play as part of the
Lightbend Reactive Platform which is made available for Java 6 in case your project can not upgrade to Java 8 just
yet. It also includes additional commercial features or libraries.

2.3.2 Getting Started Guides and Template Projects

The best way to start learning Akka is to download Lightbend Activator and try out one of Akka Template Projects.

2.3.3 Download

There are several ways to download Akka. You can download it as part of the Lightbend Platform (as described
above). You can download the full distribution, which includes all modules. Or you can use a build tool like
Maven or SBT to download dependencies from the Akka Maven repository.

2.3. Getting Started 6

http://stackoverflow.com/questions/4493001/good-use-case-for-akka
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.lightbend.com
http://www.lightbend.com/platform
http://www.lightbend.com/platform/getstarted

Akka Java Documentation, Release 2.4.20

2.3.4 Modules

Akka is very modular and consists of several JARs containing different features.
e akka-actor — Classic Actors, Typed Actors, IO Actor etc.
* akka—agent — Agents, integrated with Scala STM
* akka-camel — Apache Camel integration
* akka-cluster — Cluster membership management, elastic routers.
* akka-osgi — Utilities for using Akka in OSGi containers
* akka-osgi—-aries — Aries blueprint for provisioning actor systems
* akka-remote — Remote Actors
* akka-sl1f47j— SLF4]J Logger (event bus listener)
* akka-stream— Reactive stream processing
* akka-testkit — Toolkit for testing Actor systems

In addition to these stable modules there are several which are on their way into the stable core but are still marked
“experimental” at this point. This does not mean that they do not function as intended, it primarily means that
their API has not yet solidified enough in order to be considered frozen. You can help accelerating this process by
giving feedback on these modules on our mailing list.

* akka-contrib — an assortment of contributions which may or may not be moved into core modules, see
External Contributions for more details.

The filename of the actual JAR is for example akka-actor_2.11-2.4.20. jar (and analog for the other
modules).

How to see the JARs dependencies of each Akka module is described in the Dependencies section.

2.3.5 Using a release distribution

Download the release you need from http://akka.io/downloads and unzip it.

2.3.6 Using a snapshot version

The Akka nightly snapshots are published to http://repo.akka.io/snapshots/ and are versioned with both
SNAPSHOT and timestamps. You can choose a timestamped version to work with and can decide when to update
to a newer version.

Warning: The use of Akka SNAPSHOTS, nightlies and milestone releases is discouraged unless you know
what you are doing.

2.3.7 Using a build tool

Akka can be used with build tools that support Maven repositories.

2.3.8 Maven repositories

For Akka version 2.1-M2 and onwards:
Maven Central
For previous Akka versions:

Akka Repo

2.3. Getting Started 7

http://akka.io/downloads
http://repo.akka.io/snapshots/
https://repo1.maven.org/maven2/
http://repo.akka.io/releases/

Akka Java Documentation, Release 2.4.20

2.3.9 Using Akka with Maven

The simplest way to get started with Akka and Maven is to check out the Lightbend Activator tutorial named Akka
Main in Java.

Since Akka is published to Maven Central (for versions since 2.1-M2), it is enough to add the Akka dependencies
to the POM. For example, here is the dependency for akka-actor:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_2.11</artifactId>
<version>2.4.20</version>

</dependency>

For snapshot versions, the snapshot repository needs to be added as well:

<repositories>
<repository>
<id>akka-snapshots</id>
<snapshots>
<enabled>true</enabled>
</snapshots>
<url>http://repo.akka.io/snapshots/</url>
</repository>
</repositories>

Note: for snapshot versions both SNAPSHOT and timestamped versions are published.

2.3.10 Using Akka with SBT

The simplest way to get started with Akka and SBT is to use Lightbend Activator with one of the SBT templates.
Summary of the essential parts for using Akka with SBT:
SBT installation instructions on http://www.scala-sbt.org/release/tutorial/Setup.html

build. sbt file:

name := "My Project"
version := "1.0"
scalaVersion := "2.11.11"

libraryDependencies +=
"com.typesafe.akka" %% "akka-actor" % "2.4.20"

Note: the libraryDependencies setting above is specific to SBT v0.12.x and higher. If you are using an older
version of SBT, the libraryDependencies should look like this:

libraryDependencies +=

) o)

"com.typesafe.akka" % "akka-actor_2.11" & "2.4.20"

For snapshot versions, the snapshot repository needs to be added as well:

resolvers += "Akka Snapshot Repository" at "http://repo.akka.io/snapshots/"

2.3.11 Using Akka with Gradle

Requires at least Gradle 1.4 Uses the Scala plugin

2.3. Getting Started 8

http://www.lightbend.com/platform/getstarted
http://www.lightbend.com/activator/template/akka-sample-main-java
http://www.lightbend.com/activator/template/akka-sample-main-java
http://www.lightbend.com/platform/getstarted
https://www.lightbend.com/activator/templates
http://www.scala-sbt.org/release/tutorial/Setup.html
https://gradle.org
http://www.gradle.org/docs/current/userguide/scala_plugin.html

Akka Java Documentation, Release 2.4.20

apply plugin: ’scala’

repositories {
mavenCentral ()

}

dependencies {
compile ’"org.scala-lang:scala-library:2.11.11"

}

tasks.withType (ScalaCompile) {
scalaCompileOptions.useAnt = false

}

dependencies {
compile group: ’com.typesafe.akka’, name: ’akka-actor_2.11’, version: ’'2.4.20'
compile group: ’'org.scala-lang’, name: ’'scala-library’, version: ’2.11.11’

}

For snapshot versions, the snapshot repository needs to be added as well:

repositories {
mavenCentral ()
maven {
url "http://repo.akka.io/snapshots/"
}

2.3.12 Using Akka with Eclipse

Setup SBT project and then use sbteclipse to generate an Eclipse project.

2.3.13 Using Akka with Intellid IDEA

Setup SBT project and then use sbt-idea to generate an IntelliJ] IDEA project.

2.3.14 Using Akka with NetBeans

Setup SBT project and then use nbsbt to generate a NetBeans project.

You should also use nbscala for general scala support in the IDE.

2.3.15 Do not use -optimize Scala compiler flag

Warning: Akka has not been compiled or tested with -optimize Scala compiler flag. Strange behavior has
been reported by users that have tried it.

2.3.16 Build from sources

Akka uses Git and is hosted at Github.
* Akka: clone the Akka repository from https://github.com/akka/akka
Continue reading the page on Building Akka

2.3. Getting Started 9

https://github.com/typesafehub/sbteclipse
https://github.com/mpeltonen/sbt-idea
https://github.com/dcaoyuan/nbsbt
https://github.com/dcaoyuan/nbscala
https://github.com
https://github.com/akka/akka

Akka Java Documentation, Release 2.4.20

2.3.17 Need help?

If you have questions you can get help on the Akka Mailing List.
You can also ask for commercial support.

Thanks for being a part of the Akka community.

2.4 The Obligatory Hello World

The actor based version of the tough problem of printing a well-known greeting to the console is introduced in a
Lightbend Activator tutorial named Akka Main in Java.

The tutorial illustrates the generic launcher class akka .Main which expects only one command line argument:
the class name of the application’s main actor. This main method will then create the infrastructure needed for
running the actors, start the given main actor and arrange for the whole application to shut down once the main
actor terminates.

There is also another Lightbend Activator tutorial in the same problem domain that is named Hello Akka!. It
describes the basics of Akka in more depth.

2.5 Use-case and Deployment Scenarios

2.5.1 How can | use and deploy Akka?

Akka can be used in different ways:
* As alibrary: used as a regular JAR on the classpath and/or in a web app, to be put into WEB-INF/1ib
» Package with sbt-native-packager

» Package and deploy using Lightbend ConductR.

2.5.2 Native Packager

sbt-native-packager is a tool for creating distributions of any type of application, including an Akka applications.
Define sbt version in project/build.properties file:
sbt.version=0.13.7

Add sbt-native-packager in project /plugins. sbt file:

o) o)

addSbtPlugin ("com.typesafe.sbt" % "sbt-native-packager" % "1.0.0-RC1")

Use the package settings and optionally specify the mainClass in build. sbt file:

import NativePackagerHelper._

name := "akka-sample-main-scala"
version := "2.4.20"
scalaVersion := "2.11.8"

libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % "2.4.20"

)

enablePlugins (JavaServerAppPackaging)

2.4. The Obligatory Hello World 10

https://groups.google.com/group/akka-user
https://www.lightbend.com
http://www.lightbend.com/platform/getstarted
http://www.lightbend.com/activator/template/akka-sample-main-java
http://www.lightbend.com/platform/getstarted
http://www.lightbend.com/activator/template/hello-akka
https://github.com/sbt/sbt-native-packager
http://www.lightbend.com/products/conductr
https://github.com/sbt/sbt-native-packager
https://github.com/sbt/sbt-native-packager

Akka Java Documentation, Release 2.4.20

mainClass in Compile := Some ("sample.hello.Main")

mappings in Universal ++= {
// optional example illustrating how to copy additional directory
directory("scripts") ++
// copy configuration files to config directory
contentOf ("src/main/resources") .toMap.mapValues ("config/" + _)

}

// add ’config’ directory first in the classpath of the start script,

// an alternative is to set the config file locations via CLI parameters
// when starting the application

scriptClasspath := Seqg("../config/") ++ scriptClasspath.value

licenses := Seqg(("CCO", url("http://creativecommons.org/publicdomain/zero/1.0")))

Note: Use the JavaServerAppPackaging. Don’t use the deprecated AkkaAppPackaging (previously
named packageArchetype.akka_application), since it doesn’t have the same flexibility and quality as
the JavaServerAppPackaging.

Use sbt task di st package the application.
To start the application (on a unix-based system):

cd target/universal/

unzip akka-sample-main-scala-2.4.20.zip

chmod u+x akka-sample-main-scala-2.4.20/bin/akka-sample-main-scala
akka-sample-main-scala-2.4.20/bin/akka-sample-main-scala sample.hello.Main

Use Ctr1-C to interrupt and exit the application.

On a Windows machine you can also use the bin\akka-sample-main-scala.bat script.

2.5.3 In a Docker container
You can use both Akka remoting and Akka Cluster inside of Docker containers. But note that you will need to
take special care with the network configuration when using Docker, described here: remote-configuration-nat

For an example of how to set up a project using Akka Cluster and Docker take a look at the “akka-docker-cluster”
activator template.

2.6 Examples of use-cases for Akka

We see Akka being adopted by many large organizations in a big range of industries all from investment and
merchant banking, retail and social media, simulation, gaming and betting, automobile and traffic systems, health
care, data analytics and much more. Any system that have the need for high-throughput and low latency is a good
candidate for using Akka.

There is a great discussion on use-cases for Akka with some good write-ups by production users here
2.6.1 Here are some of the areas where Akka is being deployed into production

Transaction processing (Online Gaming, Finance/Banking, Trading, Statistics, Betting, Social
Media, Telecom)

Scale up, scale out, fault-tolerance / HA

2.6. Examples of use-cases for Akka 11

https://www.lightbend.com/activator/template/akka-docker-cluster
https://www.lightbend.com/activator/template/akka-docker-cluster
http://stackoverflow.com/questions/4493001/good-use-case-for-akka/4494512#4494512

Akka Java Documentation, Release 2.4.20

Service backend (any industry, any app)

Service REST, SOAP, Cometd, WebSockets etc Act as message hub / integration layer Scale up, scale
out, fault-tolerance / HA

Concurrency/parallelism (any app)

Correct Simple to work with and understand Just add the jars to your existing JVM project (use Scala,
Java, Groovy or JRuby)

Simulation

Master/Worker, Compute Grid, MapReduce etc.

Batch processing (any industry)

Camel integration to hook up with batch data sources Actors divide and conquer the batch workloads

Communications Hub (Telecom, Web media, Mobile media)

Scale up, scale out, fault-tolerance / HA

Gaming and Betting (MOM, online gaming, betting)

Scale up, scale out, fault-tolerance / HA

Business Intelligence/Data Mining/general purpose crunching

Scale up, scale out, fault-tolerance / HA

Complex Event Stream Processing

Scale up, scale out, fault-tolerance / HA

2.6. Examples of use-cases for Akka 12

CHAPTER
THREE

GENERAL

3.1 Terminology, Concepts

In this chapter we attempt to establish a common terminology to define a solid ground for communicating about
concurrent, distributed systems which Akka targets. Please note that, for many of these terms, there is no sin-
gle agreed definition. We simply seek to give working definitions that will be used in the scope of the Akka
documentation.

3.1.1 Concurrency vs. Parallelism

Concurrency and parallelism are related concepts, but there are small differences. Concurrency means that two or
more tasks are making progress even though they might not be executing simultaneously. This can for example
be realized with time slicing where parts of tasks are executed sequentially and mixed with parts of other tasks.
Parallelism on the other hand arise when the execution can be truly simultaneous.

3.1.2 Asynchronous vs. Synchronous

A method call is considered synchronous if the caller cannot make progress until the method returns a value or
throws an exception. On the other hand, an asynchronous call allows the caller to progress after a finite number of
steps, and the completion of the method may be signalled via some additional mechanism (it might be a registered
callback, a Future, or a message).

A synchronous API may use blocking to implement synchrony, but this is not a necessity. A very CPU intensive
task might give a similar behavior as blocking. In general, it is preferred to use asynchronous APIs, as they
guarantee that the system is able to progress. Actors are asynchronous by nature: an actor can progress after a
message send without waiting for the actual delivery to happen.

3.1.3 Non-blocking vs. Blocking

We talk about blocking if the delay of one thread can indefinitely delay some of the other threads. A good example
is a resource which can be used exclusively by one thread using mutual exclusion. If a thread holds on to the
resource indefinitely (for example accidentally running an infinite loop) other threads waiting on the resource can
not progress. In contrast, non-blocking means that no thread is able to indefinitely delay others.

Non-blocking operations are preferred to blocking ones, as the overall progress of the system is not trivially
guaranteed when it contains blocking operations.

3.1.4 Deadlock vs. Starvation vs. Live-lock

Deadlock arises when several participants are waiting on each other to reach a specific state to be able to progress.
As none of them can progress without some other participant to reach a certain state (a “Catch-22” problem) all

13

Akka Java Documentation, Release 2.4.20

affected subsystems stall. Deadlock is closely related to blocking, as it is necessary that a participant thread be
able to delay the progression of other threads indefinitely.

In the case of deadlock, no participants can make progress, while in contrast Starvation happens, when there are
participants that can make progress, but there might be one or more that cannot. Typical scenario is the case
of a naive scheduling algorithm that always selects high-priority tasks over low-priority ones. If the number of
incoming high-priority tasks is constantly high enough, no low-priority ones will be ever finished.

Livelock is similar to deadlock as none of the participants make progress. The difference though is that instead
of being frozen in a state of waiting for others to progress, the participants continuously change their state. An
example scenario when two participants have two identical resources available. They each try to get the resource,
but they also check if the other needs the resource, too. If the resource is requested by the other participant, they
try to get the other instance of the resource. In the unfortunate case it might happen that the two participants
“bounce” between the two resources, never acquiring it, but always yielding to the other.

3.1.5 Race Condition

We call it a Race condition when an assumption about the ordering of a set of events might be violated by external
non-deterministic effects. Race conditions often arise when multiple threads have a shared mutable state, and the
operations of thread on the state might be interleaved causing unexpected behavior. While this is a common case,
shared state is not necessary to have race conditions. One example could be a client sending unordered packets
(e.g UDP datagrams) P1, P2 to a server. As the packets might potentially travel via different network routes, it
is possible that the server receives P2 first and P 1 afterwards. If the messages contain no information about their
sending order it is impossible to determine by the server that they were sent in a different order. Depending on the
meaning of the packets this can cause race conditions.

Note: The only guarantee that Akka provides about messages sent between a given pair of actors is that their
order is always preserved. see Message Delivery Reliability

3.1.6 Non-blocking Guarantees (Progress Conditions)

As discussed in the previous sections blocking is undesirable for several reasons, including the dangers of dead-
locks and reduced throughput in the system. In the following sections we discuss various non-blocking properties
with different strength.

Wait-freedom

A method is wait-free if every call is guaranteed to finish in a finite number of steps. If a method is bounded
wait-free then the number of steps has a finite upper bound.

From this definition it follows that wait-free methods are never blocking, therefore deadlock can not happen.
Additionally, as each participant can progress after a finite number of steps (when the call finishes), wait-free
methods are free of starvation.

Lock-freedom

Lock-freedom is a weaker property than wait-freedom. In the case of lock-free calls, infinitely often some method
finishes in a finite number of steps. This definition implies that no deadlock is possible for lock-free calls. On the
other hand, the guarantee that some call finishes in a finite number of steps is not enough to guarantee that all of
them eventually finish. In other words, lock-freedom is not enough to guarantee the lack of starvation.

Obstruction-freedom

Obstruction-freedom is the weakest non-blocking guarantee discussed here. A method is called obstruction-free if
there is a point in time after which it executes in isolation (other threads make no steps, e.g.: become suspended),

3.1. Terminology, Concepts 14

Akka Java Documentation, Release 2.4.20

it finishes in a bounded number of steps. All lock-free objects are obstruction-free, but the opposite is generally
not true.

Optimistic concurrency control (OCC) methods are usually obstruction-free. The OCC approach is that every
participant tries to execute its operation on the shared object, but if a participant detects conflicts from others, it
rolls back the modifications, and tries again according to some schedule. If there is a point in time, where one of
the participants is the only one trying, the operation will succeed.

3.1.7 Recommended literature

* The Art of Multiprocessor Programming, M. Herlihy and N Shavit, 2008. ISBN 978-0123705914

¢ Java Concurrency in Practice, B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes and D. Lea, 2006.
ISBN 978-0321349606

3.2 Actor Systems

Actors are objects which encapsulate state and behavior, they communicate exclusively by exchanging messages
which are placed into the recipient’s mailbox. In a sense, actors are the most stringent form of object-oriented
programming, but it serves better to view them as persons: while modeling a solution with actors, envision a group
of people and assign sub-tasks to them, arrange their functions into an organizational structure and think about
how to escalate failure (all with the benefit of not actually dealing with people, which means that we need not
concern ourselves with their emotional state or moral issues). The result can then serve as a mental scaffolding for
building the software implementation.

Note: An ActorSystem is a heavyweight structure that will allocate 1...N Threads, so create one per logical
application.

3.2.1 Hierarchical Structure

Like in an economic organization, actors naturally form hierarchies. One actor, which is to oversee a certain
function in the program might want to split up its task into smaller, more manageable pieces. For this purpose it
starts child actors which it supervises. While the details of supervision are explained /ere, we shall concentrate on
the underlying concepts in this section. The only prerequisite is to know that each actor has exactly one supervisor,
which is the actor that created it.

The quintessential feature of actor systems is that tasks are split up and delegated until they become small enough
to be handled in one piece. In doing so, not only is the task itself clearly structured, but the resulting actors can
be reasoned about in terms of which messages they should process, how they should react normally and how
failure should be handled. If one actor does not have the means for dealing with a certain situation, it sends a
corresponding failure message to its supervisor, asking for help. The recursive structure then allows to handle
failure at the right level.

Compare this to layered software design which easily devolves into defensive programming with the aim of not
leaking any failure out: if the problem is communicated to the right person, a better solution can be found than if
trying to keep everything “under the carpet”.

Now, the difficulty in designing such a system is how to decide who should supervise what. There is of course no
single best solution, but there are a few guidelines which might be helpful:

* If one actor manages the work another actor is doing, e.g. by passing on sub-tasks, then the manager should
supervise the child. The reason is that the manager knows which kind of failures are expected and how to
handle them.

* If one actor carries very important data (i.e. its state shall not be lost if avoidable), this actor should source
out any possibly dangerous sub-tasks to children it supervises and handle failures of these children as ap-
propriate. Depending on the nature of the requests, it may be best to create a new child for each request,

3.2. Actor Systems 15

Akka Java Documentation, Release 2.4.20

which simplifies state management for collecting the replies. This is known as the “Error Kernel Pattern”
from Erlang.

* If one actor depends on another actor for carrying out its duty, it should watch that other actor’s liveness
and act upon receiving a termination notice. This is different from supervision, as the watching party has
no influence on the supervisor strategy, and it should be noted that a functional dependency alone is not a
criterion for deciding where to place a certain child actor in the hierarchy.

There are of course always exceptions to these rules, but no matter whether you follow the rules or break them,
you should always have a reason.

3.2.2 Configuration Container

The actor system as a collaborating ensemble of actors is the natural unit for managing shared facilities like
scheduling services, configuration, logging, etc. Several actor systems with different configuration may co-exist
within the same JVM without problems, there is no global shared state within Akka itself. Couple this with the
transparent communication between actor systems—within one node or across a network connection—to see that
actor systems themselves can be used as building blocks in a functional hierarchy.

3.2.3 Actor Best Practices

1. Actors should be like nice co-workers: do their job efficiently without bothering everyone else needlessly
and avoid hogging resources. Translated to programming this means to process events and generate re-
sponses (or more requests) in an event-driven manner. Actors should not block (i.e. passively wait while
occupying a Thread) on some external entity—which might be a lock, a network socket, etc.—unless it is
unavoidable; in the latter case see below.

2. Do not pass mutable objects between actors. In order to ensure that, prefer immutable messages. If the
encapsulation of actors is broken by exposing their mutable state to the outside, you are back in normal Java
concurrency land with all the drawbacks.

3. Actors are made to be containers for behavior and state, embracing this means to not routinely send behavior
within messages (which may be tempting using Scala closures). One of the risks is to accidentally share
mutable state between actors, and this violation of the actor model unfortunately breaks all the properties
which make programming in actors such a nice experience.

4. Top-level actors are the innermost part of your Error Kernel, so create them sparingly and prefer truly
hierarchical systems. This has benefits with respect to fault-handling (both considering the granularity of
configuration and the performance) and it also reduces the strain on the guardian actor, which is a single
point of contention if over-used.

3.2.4 Blocking Needs Careful Management

In some cases it is unavoidable to do blocking operations, i.e. to put a thread to sleep for an indeterminate
time, waiting for an external event to occur. Examples are legacy RDBMS drivers or messaging APIs, and the
underlying reason is typically that (network) I/O occurs under the covers. When facing this, you may be tempted
to just wrap the blocking call inside a Fut ure and work with that instead, but this strategy is too simple: you are
quite likely to find bottlenecks or run out of memory or threads when the application runs under increased load.

The non-exhaustive list of adequate solutions to the “blocking problem” includes the following suggestions:

* Do the blocking call within an actor (or a set of actors managed by a router [Java, Scala]), making sure to
configure a thread pool which is either dedicated for this purpose or sufficiently sized.

* Do the blocking call within a Future, ensuring an upper bound on the number of such calls at any point in
time (submitting an unbounded number of tasks of this nature will exhaust your memory or thread limits).

* Do the blocking call within a Fut ure, providing a thread pool with an upper limit on the number of threads
which is appropriate for the hardware on which the application runs.

3.2. Actor Systems 16

Akka Java Documentation, Release 2.4.20

* Dedicate a single thread to manage a set of blocking resources (e.g. a NIO selector driving multiple chan-
nels) and dispatch events as they occur as actor messages.

The first possibility is especially well-suited for resources which are single-threaded in nature, like database han-
dles which traditionally can only execute one outstanding query at a time and use internal synchronization to
ensure this. A common pattern is to create a router for N actors, each of which wraps a single DB connection and
handles queries as sent to the router. The number N must then be tuned for maximum throughput, which will vary
depending on which DBMS is deployed on what hardware.

Note: Configuring thread pools is a task best delegated to Akka, simply configure in the application.conf
and instantiate through an ActorSystem [Java, Scala]

3.2.5 What you should not concern yourself with

An actor system manages the resources it is configured to use in order to run the actors which it contains. There
may be millions of actors within one such system, after all the mantra is to view them as abundant and they
weigh in at an overhead of only roughly 300 bytes per instance. Naturally, the exact order in which messages are
processed in large systems is not controllable by the application author, but this is also not intended. Take a step
back and relax while Akka does the heavy lifting under the hood.

3.3 What is an Actor?

The previous section about Actor Systems explained how actors form hierarchies and are the smallest unit when
building an application. This section looks at one such actor in isolation, explaining the concepts you encounter
while implementing it. For a more in depth reference with all the details please refer to Actors (Scala) and Untyped
Actors (Java).

An actor is a container for State, Behavior, a Mailbox, Child Actors and a Supervisor Strategy. All of this is
encapsulated behind an Actor Reference. One noteworthy aspect is that actors have an explicit lifecycle, they are
not automatically destroyed when no longer referenced; after having created one, it is your responsibility to make
sure that it will eventually be terminated as well—which also gives you control over how resources are released
When an Actor Terminates.

3.3.1 Actor Reference

As detailed below, an actor object needs to be shielded from the outside in order to benefit from the actor model.
Therefore, actors are represented to the outside using actor references, which are objects that can be passed around
freely and without restriction. This split into inner and outer object enables transparency for all the desired
operations: restarting an actor without needing to update references elsewhere, placing the actual actor object on
remote hosts, sending messages to actors in completely different applications. But the most important aspect is
that it is not possible to look inside an actor and get hold of its state from the outside, unless the actor unwisely
publishes this information itself.

3.3.2 State

Actor objects will typically contain some variables which reflect possible states the actor may be in. This can be an
explicit state machine (e.g. using the fsm-scala module), or it could be a counter, set of listeners, pending requests,
etc. These data are what make an actor valuable, and they must be protected from corruption by other actors. The
good news is that Akka actors conceptually each have their own light-weight thread, which is completely shielded
from the rest of the system. This means that instead of having to synchronize access using locks you can just write
your actor code without worrying about concurrency at all.

3.3. What is an Actor? 17

Akka Java Documentation, Release 2.4.20

Behind the scenes Akka will run sets of actors on sets of real threads, where typically many actors share one
thread, and subsequent invocations of one actor may end up being processed on different threads. Akka ensures
that this implementation detail does not affect the single-threadedness of handling the actor’s state.

Because the internal state is vital to an actor’s operations, having inconsistent state is fatal. Thus, when the actor
fails and is restarted by its supervisor, the state will be created from scratch, like upon first creating the actor. This
is to enable the ability of self-healing of the system.

Optionally, an actor’s state can be automatically recovered to the state before a restart by persisting received
messages and replaying them after restart (see persistence-scala).

3.3.3 Behavior

Every time a message is processed, it is matched against the current behavior of the actor. Behavior means a
function which defines the actions to be taken in reaction to the message at that point in time, say forward a
request if the client is authorized, deny it otherwise. This behavior may change over time, e.g. because different
clients obtain authorization over time, or because the actor may go into an “out-of-service” mode and later come
back. These changes are achieved by either encoding them in state variables which are read from the behavior
logic, or the function itself may be swapped out at runtime, see the become and unbecome operations. However,
the initial behavior defined during construction of the actor object is special in the sense that a restart of the actor
will reset its behavior to this initial one.

3.3.4 Mailbox

An actor’s purpose is the processing of messages, and these messages were sent to the actor from other actors (or
from outside the actor system). The piece which connects sender and receiver is the actor’s mailbox: each actor
has exactly one mailbox to which all senders enqueue their messages. Enqueuing happens in the time-order of
send operations, which means that messages sent from different actors may not have a defined order at runtime
due to the apparent randomness of distributing actors across threads. Sending multiple messages to the same target
from the same actor, on the other hand, will enqueue them in the same order.

There are different mailbox implementations to choose from, the default being a FIFO: the order of the messages
processed by the actor matches the order in which they were enqueued. This is usually a good default, but
applications may need to prioritize some messages over others. In this case, a priority mailbox will enqueue not
always at the end but at a position as given by the message priority, which might even be at the front. While using
such a queue, the order of messages processed will naturally be defined by the queue’s algorithm and in general
not be FIFO.

An important feature in which Akka differs from some other actor model implementations is that the current
behavior must always handle the next dequeued message, there is no scanning the mailbox for the next matching
one. Failure to handle a message will typically be treated as a failure, unless this behavior is overridden.

3.3.5 Child Actors

Each actor is potentially a supervisor: if it creates children for delegating sub-tasks, it will automatically supervise
them. The list of children is maintained within the actor’s context and the actor has access to it. Modifications to
the list are done by creating (context.actorOf (...)) or stopping (context.stop (child)) children
and these actions are reflected immediately. The actual creation and termination actions happen behind the scenes
in an asynchronous way, so they do not “block” their supervisor.

3.3.6 Supervisor Strategy

The final piece of an actor is its strategy for handling faults of its children. Fault handling is then done transparently
by Akka, applying one of the strategies described in Supervision and Monitoring for each incoming failure. As
this strategy is fundamental to how an actor system is structured, it cannot be changed once an actor has been
created.

3.3. What is an Actor? 18

Akka Java Documentation, Release 2.4.20

Considering that there is only one such strategy for each actor, this means that if different strategies apply to
the various children of an actor, the children should be grouped beneath intermediate supervisors with matching
strategies, preferring once more the structuring of actor systems according to the splitting of tasks into sub-tasks.

3.3.7 When an Actor Terminates

Once an actor terminates, i.e. fails in a way which is not handled by a restart, stops itself or is stopped by its
supervisor, it will free up its resources, draining all remaining messages from its mailbox into the system’s “dead
letter mailbox” which will forward them to the EventStream as DeadLetters. The mailbox is then replaced within
the actor reference with a system mailbox, redirecting all new messages to the EventStream as DeadLetters. This
is done on a best effort basis, though, so do not rely on it in order to construct “guaranteed delivery”.

The reason for not just silently dumping the messages was inspired by our tests: we register the TestEventLis-
tener on the event bus to which the dead letters are forwarded, and that will log a warning for every dead letter
received—this has been very helpful for deciphering test failures more quickly. It is conceivable that this feature
may also be of use for other purposes.

3.4 Supervision and Monitoring

This chapter outlines the concept behind supervision, the primitives offered and their semantics. For details on
how that translates into real code, please refer to the corresponding chapters for Scala and Java APIs.

3.4.1 What Supervision Means

As described in Actor Systems supervision describes a dependency relationship between actors: the supervisor
delegates tasks to subordinates and therefore must respond to their failures. When a subordinate detects a failure
(i.e. throws an exception), it suspends itself and all its subordinates and sends a message to its supervisor, signaling
failure. Depending on the nature of the work to be supervised and the nature of the failure, the supervisor has a
choice of the following four options:

1. Resume the subordinate, keeping its accumulated internal state

2. Restart the subordinate, clearing out its accumulated internal state
3. Stop the subordinate permanently

4. Escalate the failure, thereby failing itself

It is important to always view an actor as part of a supervision hierarchy, which explains the existence of the fourth
choice (as a supervisor also is subordinate to another supervisor higher up) and has implications on the first three:
resuming an actor resumes all its subordinates, restarting an actor entails restarting all its subordinates (but see
below for more details), similarly terminating an actor will also terminate all its subordinates. It should be noted
that the default behavior of the preRestart hook of the Actor class is to terminate all its children before
restarting, but this hook can be overridden; the recursive restart applies to all children left after this hook has been
executed.

Each supervisor is configured with a function translating all possible failure causes (i.e. exceptions) into one of
the four choices given above; notably, this function does not take the failed actor’s identity as an input. It is quite
easy to come up with examples of structures where this might not seem flexible enough, e.g. wishing for different
strategies to be applied to different subordinates. At this point it is vital to understand that supervision is about
forming a recursive fault handling structure. If you try to do too much at one level, it will become hard to reason
about, hence the recommended way in this case is to add a level of supervision.

Akka implements a specific form called “parental supervision”. Actors can only be created by other actors—where
the top-level actor is provided by the library—and each created actor is supervised by its parent. This restriction
makes the formation of actor supervision hierarchies implicit and encourages sound design decisions. It should
be noted that this also guarantees that actors cannot be orphaned or attached to supervisors from the outside,
which might otherwise catch them unawares. In addition, this yields a natural and clean shutdown procedure for
(sub-trees of) actor applications.

3.4. Supervision and Monitoring 19

Akka Java Documentation, Release 2.4.20

Warning: Supervision related parent-child communication happens by special system messages that have
their own mailboxes separate from user messages. This implies that supervision related events are not deter-
ministically ordered relative to ordinary messages. In general, the user cannot influence the order of normal
messages and failure notifications. For details and example see the Discussion: Message Ordering section.

3.4.2 The Top-Level Supervisors

~ - 1~ oy - R
“he tne wie /U////\iv e /*///*/Ax‘ (/;;"”{/n' time
i

“root guardian” .

“system
“guardian” guardian”
shutdown
order

A A

your sys
actor support
hierarchy hierarchy

An actor system will during its creation start at least three actors, shown in the image above. For more information
about the consequences for actor paths see Top-Level Scopes for Actor Paths.

/user: The Guardian Actor

The actor which is probably most interacted with is the parent of all user-created actors, the guardian named
"/user". Actors created using system.actorOf () are children of this actor. This means that when this
guardian terminates, all normal actors in the system will be shutdown, too. It also means that this guardian’s
supervisor strategy determines how the top-level normal actors are supervised. Since Akka 2.1 it is possible to
configure this using the setting akka.actor.guardian-supervisor-strategy, which takes the fully-
qualified class-name of a SupervisorStrategyConfigurator. When the guardian escalates a failure, the
root guardian’s response will be to terminate the guardian, which in effect will shut down the whole actor system.

/system: The System Guardian

This special guardian has been introduced in order to achieve an orderly shut-down sequence where logging re-
mains active while all normal actors terminate, even though logging itself is implemented using actors. This
is realized by having the system guardian watch the user guardian and initiate its own shut-down upon re-
ception of the Terminated message. The top-level system actors are supervised using a strategy which
will restart indefinitely upon all types of Exception except for ActorInitializationException and
ActorKilledException, which will terminate the child in question. All other throwables are escalated,
which will shut down the whole actor system.

/: The Root Guardian

The root guardian is the grand-parent of all so-called “top-level” actors and supervises all the special actors
mentioned in Top-Level Scopes for Actor Paths using the SupervisorStrategy.stoppingStrategy,
whose purpose is to terminate the child upon any type of Exception. All other throwables will be escalated

but to whom? Since every real actor has a supervisor, the supervisor of the root guardian cannot be a real

3.4. Supervision and Monitoring 20

Akka Java Documentation, Release 2.4.20

actor. And because this means that it is “outside of the bubble”, it is called the “bubble-walker”. This is a
synthetic ActorRef which in effect stops its child upon the first sign of trouble and sets the actor system’s
isTerminated status to t rue as soon as the root guardian is fully terminated (all children recursively stopped).

3.4.3 What Restarting Means

When presented with an actor which failed while processing a certain message, causes for the failure fall into three
categories:

» Systematic (i.e. programming) error for the specific message received
* (Transient) failure of some external resource used during processing the message
 Corrupt internal state of the actor

Unless the failure is specifically recognizable, the third cause cannot be ruled out, which leads to the conclusion
that the internal state needs to be cleared out. If the supervisor decides that its other children or itself is not
affected by the corruption—e.g. because of conscious application of the error kernel pattern—it is therefore best
to restart the child. This is carried out by creating a new instance of the underlying Actor class and replacing
the failed instance with the fresh one inside the child’s Act orRef; the ability to do this is one of the reasons for
encapsulating actors within special references. The new actor then resumes processing its mailbox, meaning that
the restart is not visible outside of the actor itself with the notable exception that the message during which the
failure occurred is not re-processed.

The precise sequence of events during a restart is the following:

1. suspend the actor (which means that it will not process normal messages until resumed), and recursively
suspend all children

2. call the old instance’s preRestart hook (defaults to sending termination requests to all children and
calling postStop)

3. wait for all children which were requested to terminate (using context . stop ()) during preRestart
to actually terminate; this—Ilike all actor operations—is non-blocking, the termination notice from the last
killed child will effect the progression to the next step

4. create new actor instance by invoking the originally provided factory again
5. invoke postRestart on the new instance (which by default also calls preStart)

6. send restart request to all children which were not killed in step 3; restarted children will follow the same
process recursively, from step 2

7. resume the actor

3.4.4 What Lifecycle Monitoring Means

Note: Lifecycle Monitoring in Akka is usually referred to as DeathWatch

In contrast to the special relationship between parent and child described above, each actor may monitor any other
actor. Since actors emerge from creation fully alive and restarts are not visible outside of the affected supervisors,
the only state change available for monitoring is the transition from alive to dead. Monitoring is thus used to tie
one actor to another so that it may react to the other actor’s termination, in contrast to supervision which reacts to
failure.

Lifecycle monitoring is implemented using a Terminated message to be received by the monitoring actor,
where the default behavior is to throw a special DeathPactException if not otherwise handled. In order to
start listening for Terminated messages, invoke ActorContext .watch (targetActorRef). To stop
listening, invoke ActorContext .unwatch (targetActorRef). One important property is that the mes-
sage will be delivered irrespective of the order in which the monitoring request and target’s termination occur, i.e.
you still get the message even if at the time of registration the target is already dead.

3.4. Supervision and Monitoring 21

Akka Java Documentation, Release 2.4.20

Monitoring is particularly useful if a supervisor cannot simply restart its children and has to terminate them, e.g.
in case of errors during actor initialization. In that case it should monitor those children and re-create them or
schedule itself to retry this at a later time.

Another common use case is that an actor needs to fail in the absence of an external resource, which may also be
one of its own children. If a third party terminates a child by way of the system.stop (child) method or
sending a PoisonPill, the supervisor might well be affected.

Delayed restarts with the BackoffSupervisor pattern

Provided as a built-in pattern the akka.pattern.BackoffSupervisor implements the so-called exponen-
tial backoff supervision strategy, starting a child actor again when it fails, each time with a growing time delay
between restarts.

This pattern is useful when the started actor fails ' because some external resource is not available, and we need to
give it some time to start-up again. One of the prime examples when this is useful is when a PersistentActor fails
(by stopping) with a persistence failure - which indicates that the database may be down or overloaded, in such
situations it makes most sense to give it a little bit of time to recover before the peristent actor is started.

The following Scala snippet shows how to create a backoff supervisor which will start the given echo actor after
it has stopped because of a failure, in increasing intervals of 3, 6, 12, 24 and finally 30 seconds:

val childProps = Props (classOf[EchoActor])

val supervisor = BackoffSupervisor.props (
Backoff.onStop (

childProps,

childName = "myEcho",
minBackoff = 3.seconds,
maxBackoff = 30.seconds,

randomFactor = 0.2 // adds 20% "noise" to vary the intervals slightly

))

system.actorOf (supervisor, name = "echoSupervisor")

The above is equivalent to this Java code:

import scala.concurrent.duration.Duration;
final Props childProps = Props.create (EchoActor.class);

final Props supervisorProps = BackoffSupervisor.props (
Backoff.onStop (
childProps,
"myEcho",
Duration.create (3, TimeUnit.SECONDS),
Duration.create (30, TimeUnit.SECONDS),
0.2)); // adds 20% "noise" to vary the intervals slightly

system.actorOf (supervisorProps, "echoSupervisor");

Using a randomFactor to add a little bit of additional variance to the backoff intervals is highly recommended,
in order to avoid multiple actors re-start at the exact same point in time, for example because they were stopped
due to a shared resource such as a database going down and re-starting after the same configured interval. By
adding additional randomness to the re-start intervals the actors will start in slightly different points in time, thus
avoiding large spikes of traffic hitting the recovering shared database or other resource that they all need to contact.

The akka.pattern.BackoffSupervisor actor can also be configured to restart the actor after a delay
when the actor crashes and the supervision strategy decides that it should restart.

The following Scala snippet shows how to create a backoff supervisor which will start the given echo actor after
it has crashed because of some exception, in increasing intervals of 3, 6, 12, 24 and finally 30 seconds:

I' A failure can be indicated in two different ways; by an actor stopping or crashing.

3.4. Supervision and Monitoring 22

Akka Java Documentation, Release 2.4.20

Props (classOf [EchoActor])

val childProps

val supervisor = BackoffSupervisor.props (
Backoff.onFailure (

childProps,

childName = "myEcho",
minBackoff = 3.seconds,
maxBackoff = 30.seconds,

randomFactor = 0.2 // adds 20% "noise" to vary the intervals slightly
))

system.actorOf (supervisor, name = "echoSupervisor")

The above is equivalent to this Java code:

import scala.concurrent.duration.Duration;
final Props childProps = Props.create (EchoActor.class);

final Props supervisorProps = BackoffSupervisor.props (
Backoff.onFailure (
childProps,
"myEcho",
Duration.create (3, TimeUnit.SECONDS),
Duration.create (30, TimeUnit.SECONDS),
0.2)); // adds 20% "noise" to vary the intervals slightly

system.actorOf (supervisorProps, "echoSupervisor");

The akka.pattern.BackoffOptions can be used to customize the behavior of the back-off supervisor
actor, below are some examples:

val supervisor = BackoffSupervisor.props (
Backoff.onStop (

childProps,

childName = "myEcho",

minBackoff = 3.seconds,

maxBackoff = 30.seconds,

randomFactor = 0.2 // adds 20% "noise" to vary the intervals slightly

) .withManualReset // the child must send BackoffSupervisor.Reset to its parent
.withDefaultStoppingStrategy // Stop at any Exception thrown

The above code sets up a back-off supervisor that requires the child actor to send a
akka.pattern.BackoffSupervisor.Reset message to its parent when a message is successfully
processed, resetting the back-off. It also uses a default stopping strategy, any exception will cause the child to
stop.

val supervisor = BackoffSupervisor.props (
Backoff.onFailure (

childProps,

childName = "myEcho",
minBackoff = 3.seconds,
maxBackoff = 30.seconds,

randomFactor = 0.2 // adds 20% "noise" to vary the intervals slightly
) .withAutoReset (10.seconds) // the child must send BackoffSupervisor.Reset to its
.withSupervisorStrategy (
OneForOneStrategy () {
case _: MyException => SupervisorStrategy.Restart
case _ => SupervisorStrategy.Escalate

1))

The above code sets up a back-off supervisor that restarts the child after back-off if MyException is thrown, any
other exception will be escalated. The back-off is automatically reset if the child does not throw any errors within

3.4. Supervision and Monitoring 23

parent

Akka Java Documentation, Release 2.4.20

10 seconds.

3.4.5 One-For-One Strategy vs. All-For-One Strategy

There are two classes of supervision strategies which come with Akka: OneForOneStrategy and
AllForOneStrategy. Both are configured with a mapping from exception type to supervision directive (see
above) and limits on how often a child is allowed to fail before terminating it. The difference between them is that
the former applies the obtained directive only to the failed child, whereas the latter applies it to all siblings as well.
Normally, you should use the OneForOneStrategy, which also is the default if none is specified explicitly.

The A11ForOneStrategy is applicable in cases where the ensemble of children has such tight dependencies
among them, that a failure of one child affects the function of the others, i.e. they are inextricably linked. Since
a restart does not clear out the mailbox, it often is best to terminate the children upon failure and re-create them
explicitly from the supervisor (by watching the children’s lifecycle); otherwise you have to make sure that it is no
problem for any of the actors to receive a message which was queued before the restart but processed afterwards.

Normally stopping a child (i.e. not in response to a failure) will not automatically terminate the other children
in an all-for-one strategy; this can easily be done by watching their lifecycle: if the Terminated message is
not handled by the supervisor, it will throw a DeathPactExcept ion which (depending on its supervisor) will
restart it, and the default preRestart action will terminate all children. Of course this can be handled explicitly
as well.

Please note that creating one-off actors from an all-for-one supervisor entails that failures escalated by the tempo-
rary actor will affect all the permanent ones. If this is not desired, install an intermediate supervisor; this can very
easily be done by declaring a router of size 1 for the worker, see routing-scala or Routing.

3.5 Actor References, Paths and Addresses

This chapter describes how actors are identified and located within a possibly distributed actor system. It ties into
the central idea that Actor Systems form intrinsic supervision hierarchies as well as that communication between
actors is transparent with respect to their placement across multiple network nodes.

.context

5 . guardian supervisor Actor
akka.tcp://sys@host:2552/user ActorContext clees e
-~
parent
.path TR ST _self -context Actor
akka.tep://sys@host:2552/User/parent el “p argﬁt" e ActorContext class MyParent
~
o
&
.parent 5“

.path i .self .context
akka.tep:// sys@host:2552!userfparent.-"child-{p— ﬁ?g;ih‘;!f 4——— AcorContext € . mfc -

ActorPath ActorRef ActorCell Actor

The above image displays the relationship between the most important entities within an actor system, please read
on for the details.

3.5. Actor References, Paths and Addresses 24

Akka Java Documentation, Release 2.4.20

3.5.1 What is an Actor Reference?

An actor reference is a subtype of ActorRef, whose foremost purpose is to support sending messages to the
actor it represents. Each actor has access to its canonical (local) reference through the self field; this reference
is also included as sender reference by default for all messages sent to other actors. Conversely, during message
processing the actor has access to a reference representing the sender of the current message through the sender
method.

There are several different types of actor references that are supported depending on the configuration of the actor
system:

* Purely local actor references are used by actor systems which are not configured to support networking
functions. These actor references will not function if sent across a network connection to a remote JVM.

* Local actor references when remoting is enabled are used by actor systems which support networking func-
tions for those references which represent actors within the same JVM. In order to also be reachable when
sent to other network nodes, these references include protocol and remote addressing information.

* There is a subtype of local actor references which is used for routers (i.e. actors mixing in the Router
trait). Its logical structure is the same as for the aforementioned local references, but sending a message to
them dispatches to one of their children directly instead.

* Remote actor references represent actors which are reachable using remote communication, i.e. sending
messages to them will serialize the messages transparently and send them to the remote JVM.

* There are several special types of actor references which behave like local actor references for all practical
purposes:

- PromiseActorRef is the special representation of a Promi se for the purpose of being completed
by the response from an actor. akka.pattern.ask creates this actor reference.

— DeadLetterActorRef is the default implementation of the dead letters service to which Akka
routes all messages whose destinations are shut down or non-existent.

— EmptyLocalActorRef is what Akka returns when looking up a non-existent local actor path: it
is equivalent to a DeadLetterActorRef, but it retains its path so that Akka can send it over the
network and compare it to other existing actor references for that path, some of which might have been
obtained before the actor died.

* And then there are some one-off internal implementations which you should never really see:

— There is an actor reference which does not represent an actor but acts only as a pseudo-supervisor for
the root guardian, we call it “the one who walks the bubbles of space-time”.

— The first logging service started before actually firing up actor creation facilities is a fake
actor reference which accepts log events and prints them directly to standard output; it is
Logging.StandardOutLogger.

3.5.2 What is an Actor Path?

Since actors are created in a strictly hierarchical fashion, there exists a unique sequence of actor names given by
recursively following the supervision links between child and parent down towards the root of the actor system.
This sequence can be seen as enclosing folders in a file system, hence we adopted the name “path” to refer to it,
although actor hierarchy has some fundamental difference from file system hierarchy.

An actor path consists of an anchor, which identifies the actor system, followed by the concatenation of the path
elements, from root guardian to the designated actor; the path elements are the names of the traversed actors and
are separated by slashes.

What is the Difference Between Actor Reference and Path?

An actor reference designates a single actor and the life-cycle of the reference matches that actor’s life-cycle; an
actor path represents a name which may or may not be inhabited by an actor and the path itself does not have a

3.5. Actor References, Paths and Addresses 25

Akka Java Documentation, Release 2.4.20

life-cycle, it never becomes invalid. You can create an actor path without creating an actor, but you cannot create
an actor reference without creating corresponding actor.

You can create an actor, terminate it, and then create a new actor with the same actor path. The newly created
actor is a new incarnation of the actor. It is not the same actor. An actor reference to the old incarnation is not
valid for the new incarnation. Messages sent to the old actor reference will not be delivered to the new incarnation
even though they have the same path.

Actor Path Anchors

Each actor path has an address component, describing the protocol and location by which the corresponding actor
is reachable, followed by the names of the actors in the hierarchy from the root up. Examples are:

"akka://my-sys/user/service—a/workerl" // purely local
"akka.tcp://my-sys@host.example.com:5678/user/service-b" // remote

Here, akka.tcp is the default remote transport for the 2.4 release; other transports are pluggable. The inter-
pretation of the host and port part (i.e. host .example.com:5678 in the example) depends on the transport
mechanism used, but it must abide by the URI structural rules.

Logical Actor Paths

The unique path obtained by following the parental supervision links towards the root guardian is called the logical
actor path. This path matches exactly the creation ancestry of an actor, so it is completely deterministic as soon as
the actor system’s remoting configuration (and with it the address component of the path) is set.

Physical Actor Paths

While the logical actor path describes the functional location within one actor system, configuration-based remote
deployment means that an actor may be created on a different network host than its parent, i.e. within a different
actor system. In this case, following the actor path from the root guardian up entails traversing the network, which
is a costly operation. Therefore, each actor also has a physical path, starting at the root guardian of the actor
system where the actual actor object resides. Using this path as sender reference when querying other actors will
let them reply directly to this actor, minimizing delays incurred by routing.

One important aspect is that a physical actor path never spans multiple actor systems or JVMs. This means that
the logical path (supervision hierarchy) and the physical path (actor deployment) of an actor may diverge if one
of its ancestors is remotely supervised.

Actor path alias or symbolic link?

As in some real file-systems you might think of a “path alias” or “symbolic link” for an actor, i.e. one actor
may be reachable using more than one path. However, you should note that actor hierarchy is different from file
system hierarchy. You cannot freely create actor paths like symbolic links to refer to arbitrary actors. As described
in the above logical and physical actor path sections, an actor path must be either logical path which represents
supervision hierarchy, or physical path which represents actor deployment.

3.5.3 How are Actor References obtained?

There are two general categories to how actor references may be obtained: by creating actors or by looking them
up, where the latter functionality comes in the two flavours of creating actor references from concrete actor paths
and querying the logical actor hierarchy.

3.5. Actor References, Paths and Addresses 26

Akka Java Documentation, Release 2.4.20

Creating Actors

An actor system 1is typically started by creating actors beneath the guardian actor using the
ActorSystem.actorOf method and then using ActorContext.actorOf from within the created
actors to spawn the actor tree. These methods return a reference to the newly created actor. Each actor has direct
access (through its ActorContext) to references for its parent, itself and its children. These references may be
sent within messages to other actors, enabling those to reply directly.

Looking up Actors by Concrete Path

In addition, actor references may be looked up using the ActorSystem.actorSelection method. The
selection can be used for communicating with said actor and the actor corresponding to the selection is looked up
when delivering each message.

To acquire an ActorRef that is bound to the life-cycle of a specific actor you need to send a message, such as
the built-in Identify message, to the actor and use the sender () reference of a reply from the actor.

Absolute vs. Relative Paths

In additionto ActorSystem.actorSelection thereis also ActorContext.actorSelection, which
is available inside any actor as context .actorSelection. This yields an actor selection much like its twin
on ActorSystem, but instead of looking up the path starting from the root of the actor tree it starts out on the
current actor. Path elements consisting of two dots (" . . ") may be used to access the parent actor. You can for
example send a message to a specific sibling:

context.actorSelection ("../brother") ! msg

Absolute paths may of course also be looked up on context in the usual way, i.e.

context.actorSelection ("/user/serviceA") ! msg

will work as expected.

Querying the Logical Actor Hierarchy

Since the actor system forms a file-system like hierarchy, matching on paths is possible in the same way as sup-
ported by Unix shells: you may replace (parts of) path element names with wildcards («*» and «?») to formulate
a selection which may match zero or more actual actors. Because the result is not a single actor reference, it has a
different type ActorSelection and does not support the full set of operations an ActorRe f does. Selections
may be formulated using the ActorSystem.actorSelection and ActorContext.actorSelection
methods and do support sending messages:

context.actorSelection("../*") ! msg

will send msg to all siblings including the current actor. As for references obtained using actorSelection, a traversal
of the supervision hierarchy is done in order to perform the message send. As the exact set of actors which match
a selection may change even while a message is making its way to the recipients, it is not possible to watch a
selection for liveliness changes. In order to do that, resolve the uncertainty by sending a request and gathering all
answers, extracting the sender references, and then watch all discovered concrete actors. This scheme of resolving
a selection may be improved upon in a future release.

Summary: actorOf Vs. actorSelection

Note: What the above sections described in some detail can be summarized and memorized easily as follows:

* actorOf only ever creates a new actor, and it creates it as a direct child of the context on which this method
is invoked (which may be any actor or actor system).

3.5. Actor References, Paths and Addresses 27

Akka Java Documentation, Release 2.4.20

* actorSelection only ever looks up existing actors when messages are delivered, i.e. does not create
actors, or verify existence of actors when the selection is created.

3.5.4 Actor Reference and Path Equality

Equality of ActorRef match the intention that an Act orRef corresponds to the target actor incarnation. Two
actor references are compared equal when they have the same path and point to the same actor incarnation. A
reference pointing to a terminated actor does not compare equal to a reference pointing to another (re-created)
actor with the same path. Note that a restart of an actor caused by a failure still means that it is the same actor
incarnation, i.e. a restart is not visible for the consumer of the ActorRef.

If you need to keep track of actor references in a collection and do not care about the exact actor incarnation you
can use the ActorPath as key, because the identifier of the target actor is not taken into account when comparing
actor paths.

3.5.5 Reusing Actor Paths

When an actor is terminated, its reference will point to the dead letter mailbox, DeathWatch will publish its
final transition and in general it is not expected to come back to life again (since the actor life cycle does not
allow this). While it is possible to create an actor at a later time with an identical path—simply due to it being
impossible to enforce the opposite without keeping the set of all actors ever created available—this is not good
practice: messages sent with actorSelection to an actor which “died” suddenly start to work again, but
without any guarantee of ordering between this transition and any other event, hence the new inhabitant of the
path may receive messages which were destined for the previous tenant.

It may be the right thing to do in very specific circumstances, but make sure to confine the handling of this precisely
to the actor’s supervisor, because that is the only actor which can reliably detect proper deregistration of the name,
before which creation of the new child will fail.

It may also be required during testing, when the test subject depends on being instantiated at a specific path. In
that case it is best to mock its supervisor so that it will forward the Terminated message to the appropriate point in
the test procedure, enabling the latter to await proper deregistration of the name.

3.5.6 The Interplay with Remote Deployment

When an actor creates a child, the actor system’s deployer will decide whether the new actor resides in the same
JVM or on another node. In the second case, creation of the actor will be triggered via a network connection to
happen in a different JVM and consequently within a different actor system. The remote system will place the
new actor below a special path reserved for this purpose and the supervisor of the new actor will be a remote actor
reference (representing that actor which triggered its creation). In this case, context .parent (the supervisor
reference) and context .path.parent (the parent node in the actor’s path) do not represent the same actor.
However, looking up the child’s name within the supervisor will find it on the remote node, preserving logical
structure e.g. when sending to an unresolved actor reference.

3.5. Actor References, Paths and Addresses 28

Akka Java Documentation, Release 2.4.20

ActarPath
Hoys@h: 25527

LocalActorRef routes to RemoteActorfef
i " " " ActorPath
parent parent ap—
.children ActorPath
parent
pa “parent™

RemoteActorRef routes to *pathi ActarPath

logical actor path: akka.tcp://sys@A:2552/user/parent/child
physical actor path: akka.tcp://sys@B:2552/remote/sys@A:2552/user/parent/child

3.5.7 What is the Address part used for?

When sending an actor reference across the network, it is represented by its path. Hence, the path must fully
encode all information necessary to send messages to the underlying actor. This is achieved by encoding protocol,
host and port in the address part of the path string. When an actor system receives an actor path from a remote
node, it checks whether that path’s address matches the address of this actor system, in which case it will be
resolved to the actor’s local reference. Otherwise, it will be represented by a remote actor reference.

3.5.8 Top-Level Scopes for Actor Paths
At the root of the path hierarchy resides the root guardian above which all other actors are found; its name is " /".
The next level consists of the following:

e "/user" is the guardian actor for all user-created top-level actors; actors created using
ActorSystem.actorOf are found below this one.

e "/system" is the guardian actor for all system-created top-level actors, e.g. logging listeners or actors
automatically deployed by configuration at the start of the actor system.

e "/deadLetters" is the dead letter actor, which is where all messages sent to stopped or non-existing
actors are re-routed (on a best-effort basis: messages may be lost even within the local JVM).

e "/temp" is the guardian for all short-lived system-created actors, e.g. those which are used in the imple-
mentation of ActorRef . ask.

* "/remote" is an artificial path below which all actors reside whose supervisors are remote actor references

The need to structure the name space for actors like this arises from a central and very simple design goal:
everything in the hierarchy is an actor, and all actors function in the same way. Hence you can not only look
up the actors you created, you can also look up the system guardian and send it a message (which it will dutifully

3.5. Actor References, Paths and Addresses 29

Akka Java Documentation, Release 2.4.20

discard in this case). This powerful principle means that there are no quirks to remember, it makes the whole
system more uniform and consistent.

If you want to read more about the top-level structure of an actor system, have a look at The Top-Level Supervisors.

3.6 Location Transparency

The previous section describes how actor paths are used to enable location transparency. This special feature
deserves some extra explanation, because the related term “transparent remoting” was used quite differently in the
context of programming languages, platforms and technologies.

3.6.1 Distributed by Default

Everything in Akka is designed to work in a distributed setting: all interactions of actors use purely message
passing and everything is asynchronous. This effort has been undertaken to ensure that all functions are available
equally when running within a single JVM or on a cluster of hundreds of machines. The key for enabling this
is to go from remote to local by way of optimization instead of trying to go from local to remote by way of
generalization. See this classic paper for a detailed discussion on why the second approach is bound to fail.

3.6.2 Ways in which Transparency is Broken

What is true of Akka need not be true of the application which uses it, since designing for distributed execution
poses some restrictions on what is possible. The most obvious one is that all messages sent over the wire must be
serializable. While being a little less obvious this includes closures which are used as actor factories (i.e. within
Props) if the actor is to be created on a remote node.

Another consequence is that everything needs to be aware of all interactions being fully asynchronous, which in
a computer network might mean that it may take several minutes for a message to reach its recipient (depending
on configuration). It also means that the probability for a message to be lost is much higher than within one JVM,
where it is close to zero (still: no hard guarantee!).

3.6.3 How is Remoting Used?

We took the idea of transparency to the limit in that there is nearly no API for the remoting layer of Akka: it is
purely driven by configuration. Just write your application according to the principles outlined in the previous
sections, then specify remote deployment of actor sub-trees in the configuration file. This way, your application
can be scaled out without having to touch the code. The only piece of the API which allows programmatic
influence on remote deployment is that Props contain a field which may be set to a specific Deploy instance; this
has the same effect as putting an equivalent deployment into the configuration file (if both are given, configuration
file wins).

3.6.4 Peer-to-Peer vs. Client-Server
Akka Remoting is a communication module for connecting actor systems in a peer-to-peer fashion, and it is the
foundation for Akka Clustering. The design of remoting is driven by two (related) design decisions:

1. Communication between involved systems is symmetric: if a system A can connect to a system B then
system B must also be able to connect to system A independently.

2. The role of the communicating systems are symmetric in regards to connection patterns: there is no system
that only accepts connections, and there is no system that only initiates connections.

The consequence of these decisions is that it is not possible to safely create pure client-server setups with prede-
fined roles (violates assumption 2). For client-server setups it is better to use HTTP or Akka I/O.

3.6. Location Transparency 30

http://doc.akka.io/docs/misc/smli_tr-94-29.pdf

Akka Java Documentation, Release 2.4.20

Important: Using setups involving Network Address Translation, Load Balancers or Docker containers violates
assumption 1, unless additional steps are taken in the network configuration to allow symmetric communication
between involved systems. In such situations Akka can be configured to bind to a different network address than
the one used for establishing connections between Akka nodes. See remote-configuration-nat.

3.6.5 Marking Points for Scaling Up with Routers

In addition to being able to run different parts of an actor system on different nodes of a cluster, it is also possible
to scale up onto more cores by multiplying actor sub-trees which support parallelization (think for example a
search engine processing different queries in parallel). The clones can then be routed to in different fashions, e.g.
round-robin. The only thing necessary to achieve this is that the developer needs to declare a certain actor as
“withRouter”, then—in its stead—a router actor will be created which will spawn up a configurable number of
children of the desired type and route to them in the configured fashion. Once such a router has been declared, its
configuration can be freely overridden from the configuration file, including mixing it with the remote deployment
of (some of) the children. Read more about this in Routing (Scala) and Routing (Java).

3.7 Akka and the Java Memory Model

A major benefit of using the Lightbend Platform, including Scala and Akka, is that it simplifies the process of writ-
ing concurrent software. This article discusses how the Lightbend Platform, and Akka in particular, approaches
shared memory in concurrent applications.

3.7.1 The Java Memory Model

Prior to Java 5, the Java Memory Model (JMM) was ill defined. It was possible to get all kinds of strange results
when shared memory was accessed by multiple threads, such as:

* athread not seeing values written by other threads: a visibility problem

* athread observing ‘impossible’ behavior of other threads, caused by instructions not being executed in the
order expected: an instruction reordering problem.

With the implementation of JSR 133 in Java 5, a lot of these issues have been resolved. The JMM is a set of rules
based on the “happens-before” relation, which constrain when one memory access must happen before another,
and conversely, when they are allowed to happen out of order. Two examples of these rules are:

* The monitor lock rule: a release of a lock happens before every subsequent acquire of the same lock.

* The volatile variable rule: a write of a volatile variable happens before every subsequent read of the same
volatile variable

Although the JMM can seem complicated, the specification tries to find a balance between ease of use and the
ability to write performant and scalable concurrent data structures.

3.7.2 Actors and the Java Memory Model

With the Actors implementation in Akka, there are two ways multiple threads can execute actions on shared
memory:

« if a message is sent to an actor (e.g. by another actor). In most cases messages are immutable, but if
that message is not a properly constructed immutable object, without a “happens before” rule, it would be
possible for the receiver to see partially initialized data structures and possibly even values out of thin air
(longs/doubles).

« if an actor makes changes to its internal state while processing a message, and accesses that state while
processing another message moments later. It is important to realize that with the actor model you don’t get
any guarantee that the same thread will be executing the same actor for different messages.

3.7. Akka and the Java Memory Model 31

Akka Java Documentation, Release 2.4.20

To prevent visibility and reordering problems on actors, Akka guarantees the following two “happens before”
rules:

* The actor send rule: the send of the message to an actor happens before the receive of that message by the
same actor.

* The actor subsequent processing rule: processing of one message happens before processing of the next
message by the same actor.

Note: Inlayman’s terms this means that changes to internal fields of the actor are visible when the next message
is processed by that actor. So fields in your actor need not be volatile or equivalent.

Both rules only apply for the same actor instance and are not valid if different actors are used.

3.7.3 Futures and the Java Memory Model

The completion of a Future “happens before” the invocation of any callbacks registered to it are executed.

We recommend not to close over non-final fields (final in Java and val in Scala), and if you do choose to close
over non-final fields, they must be marked volatile in order for the current value of the field to be visible to the
callback.

If you close over a reference, you must also ensure that the instance that is referred to is thread safe. We highly
recommend staying away from objects that use locking, since it can introduce performance problems and in the
worst case, deadlocks. Such are the perils of synchronized.

3.7.4 Actors and shared mutable state

Since Akka runs on the JVM there are still some rules to be followed.
* Closing over internal Actor state and exposing it to other threads

class MyActor extends Actor {
var state =
def receive = {
case _ =>
//Wrongs

// Very bad, shared mutable state,
// will break your application in weird ways
Future { state = NewState }
anotherActor ? message onSuccess { r => state = r }

// Very bad, "sender" changes for every message,
// shared mutable state bug
Future { expensiveCalculation(sender()) }

//Rights

// Completely safe, "self" is OK to close over
// and it’s an ActorRef, which is thread-safe
Future { expensiveCalculation() } onComplete { f => self ! f.value.get }

// Completely safe, we close over a fixed value
// and it’s an ActorRef, which is thread-safe
val currentSender = sender ()
Future { expensiveCalculation (currentSender) }

* Messages should be immutable, this is to avoid the shared mutable state trap.

3.7. Akka and the Java Memory Model 32

Akka Java Documentation, Release 2.4.20

3.8 Message Delivery Reliability

Akka helps you build reliable applications which make use of multiple processor cores in one machine (“scaling
up”) or distributed across a computer network (“scaling out”). The key abstraction to make this work is that all
interactions between your code units—actors—happen via message passing, which is why the precise semantics
of how messages are passed between actors deserve their own chapter.

In order to give some context to the discussion below, consider an application which spans multiple network hosts.
The basic mechanism for communication is the same whether sending to an actor on the local JVM or to a remote
actor, but of course there will be observable differences in the latency of delivery (possibly also depending on the
bandwidth of the network link and the message size) and the reliability. In case of a remote message send there
are obviously more steps involved which means that more can go wrong. Another aspect is that local sending will
just pass a reference to the message inside the same JVM, without any restrictions on the underlying object which
is sent, whereas a remote transport will place a limit on the message size.

Writing your actors such that every interaction could possibly be remote is the safe, pessimistic bet. It means to
only rely on those properties which are always guaranteed and which are discussed in detail below. This has of
course some overhead in the actor’s implementation. If you are willing to sacrifice full location transparency—for
example in case of a group of closely collaborating actors—you can place them always on the same JVM and
enjoy stricter guarantees on message delivery. The details of this trade-off are discussed further below.

As a supplementary part we give a few pointers at how to build stronger reliability on top of the built-in ones. The
chapter closes by discussing the role of the “Dead Letter Office”.

3.8.1 The General Rules

These are the rules for message sends (i.e. the tell or ! method, which also underlies the ask pattern):
« at-most-once delivery, i.e. no guaranteed delivery
* message ordering per sender—receiver pair

The first rule is typically found also in other actor implementations while the second is specific to Akka.

Discussion: What does “at-most-once” mean?

When it comes to describing the semantics of a delivery mechanism, there are three basic categories:

* at-most-once delivery means that for each message handed to the mechanism, that message is delivered
zero or one times; in more casual terms it means that messages may be lost.

* at-least-once delivery means that for each message handed to the mechanism potentially multiple attempts
are made at delivering it, such that at least one succeeds; again, in more casual terms this means that
messages may be duplicated but not lost.

« exactly-once delivery means that for each message handed to the mechanism exactly one delivery is made
to the recipient; the message can neither be lost nor duplicated.

The first one is the cheapest—highest performance, least implementation overhead—because it can be done in
a fire-and-forget fashion without keeping state at the sending end or in the transport mechanism. The second
one requires retries to counter transport losses, which means keeping state at the sending end and having an
acknowledgement mechanism at the receiving end. The third is most expensive—and has consequently worst
performance—because in addition to the second it requires state to be kept at the receiving end in order to filter
out duplicate deliveries.

Discussion: Why No Guaranteed Delivery?

At the core of the problem lies the question what exactly this guarantee shall mean:

1. The message is sent out on the network?

3.8. Message Delivery Reliability 33

Akka Java Documentation, Release 2.4.20

2. The message is received by the other host?

3. The message is put into the target actor’s mailbox?

4. The message is starting to be processed by the target actor?
5. The message is processed successfully by the target actor?

Each one of these have different challenges and costs, and it is obvious that there are conditions under which
any message passing library would be unable to comply; think for example about configurable mailbox types
and how a bounded mailbox would interact with the third point, or even what it would mean to decide upon the
“successfully” part of point five.

Along those same lines goes the reasoning in Nobody Needs Reliable Messaging. The only meaningful way for a
sender to know whether an interaction was successful is by receiving a business-level acknowledgement message,
which is not something Akka could make up on its own (neither are we writing a “do what I mean” framework
nor would you want us to).

Akka embraces distributed computing and makes the fallibility of communication explicit through message pass-
ing, therefore it does not try to lie and emulate a leaky abstraction. This is a model that has been used with great
success in Erlang and requires the users to design their applications around it. You can read more about this
approach in the Erlang documentation (section 10.9 and 10.10), Akka follows it closely.

Another angle on this issue is that by providing only basic guarantees those use cases which do not need stronger
reliability do not pay the cost of their implementation; it is always possible to add stronger reliability on top of
basic ones, but it is not possible to retro-actively remove reliability in order to gain more performance.

Discussion: Message Ordering

The rule more specifically is that for a given pair of actors, messages sent directly from the first to the second will
not be received out-of-order. The word directly emphasizes that this guarantee only applies when sending with
the zell operator to the final destination, not when employing mediators or other message dissemination features
(unless stated otherwise).

The guarantee is illustrated in the following:
Actor A1 sends messages M1, M2, M3 to A2
Actor A3 sends messages M4, M5, M6 to A2
This means that:
1. If M1 is delivered it must be delivered before M2 and M3
. If M2 is delivered it must be delivered before M3
. If M4 is delivered it must be delivered before M5 and M6

2

3

4. If M5 is delivered it must be delivered before M6

5. A2 can see messages from A1 interleaved with messages from A3
6

. Since there is no guaranteed delivery, any of the messages may be dropped, i.e. not arrive
at A2

Note: It is important to note that Akka’s guarantee applies to the order in which messages are enqueued into the
recipient’s mailbox. If the mailbox implementation does not respect FIFO order (e.g. a PriorityMailbox),
then the order of processing by the actor can deviate from the enqueueing order.

Please note that this rule is not transitive:
Actor A sends message M1 to actor C
Actor A then sends message M2 to actor B

Actor B forwards message M2 to actor C

3.8. Message Delivery Reliability 34

http://www.infoq.com/articles/no-reliable-messaging
http://www.erlang.org/faq/academic.html

Akka Java Documentation, Release 2.4.20

Actor C may receive M1 and M2 in any order

Causal transitive ordering would imply that M2 is never received before M1 at actor C (though any of them might
be lost). This ordering can be violated due to different message delivery latencies when A, B and C reside on
different network hosts, see more below.

Note: Actor creation is treated as a message sent from the parent to the child, with the same semantics as discussed
above. Sending a message to an actor in a way which could be reordered with this initial creation message means
that the message might not arrive because the actor does not exist yet. An example where the message might arrive
too early would be to create a remote-deployed actor R1, send its reference to another remote actor R2 and have
R2 send a message to R1. An example of well-defined ordering is a parent which creates an actor and immediately
sends a message to it.

Communication of failure

Please note, that the ordering guarantees discussed above only hold for user messages between actors. Failure
of a child of an actor is communicated by special system messages that are not ordered relative to ordinary user
messages. In particular:

Child actor C sends message M to its parent P
Child actor fails with failure F
Parent actor P might receive the two events either in order M, F or F, M

The reason for this is that internal system messages has their own mailboxes therefore the ordering of enqueue
calls of a user and system message cannot guarantee the ordering of their dequeue times.

3.8.2 The Rules for In-dVM (Local) Message Sends

Be careful what you do with this section!

Relying on the stronger reliability in this section is not recommended since it will bind your application to local-
only deployment: an application may have to be designed differently (as opposed to just employing some message
exchange patterns local to some actors) in order to be fit for running on a cluster of machines. Our credo is “design
once, deploy any way you wish”, and to achieve this you should only rely on The General Rules.

Reliability of Local Message Sends

The Akka test suite relies on not losing messages in the local context (and for non-error condition tests also for
remote deployment), meaning that we actually do apply the best effort to keep our tests stable. A local tell
operation can however fail for the same reasons as a normal method call can on the JVM:

e StackOverflowError
* OutOfMemoryError
e other VirtualMachineError
In addition, local sends can fail in Akka-specific ways:
« if the mailbox does not accept the message (e.g. full BoundedMailbox)
* if the receiving actor fails while processing the message or is already terminated

While the first is clearly a matter of configuration the second deserves some thought: the sender of a message does
not get feedback if there was an exception while processing, that notification goes to the supervisor instead. This
is in general not distinguishable from a lost message for an outside observer.

3.8. Message Delivery Reliability 35

Akka Java Documentation, Release 2.4.20

Ordering of Local Message Sends

Assuming strict FIFO mailboxes the aforementioned caveat of non-transitivity of the message ordering guarantee
is eliminated under certain conditions. As you will note, these are quite subtle as it stands, and it is even possible
that future performance optimizations will invalidate this whole paragraph. The possibly non-exhaustive list of
counter-indications is:

* Before receiving the first reply from a top-level actor, there is a lock which protects an internal interim
queue, and this lock is not fair; the implication is that enqueue requests from different senders which arrive
during the actor’s construction (figuratively, the details are more involved) may be reordered depending on
low-level thread scheduling. Since completely fair locks do not exist on the JVM this is unfixable.

* The same mechanism is used during the construction of a Router, more precisely the routed ActorRef, hence
the same problem exists for actors deployed with Routers.

* As mentioned above, the problem occurs anywhere a lock is involved during enqueueing, which may also
apply to custom mailboxes.

This list has been compiled carefully, but other problematic scenarios may have escaped our analysis.

How does Local Ordering relate to Network Ordering
The rule that for a given pair of actors, messages sent directly from the first to the second will not be received
out-of-order holds for messages sent over the network with the TCP based Akka remote transport protocol.

As explained in the previous section local message sends obey transitive causal ordering under certain conditions.
This ordering can be violated due to different message delivery latencies. For example:

Actor A on node-1 sends message M1 to actor C on node-3
Actor A on node-1 then sends message M2 to actor B on node-2
Actor B on node-2 forwards message M2 to actor C on node-3
Actor C may receive M1 and M2 in any order

It might take longer time for M1 to “travel” to node-3 than it takes for M2 to “travel” to node-3 via node-2.

3.8.3 Higher-level abstractions

Based on a small and consistent tool set in Akka’s core, Akka also provides powerful, higher-level abstractions on
top it.

Messaging Patterns
As discussed above a straight-forward answer to the requirement of reliable delivery is an explicit ACK-RETRY
protocol. In its simplest form this requires

* a way to identify individual messages to correlate message with acknowledgement

¢ aretry mechanism which will resend messages if not acknowledged in time

* a way for the receiver to detect and discard duplicates

The third becomes necessary by virtue of the acknowledgements not being guaranteed to arrive either. An ACK-
RETRY protocol with business-level acknowledgements is supported by at-least-once-delivery-scala of the Akka
Persistence module. Duplicates can be detected by tracking the identifiers of messages sent via at-least-once-
delivery-scala. Another way of implementing the third part would be to make processing the messages idempotent
on the level of the business logic.

Another example of implementing all three requirements is shown at Reliable Proxy Pattern (which is now super-
seded by at-least-once-delivery-scala).

3.8. Message Delivery Reliability 36

Akka Java Documentation, Release 2.4.20

Event Sourcing

Event sourcing (and sharding) is what makes large websites scale to billions of users, and the idea is quite simple:
when a component (think actor) processes a command it will generate a list of events representing the effect of
the command. These events are stored in addition to being applied to the component’s state. The nice thing about
this scheme is that events only ever are appended to the storage, nothing is ever mutated; this enables perfect
replication and scaling of consumers of this event stream (i.e. other components may consume the event stream as
a means to replicate the component’s state on a different continent or to react to changes). If the component’s state
is lost—due to a machine failure or by being pushed out of a cache—it can easily be reconstructed by replaying
the event stream (usually employing snapshots to speed up the process). event-sourcing-scala is supported by
Akka Persistence.

Mailbox with Explicit Acknowledgement

By implementing a custom mailbox type it is possible to retry message processing at the receiving actor’s end
in order to handle temporary failures. This pattern is mostly useful in the local communication context where
delivery guarantees are otherwise sufficient to fulfill the application’s requirements.

Please note that the caveats for The Rules for In-JVM (Local) Message Sends do apply.

An example implementation of this pattern is shown at Mailbox with Explicit Acknowledgement.

3.8.4 Dead Letters

Messages which cannot be delivered (and for which this can be ascertained) will be delivered to a synthetic actor
called /deadLetters. This delivery happens on a best-effort basis; it may fail even within the local JVM (e.g.
during actor termination). Messages sent via unreliable network transports will be lost without turning up as dead
letters.

What Should | Use Dead Letters For?

The main use of this facility is for debugging, especially if an actor send does not arrive consistently (where
usually inspecting the dead letters will tell you that the sender or recipient was set wrong somewhere along the
way). In order to be useful for this purpose it is good practice to avoid sending to deadLetters where possible, i.e.
run your application with a suitable dead letter logger (see more below) from time to time and clean up the log
output. This exercise—like all else—requires judicious application of common sense: it may well be that avoiding
to send to a terminated actor complicates the sender’s code more than is gained in debug output clarity.

The dead letter service follows the same rules with respect to delivery guarantees as all other message sends, hence
it cannot be used to implement guaranteed delivery.

How do | Receive Dead Letters?

An actor can subscribe to class akka.actor.DeadLetter on the event stream, see Event Stream (Java) or
event-stream-scala (Scala) for how to do that. The subscribed actor will then receive all dead letters published
in the (local) system from that point onwards. Dead letters are not propagated over the network, if you want to
collect them in one place you will have to subscribe one actor per network node and forward them manually. Also
consider that dead letters are generated at that node which can determine that a send operation is failed, which for
a remote send can be the local system (if no network connection can be established) or the remote one (if the actor
you are sending to does not exist at that point in time).

Dead Letters Which are (Usually) not Worrisome

Every time an actor does not terminate by its own decision, there is a chance that some messages which it sends
to itself are lost. There is one which happens quite easily in complex shutdown scenarios that is usually benign:
seeing a akka.dispatch.Terminate message dropped means that two termination requests were given, but

3.8. Message Delivery Reliability 37

Akka Java Documentation, Release 2.4.20

of course only one can succeed. In the same vein, you might see akka.actor.Terminated messages from
children while stopping a hierarchy of actors turning up in dead letters if the parent is still watching the child when
the parent terminates.

3.9 Configuration

You can start using Akka without defining any configuration, since sensible default values are provided. Later on
you might need to amend the settings to change the default behavior or adapt for specific runtime environments.
Typical examples of settings that you might amend:

* log level and logger backend
* enable remoting

* message serializers

* definition of routers

* tuning of dispatchers

Akka uses the Typesafe Config Library, which might also be a good choice for the configuration of your own ap-
plication or library built with or without Akka. This library is implemented in Java with no external dependencies;
you should have a look at its documentation (in particular about ConfigFactory), which is only summarized in the
following.

Warning: If you use Akka from the Scala REPL from the 2.9.x series, and you do not provide your own
ClassLoader to the ActorSystem, start the REPL with “-Yrepl-sync” to work around a deficiency in the REPLs
provided Context ClassLoader.

3.9.1 Where configuration is read from

All configuration for Akka is held within instances of ActorSystem, or put differently, as viewed from
the outside, ActorSystem is the only consumer of configuration information. While constructing an ac-
tor system, you can either pass in a Config object or not, where the second case is equivalent to passing
ConfigFactory.load () (with the right class loader). This means roughly that the default is to parse all
application.conf, application. json and application.properties found at the root of the
class path—please refer to the aforementioned documentation for details. The actor system then merges in all
reference.conf resources found at the root of the class path to form the fallback configuration, i.e. it inter-
nally uses

appConfig.withFallback (ConfigFactory.defaultReference (classLoader))

The philosophy is that code never contains default values, but instead relies upon their presence in the
reference. conf supplied with the library in question.

Highest precedence is given to overrides given as system properties, see the HOCON specification (near the
bottom). Also noteworthy is that the application configuration—which defaults to application—may be
overridden using the config. resource property (there are more, please refer to the Config docs).

Note: If you are writing an Akka application, keep you configuration in application.conf at the root of
the class path. If you are writing an Akka-based library, keep its configuration in reference. conf at the root
of the JAR file.

3.9. Configuration 38

https://github.com/typesafehub/config
http://typesafehub.github.io/config/v1.2.0/com/typesafe/config/ConfigFactory.html
https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/README.md

Akka Java Documentation, Release 2.4.20

3.9.2 When using JardJar, OnedJar, Assembly or any jar-bundler

Warning: Akka’s configuration approach relies heavily on the notion of every module/jar having its own
reference.conf file, all of these will be discovered by the configuration and loaded. Unfortunately this also
means that if you put/merge multiple jars into the same jar, you need to merge all the reference.confs as well.
Otherwise all defaults will be lost and Akka will not function.

If you are using Maven to package your application, you can also make use of the Apache Maven Shade Plugin
support for Resource Transformers to merge all the reference.confs on the build classpath into one.

The plugin configuration might look like this:

<plugin>
<groupId>org.apache.maven.plugins</groupIld>
<artifactId>maven-shade-plugin</artifactId>
<version>1.5</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>allinone</shadedClassifierName>
<artifactSet>
<includes>
<include>«*:*</include>
</includes>
</artifactSet>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<manifestEntries>
<Main-Class>akka.Main</Main-Class>
</manifestEntries>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>

3.9.3 Custom application.conf

A custom application.conf might look like this:

In this file you can override any option defined in the reference files.
Copy in parts of the reference files and modify as you please.

akka {
Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)

loggers = ["akka.event.slf4j.S1f4jLogger"]

Log level used by the configured loggers (see "loggers") as soon

3.9. Configuration 39

http://maven.apache.org/plugins/maven-shade-plugin
http://maven.apache.org/plugins/maven-shade-plugin/examples/resource-transformers.html#AppendingTransformer

Akka Java Documentation, Release 2.4.20

as they have been started; before that, see "stdout-loglevel"
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

Log level for the very basic logger activated during ActorSystem startup.
This logger prints the log messages to stdout (System.out).

Options: OFF, ERROR, WARNING, INFO, DEBUG

stdout-loglevel = "DEBUG"

Filter of log events that is used by the LoggingAdapter before
publishing log events to the eventStream.

logging—-filter = "akka.event.slf4j.S1f4jLoggingFilter"
actor {
provider = "cluster"

default-dispatcher {
Throughput for default Dispatcher, set to 1 for as fair as possible
throughput = 10

remote {
The port clients should connect to. Default is 2552.
netty.tcp.port = 4711

3.9.4 Including files

Sometimes it can be useful to include another configuration file, for example if you have one
application.conf with all environment independent settings and then override some settings for specific
environments.

Specifying system property with ~-Dconfig.resource=/dev.conf will load the dev.conf file, which
includes the application.conf

dev.conf:

include "application"

akka {
loglevel = "DEBUG"

More advanced include and substitution mechanisms are explained in the HOCON specification.

3.9.5 Logging of Configuration

If the system or config property akka .log—config-on-start is setto on, then the complete configuration is
logged at INFO level when the actor system is started. This is useful when you are uncertain of what configuration
is used.

If in doubt, you can also easily and nicely inspect configuration objects before or after using them to construct an
actor system:

Welcome to Scala version 2.11.11 (Java HotSpot (TM) 64-Bit Server VM, Java 1.8.0).
Type in expressions to have them evaluated.
Type :help for more information.

scala> import com.typesafe.config._

3.9. Configuration 40

https://github.com/typesafehub/config/blob/master/HOCON.md

Akka Java Documentation, Release 2.4.20

import com.typesafe.config._

scala> ConfigFactory.parseString("a.b=12")
res0: com.typesafe.config.Config = Config(SimpleConfigObject ({"a" : {"b" : 12}1}))

scala> resO.root.render
resl: java.lang.String =

{
String: 1
"a" B {
String: 1
oT 3 12

}

The comments preceding every item give detailed information about the origin of the setting (file & line number)
plus possible comments which were present, e.g. in the reference configuration. The settings as merged with the
reference and parsed by the actor system can be displayed like this:

final ActorSystem system = ActorSystem.create();
System.out.println(system.settings());
// this is a shortcut for system.settings () .config() .root ().render ()

3.9.6 A Word About ClassLoaders

In several places of the configuration file it is possible to specify the fully-qualified class name of something to be
instantiated by Akka. This is done using Java reflection, which in turn uses a ClassLoader. Getting the right
one in challenging environments like application containers or OSGi bundles is not always trivial, the current
approach of Akka is that each ActorSystem implementation stores the current thread’s context class loader
(if available, otherwise just its own loader as in this.getClass.getClassLoader) and uses that for all
reflective accesses. This implies that putting Akka on the boot class path will yield Nul1PointerException
from strange places: this is simply not supported.

3.9.7 Application specific settings
The configuration can also be used for application specific settings. A good practice is to place those settings in
an Extension, as described in:

 Scala API: extending-akka-scala.settings

» Java APIL: Application specific settings

3.9.8 Configuring multiple ActorSystem
If you have more than one ActorSystem (or you're writing a library and have an ActorSystem that may be
separate from the application’s) you may want to separate the configuration for each system.

Given that ConfigFactory.load () merges all resources with matching name from the whole class path, it
is easiest to utilize that functionality and differentiate actor systems within the hierarchy of the configuration:

myappl {
akka.loglevel = "WARNING"
my.own.setting = 43

}

myapp2 {
akka.loglevel = "ERROR"
app2.setting = "appname"

3.9. Configuration 41

Akka Java Documentation, Release 2.4.20

my.own.setting = 42
my.other.setting = "hello"

val config = ConfigFactory.load()
val appl = ActorSystem ("MyAppl", config.getConfig ("myappl").withFallback (config))
val app2 = ActorSystem("MyApp2",

config.getConfig ("myapp2") .withOnlyPath ("akka") .withFallback (config))

These two samples demonstrate different variations of the “lift-a-subtree” trick: in the first case, the configuration
accessible from within the actor system is this

akka.loglevel = "WARNING"
my.own.setting = 43
my.other.setting = "hello"

// plus myappl and myapp2 subtrees

while in the second one, only the “akka” subtree is lifted, with the following result

akka.loglevel = "ERROR"
my.own.setting = 42
my.other.setting = "hello"

// plus myappl and myapp2 subtrees

Note: The configuration library is really powerful, explaining all features exceeds the scope affordable here.
In particular not covered are how to include other configuration files within other files (see a small example at
Including files) and copying parts of the configuration tree by way of path substitutions.

You may also specify and parse the configuration programmatically in other ways when instantiating the
ActorSystem.

import akka.actor.ActorSystem
import com.typesafe.config.ConfigFactory
val customConf = ConfigFactory.parseString ("""
akka.actor.deployment {
/my—-service {
router = round-robin-pool
nr-of-instances = 3

}

nn ll)

// ConfigFactory.load sandwiches customConfig between default reference
// config and default overrides, and then resolves it.
val system = ActorSystem("MySystem", ConfigFactory.load(customConf))

3.9.9 Reading configuration from a custom location

You can replace or supplement application.conf either in code or using system properties.

If youre using ConfigFactory.load() (which Akka does by default) you can replace
application.conf by defining -Dconfig.resource=whatever, -Dconfig.file=whatever, or
-Dconfig.url=whatever.

From inside your replacement file specified with ~-Dconfig.resource and friends, you can include
"application" if you still want to use application. {conf, json, properties} as well. Settings
specified before include "application" would be overridden by the included file, while those after would
override the included file.

In code, there are many customization options.

There are several overloads of ConfigFactory.load (); these allow you to specify something to be sand-
wiched between system properties (which override) and the defaults (from reference. conf), replacing the

3.9. Configuration 42

Akka Java Documentation, Release 2.4.20

usual application. {conf, json, properties} andreplacing -Dconfig.file and friends.

The simplest variant of ConfigFactory.load () takes a resource basename (instead of application);
myname.conf, myname.json, and myname.properties would then be used instead of
application. {conf, json, properties}.

The most flexible variant takes a Config object, which you can load using any method in ConfigFactory.
For example you could put a config string in code using ConfigFactory.parseString () or you could
make a map and ConfigFactory.parseMap (), or you could load a file.

You can also combine your custom config with the usual config, that might look like:

// make a Config with Jjust your special setting
Config myConfig =
ConfigFactory.parseString ("something=somethingElse") ;
// load the normal config stack (system props,
// then application.conf, then reference.conf)
Config regularConfig =
ConfigFactory.load() ;
// override regular stack with myConfig
Config combined =
myConfig.withFallback (regularConfigqg);
// put the result in between the overrides
// (system props) and defaults again
Config complete =
ConfigFactory.load (combined) ;
// create ActorSystem
ActorSystem system =
ActorSystem.create ("myname", complete);

When working with Config objects, keep in mind that there are three “layers” in the cake:
* ConfigFactory.defaultOverrides () (system properties)
* the app’s settings
e ConfigFactory.defaultReference () (reference.conf)

The normal goal is to customize the middle layer while leaving the other two alone.
e ConfigFactory.load () loads the whole stack
¢ the overloads of ConfigFactory.load () let you specify a different middle layer
e the ConfigFactory.parse () variations load single files or resources

To stack two layers, use override.withFallback (fallback); try to keep system props
(defaultOverrides ())ontopand reference.conf (defaultReference ()) on the bottom.

Do keep in mind, you can often just add another include statement in application. conf rather than writ-
ing code. Includes at the top of application.conf will be overridden by the rest of application.conf,
while those at the bottom will override the earlier stuff.

3.9.10 Actor Deployment Configuration

Deployment settings for specific actors can be defined in the akka.actor.deployment section of the con-
figuration. In the deployment section it is possible to define things like dispatcher, mailbox, router settings, and
remote deployment. Configuration of these features are described in the chapters detailing corresponding topics.
An example may look like this:

akka.actor.deployment {

’/user/actorA/actorB’ is a remote deployed actor
/actorA/actorB {
remote = "akka.tcp://sampleActorSystem@127.0.0.1:2553"

3.9. Configuration 43

Akka Java Documentation, Release 2.4.20

#

all direct children of ’/user/actorC’ have a dedicated dispatcher

"/actorC/+" {

}

#
#

dispatcher = my-dispatcher

all descendants of ’/user/actorC’ (direct children, and their children recursively)
have a dedicated dispatcher

"/actorC/xx" {

}

#

dispatcher = my-dispatcher

" /user/actorD/actorE’ has a special priority mailbox

/actorD/actorE {

}

#

mailbox = prio-mailbox

" /user/actorF/actorG/actorH’ 1is a random pool

/actorF/actorG/actorH {

}

router = random-pool
nr-of-instances = 5

my-dispatcher {
fork-join-executor.parallelism-min = 10

fork-join-executor.parallelism—max

}

10

prio-mailbox {
mailbox-type = "a.b.MyPrioMailbox"

}

Note

: The deployment section for a specific actor is identified by the path of the actor relative to /user.

You can use asterisks as wildcard matches for the actor path sections, so you could specify: /x/sampleActor
and that would match all sampleActor on that level in the hierarchy. In addition, please note:

you can also use wildcards in the last position to match all actors at a certain level: /someParent/*

you can use double-wildcards in the last position to match all child actors and their children recursively:
/someParent/*#*

non-wildcard matches always have higher priority to match than wildcards, and single wildcard matches
have higher priority than double-wildcards, so: /foo/bar is considered more specific than /foo/ *,
which is considered more specific than /foo/»«. Only the highest priority match is used

wildcards cannot be used to partially match section, like this: /foox/bar, /f+o/bar etc.

Note:

Double-wildcards can only be placed in the last position.

3.9.11 Listing of the Reference Configuration

Each

Akka module has a reference configuration file with the default values.

akka-actor

FHEHAF A F AR AR AR
Akka Actor Reference Config File
FHAR A FRAAF AR ARSI

3.9.

Configuration 44

Akka Java Documentation, Release 2.4.20

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

Akka version, checked against the runtime version of Akka. Loaded from generated conf file.
include "version"

akka {
Home directory of Akka, modules in the deploy directory will be loaded
home = ""

Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]

Filter of log events that is used by the LoggingAdapter before

publishing log events to the eventStream. It can perform

fine grained filtering based on the log source. The default

implementation filters on the ‘loglevel®.

FOCN of the LoggingFilter. The Class of the FQCN must implement

akka.event.LoggingFilter and have a public constructor with

(akka.actor.ActorSystem.Settings, akka.event.EventStream) parameters.
logging-filter = "akka.event.DefaultLoggingFilter"

Specifies the default loggers dispatcher
loggers—dispatcher = "akka.actor.default-dispatcher"

Loggers are created and registered synchronously during ActorSystem

start-up, and since they are actors, this timeout is used to bound the
waiting time

logger-startup-timeout = 5s

Log level used by the configured loggers (see "loggers") as soon
as they have been started; before that, see "stdout-loglevel"

Options: OFF, ERROR, WARNING, INFO, DEBUG

loglevel = "INFO"

Log level for the very basic logger activated during ActorSystem startup.
This logger prints the log messages to stdout (System.out).

Options: OFF, ERROR, WARNING, INFO, DEBUG

stdout-loglevel = "WARNING"

Log the complete configuration at INFO level when the actor system is started.
This is useful when you are uncertain of what configuration is used.
log-config-on-start = off

Log at info level when messages are sent to dead letters.
Possible wvalues:

on: all dead letters are logged

off: no logging of dead letters

n: positive integer, number of dead letters that will be logged
log-dead-letters = 10

+= o

Possibility to turn off logging of dead letters while the actor system
is shutting down. Logging is only done when enabled by ’log-dead-letters’

setting.

log-dead-letters—-during-shutdown = on

List FQCN of extensions which shall be loaded at actor system startup.

Library extensions are regular extensions that are loaded at startup and are

available for third party library authors to enable auto-loading of extensions when
present on the classpath. This is done by appending entries:

’library-extensions += "Extension"’ in the library ‘reference.conf‘.

3.9. Configuration 45

Akka Java Documentation, Release 2.4.20

#

Should not be set by end user applications in ’'application.conf’, use the extensions property
#

library-extensions = ${?akka.library-extensions} []

List FQCN of extensions which shall be loaded at actor system startup.
Should be on the format: ’extensions = ["foo", "bar"]’ etc.

See the Akka Documentation for more info about Extensions

extensions = []

Toggles whether threads created by this ActorSystem should be daemons or not
daemonic = off

JVM shutdown, System.exit(-1), in case of a fatal error,
such as OutOfMemoryError
jvm-exit-on-fatal-error = on

actor {

Either one of "local", "remote" or "cluster" or the

FQCN of the ActorRefProvider to be used; the below is the built-in default,
note that "remote" and "cluster" requires the akka-remote and akka-cluster
artifacts to be on the classpath.

provider = "local"

He oW #

The guardian "/user" will use this class to obtain its supervisorStrategy.
It needs to be a subclass of akka.actor.SupervisorStrategyConfigurator.

In addition to the default there is akka.actor.StoppingSupervisorStrategy.
guardian-supervisor-strategy = "akka.actor.DefaultSupervisorStrategy"

Timeout for ActorSystem.actorOf
creation-timeout = 20s

Serializes and deserializes (non-primitive) messages to ensure immutability,
this is only intended for testing.
serialize-messages = off

Serializes and deserializes creators (in Props) to ensure that they can be

sent over the network, this is only intended for testing. Purely local deployments
as marked with deploy.scope == LocalScope are exempt from verification.
serialize-creators = off

Timeout for send operations to top-level actors which are in the process
of being started. This is only relevant if using a bounded mailbox or the
CallingThreadDispatcher for a top-level actor.

unstarted-push-timeout = 10s

typed {
Default timeout for typed actor methods with non-void return type
timeout = 5s

Mapping between ‘deployment.router’ short names to fully qualified class names
router.type-mapping {

from-code = "akka.routing.NoRouter"

round-robin-pool = "akka.routing.RoundRobinPool"
round-robin-group = "akka.routing.RoundRobinGroup"
random-pool = "akka.routing.RandomPool"

random-group = "akka.routing.RandomGroup"

balancing-pool = "akka.routing.BalancingPool"
smallest-mailbox-pool = "akka.routing.SmallestMailboxPool"
broadcast-pool = "akka.routing.BroadcastPool"
broadcast-group = "akka.routing.BroadcastGroup"

3.9. Configuration 46

Akka Java Documentation, Release 2.4.20

scatter—-gather-pool = "akka.routing.ScatterGatherFirstCompletedPool"
scatter—-gather—-group = "akka.routing.ScatterGatherFirstCompletedGroup"
tail-chopping-pool = "akka.routing.TailChoppingPool"
tail-chopping—-group = "akka.routing.TailChoppingGroup"
consistent-hashing-pool = "akka.routing.ConsistentHashingPool"
consistent-hashing-group = "akka.routing.ConsistentHashingGroup"

deployment {

deployment id pattern — on the format: /parent/child etc.
default {

The id of the dispatcher to use for