
Akka Java Documentation
Release 2.3.16

Typesafe Inc

October 28, 2016

CONTENTS

1 Introduction 1
1.1 What is Akka? . 1
1.2 Why Akka? . 2
1.3 Getting Started . 3
1.4 The Obligatory Hello World . 6
1.5 Use-case and Deployment Scenarios . 7
1.6 Examples of use-cases for Akka . 7

2 General 9
2.1 Terminology, Concepts . 9
2.2 Actor Systems . 11
2.3 What is an Actor? . 13
2.4 Supervision and Monitoring . 15
2.5 Actor References, Paths and Addresses . 18
2.6 Location Transparency . 24
2.7 Akka and the Java Memory Model . 25
2.8 Message Delivery Reliability . 27
2.9 Configuration . 32

3 Actors 70
3.1 Actors . 70
3.2 Typed Actors . 89
3.3 Fault Tolerance . 99
3.4 Dispatchers . 113
3.5 Mailboxes . 116
3.6 Routing . 121
3.7 Building Finite State Machine Actors . 139
3.8 Persistence . 142
3.9 Testing Actor Systems . 160

4 Actors (Java with Lambda Support) 177
4.1 Actors (Java with Lambda Support) . 177
4.2 Fault Tolerance (Java with Lambda Support) . 196
4.3 FSM (Java with Lambda Support) . 210
4.4 Persistence (Java with Lambda Support) . 219

5 Futures and Agents 238
5.1 Futures . 238
5.2 Agents . 246

6 Networking 249
6.1 Cluster Specification . 249
6.2 Cluster Usage . 257
6.3 Remoting . 278
6.4 Serialization . 288

i

6.5 I/O . 293
6.6 Using TCP . 295
6.7 Using UDP . 306
6.8 ZeroMQ . 309
6.9 Camel . 314

7 Utilities 327
7.1 Event Bus . 327
7.2 Logging . 333
7.3 Scheduler . 339
7.4 Duration . 342
7.5 Circuit Breaker . 343
7.6 Akka Extensions . 346
7.7 Microkernel . 349

8 HowTo: Common Patterns 352
8.1 Scheduling Periodic Messages . 352
8.2 Single-Use Actor Trees with High-Level Error Reporting . 353
8.3 Template Pattern . 356

9 Experimental Modules 357
9.1 Multi Node Testing . 357
9.2 External Contributions . 362

10 Information for Akka Developers 390
10.1 Building Akka . 390
10.2 Multi JVM Testing . 392
10.3 I/O Layer Design . 395
10.4 Developer Guidelines . 396
10.5 Documentation Guidelines . 398
10.6 Team . 400

11 Project Information 401
11.1 Migration Guides . 401
11.2 Issue Tracking . 411
11.3 Licenses . 412
11.4 Sponsors . 412
11.5 Project . 412

12 Additional Information 415
12.1 Frequently Asked Questions . 415
12.2 Books . 418
12.3 Other Language Bindings . 418
12.4 Akka in OSGi . 418
12.5 Incomplete List of HTTP Frameworks . 419

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Akka?

Scalable real-time transaction processing

We believe that writing correct concurrent, fault-tolerant and scalable applications is too hard. Most of the time it’s
because we are using the wrong tools and the wrong level of abstraction. Akka is here to change that. Using the
Actor Model we raise the abstraction level and provide a better platform to build scalable, resilient and responsive
applications—see the Reactive Manifesto for more details. For fault-tolerance we adopt the “let it crash” model
which the telecom industry has used with great success to build applications that self-heal and systems that never
stop. Actors also provide the abstraction for transparent distribution and the basis for truly scalable and fault-
tolerant applications.

Akka is Open Source and available under the Apache 2 License.

Download from http://akka.io/downloads.

Please note that all code samples compile, so if you want direct access to the sources, have a look over at the Akka
Docs subproject on github: for Java and Scala.

1.1.1 Akka implements a unique hybrid

Actors

Actors give you:

• Simple and high-level abstractions for concurrency and parallelism.

• Asynchronous, non-blocking and highly performant event-driven programming model.

• Very lightweight event-driven processes (several million actors per GB of heap memory).

See the chapter for Scala or Java.

Fault Tolerance

• Supervisor hierarchies with “let-it-crash” semantics.

• Supervisor hierarchies can span over multiple JVMs to provide truly fault-tolerant systems.

• Excellent for writing highly fault-tolerant systems that self-heal and never stop.

See Fault Tolerance (Scala) and Fault Tolerance (Java).

1

http://reactivemanifesto.org/
http://akka.io/downloads
http://github.com/akka/akka/tree/v2.3.16/akka-docs/rst/java/code/docs
http://github.com/akka/akka/tree/v2.3.16/akka-docs/rst/scala/code/docs

Akka Java Documentation, Release 2.3.16

Location Transparency

Everything in Akka is designed to work in a distributed environment: all interactions of actors use pure message
passing and everything is asynchronous.

For an overview of the cluster support see the Java and Scala documentation chapters.

Persistence

Messages received by an actor can optionally be persisted and replayed when the actor is started or restarted. This
allows actors to recover their state, even after JVM crashes or when being migrated to another node.

You can find more details in the respective chapter for Java or Scala.

1.1.2 Scala and Java APIs

Akka has both a scala-api and a Java Documentation.

1.1.3 Akka can be used in two different ways

• As a library: used by a web app, to be put into WEB-INF/lib or as a regular JAR on your classpath.

• As a microkernel: stand-alone kernel to drop your application into.

See the Use-case and Deployment Scenarios for details.

1.1.4 Commercial Support

Akka is available from Typesafe Inc. under a commercial license which includes development or production
support, read more here.

1.2 Why Akka?

1.2.1 What features can the Akka platform offer, over the competition?

Akka provides scalable real-time transaction processing.

Akka is an unified runtime and programming model for:

• Scale up (Concurrency)

• Scale out (Remoting)

• Fault tolerance

One thing to learn and admin, with high cohesion and coherent semantics.

Akka is a very scalable piece of software, not only in the context of performance but also in the size of applications
it is useful for. The core of Akka, akka-actor, is very small and easily dropped into an existing project where you
need asynchronicity and lockless concurrency without hassle.

You can choose to include only the parts of akka you need in your application and then there’s the whole package,
the Akka Microkernel, which is a standalone container to deploy your Akka application in. With CPUs growing
more and more cores every cycle, Akka is the alternative that provides outstanding performance even if you’re
only running it on one machine. Akka also supplies a wide array of concurrency-paradigms, allowing users to
choose the right tool for the job.

1.2. Why Akka? 2

http://www.typesafe.com/how/subscription

Akka Java Documentation, Release 2.3.16

1.2.2 What’s a good use-case for Akka?

We see Akka being adopted by many large organizations in a big range of industries:

• Investment and Merchant Banking

• Retail

• Social Media

• Simulation

• Gaming and Betting

• Automobile and Traffic Systems

• Health Care

• Data Analytics

and much more. Any system with the need for high-throughput and low latency is a good candidate for using
Akka.

Actors let you manage service failures (Supervisors), load management (back-off strategies, timeouts and
processing-isolation), as well as both horizontal and vertical scalability (add more cores and/or add more ma-
chines).

Here’s what some of the Akka users have to say about how they are using Akka: http://stackoverflow.com/
questions/4493001/good-use-case-for-akka

All this in the ApacheV2-licensed open source project.

1.3 Getting Started

1.3.1 Prerequisites

Akka requires that you have Java 1.6 or later installed on you machine.

1.3.2 Getting Started Guides and Template Projects

The best way to start learning Akka is to download Typesafe Activator and try out one of Akka Template Projects.

1.3.3 Download

There are several ways to download Akka. You can download it as part of the Typesafe Platform (as described
above). You can download the full distribution with microkernel, which includes all modules. Or you can use a
build tool like Maven or SBT to download dependencies from the Akka Maven repository.

1.3.4 Modules

Akka is very modular and consists of several JARs containing different features.

• akka-actor – Classic Actors, Typed Actors, IO Actor etc.

• akka-agent – Agents, integrated with Scala STM

• akka-camel – Apache Camel integration

• akka-cluster – Cluster membership management, elastic routers.

• akka-kernel – Akka microkernel for running a bare-bones mini application server

1.3. Getting Started 3

http://stackoverflow.com/questions/4493001/good-use-case-for-akka
http://stackoverflow.com/questions/4493001/good-use-case-for-akka
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.typesafe.com/platform/getstarted

Akka Java Documentation, Release 2.3.16

• akka-osgi – base bundle for using Akka in OSGi containers, containing the akka-actor classes

• akka-osgi-aries – Aries blueprint for provisioning actor systems

• akka-remote – Remote Actors

• akka-slf4j – SLF4J Logger (event bus listener)

• akka-testkit – Toolkit for testing Actor systems

• akka-zeromq – ZeroMQ integration

In addition to these stable modules there are several which are on their way into the stable core but are still marked
“experimental” at this point. This does not mean that they do not function as intended, it primarily means that
their API has not yet solidified enough in order to be considered frozen. You can help accelerating this process by
giving feedback on these modules on our mailing list.

• akka-contrib – an assortment of contributions which may or may not be moved into core modules, see
External Contributions for more details.

The filename of the actual JAR is for example akka-actor_2.10-2.3.16.jar (and analog for the other
modules).

How to see the JARs dependencies of each Akka module is described in the Dependencies section.

1.3.5 Using a release distribution

Download the release you need from http://akka.io/downloads and unzip it.

1.3.6 Using a snapshot version

The Akka nightly snapshots are published to http://repo.akka.io/snapshots/ and are versioned with both
SNAPSHOT and timestamps. You can choose a timestamped version to work with and can decide when to update
to a newer version.

Warning: The use of Akka SNAPSHOTs, nightlies and milestone releases is discouraged unless you know
what you are doing.

1.3.7 Microkernel

The Akka distribution includes the microkernel. To run the microkernel put your application jar in the deploy
directory and use the scripts in the bin directory.

More information is available in the documentation of the Microkernel (Scala) / Microkernel (Java).

1.3.8 Using a build tool

Akka can be used with build tools that support Maven repositories.

1.3.9 Maven repositories

For Akka version 2.1-M2 and onwards:

Maven Central

For previous Akka versions:

Akka Repo

1.3. Getting Started 4

http://akka.io/downloads
http://repo.akka.io/snapshots/
http://repo1.maven.org/maven2/
http://repo.akka.io/releases/

Akka Java Documentation, Release 2.3.16

1.3.10 Using Akka with Maven

The simplest way to get started with Akka and Maven is to check out the Typesafe Activator tutorial named Akka
Main in Java.

Since Akka is published to Maven Central (for versions since 2.1-M2), is it enough to add the Akka dependencies
to the POM. For example, here is the dependency for akka-actor:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_2.10</artifactId>
<version>2.3.16</version>

</dependency>

Note: for snapshot versions both SNAPSHOT and timestamped versions are published.

1.3.11 Using Akka with SBT

The simplest way to get started with Akka and SBT is to check out the Akka/SBT template project.

Summary of the essential parts for using Akka with SBT:

SBT installation instructions on https://github.com/harrah/xsbt/wiki/Setup

build.sbt file:

name := "My Project"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies +=
"com.typesafe.akka" %% "akka-actor" % "2.3.16"

Note: the libraryDependencies setting above is specific to SBT v0.12.x and higher. If you are using an older
version of SBT, the libraryDependencies should look like this:

libraryDependencies +=
"com.typesafe.akka" % "akka-actor_2.10" % "2.3.16"

1.3.12 Using Akka with Gradle

Requires at least Gradle 1.4 Uses the Scala plugin

apply plugin: 'scala'

repositories {
mavenCentral()

}

dependencies {
compile 'org.scala-lang:scala-library:2.10.4'

}

tasks.withType(ScalaCompile) {
scalaCompileOptions.useAnt = false

}

dependencies {
compile group: 'com.typesafe.akka', name: 'akka-actor_2.10', version: '2.3.16'

1.3. Getting Started 5

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-main-java
http://www.typesafe.com/activator/template/akka-sample-main-java
http://www.typesafe.com/resources/getting-started/typesafe-stack/downloading-installing.html#template-projects-for-scala-akka-and-play
https://github.com/harrah/xsbt/wiki/Setup
http://gradle.org
http://gradle.org/docs/current/userguide/scala_plugin.html

Akka Java Documentation, Release 2.3.16

compile group: 'org.scala-lang', name: 'scala-library', version: '2.10.4'
}

1.3.13 Using Akka with Eclipse

Setup SBT project and then use sbteclipse to generate a Eclipse project.

1.3.14 Using Akka with IntelliJ IDEA

Setup SBT project and then use sbt-idea to generate a IntelliJ IDEA project.

1.3.15 Using Akka with NetBeans

Setup SBT project and then use nbsbt to generate a NetBeans project.

You should also use nbscala for general scala support in the IDE.

1.3.16 Do not use -optimize Scala compiler flag

Warning: Akka has not been compiled or tested with -optimize Scala compiler flag. Strange behavior has
been reported by users that have tried it.

1.3.17 Build from sources

Akka uses Git and is hosted at Github.

• Akka: clone the Akka repository from http://github.com/akka/akka

Continue reading the page on Building Akka

1.3.18 Need help?

If you have questions you can get help on the Akka Mailing List.

You can also ask for commercial support.

Thanks for being a part of the Akka community.

1.4 The Obligatory Hello World

The actor based version of the tough problem of printing a well-known greeting to the console is introduced in a
Typesafe Activator tutorial named Akka Main in Java.

The tutorial illustrates the generic launcher class akka.Main which expects only one command line argument:
the class name of the application’s main actor. This main method will then create the infrastructure needed for
running the actors, start the given main actor and arrange for the whole application to shut down once the main
actor terminates.

There is also another Typesafe Activator tutorial in the same problem domain that is named Hello Akka!. It
describes the basics of Akka in more depth.

1.4. The Obligatory Hello World 6

https://github.com/typesafehub/sbteclipse
https://github.com/mpeltonen/sbt-idea
https://github.com/dcaoyuan/nbsbt
https://github.com/dcaoyuan/nbscala
http://github.com
http://github.com/akka/akka
http://groups.google.com/group/akka-user
http://www.typesafe.com
http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-main-java
http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/hello-akka

Akka Java Documentation, Release 2.3.16

1.5 Use-case and Deployment Scenarios

1.5.1 How can I use and deploy Akka?

Akka can be used in different ways:

• As a library: used as a regular JAR on the classpath and/or in a web app, to be put into WEB-INF/lib

• As a stand alone application by instantiating ActorSystem in a main class or using the Microkernel (Scala)
/ Microkernel (Java)

Using Akka as library

This is most likely what you want if you are building Web applications. There are several ways you can use Akka
in Library mode by adding more and more modules to the stack.

Using Akka as a stand alone microkernel

Akka can also be run as a stand-alone microkernel. See Microkernel (Scala) / Microkernel (Java) for more infor-
mation.

1.6 Examples of use-cases for Akka

We see Akka being adopted by many large organizations in a big range of industries all from investment and
merchant banking, retail and social media, simulation, gaming and betting, automobile and traffic systems, health
care, data analytics and much more. Any system that have the need for high-throughput and low latency is a good
candidate for using Akka.

There is a great discussion on use-cases for Akka with some good write-ups by production users here

1.6.1 Here are some of the areas where Akka is being deployed into production

Transaction processing (Online Gaming, Finance/Banking, Trading, Statistics, Betting, Social
Media, Telecom)

Scale up, scale out, fault-tolerance / HA

Service backend (any industry, any app)

Service REST, SOAP, Cometd, WebSockets etc Act as message hub / integration layer Scale up, scale
out, fault-tolerance / HA

Concurrency/parallelism (any app)

Correct Simple to work with and understand Just add the jars to your existing JVM project (use Scala,
Java, Groovy or JRuby)

Simulation

Master/Worker, Compute Grid, MapReduce etc.

1.5. Use-case and Deployment Scenarios 7

http://stackoverflow.com/questions/4493001/good-use-case-for-akka/4494512#4494512

Akka Java Documentation, Release 2.3.16

Batch processing (any industry)

Camel integration to hook up with batch data sources Actors divide and conquer the batch workloads

Communications Hub (Telecom, Web media, Mobile media)

Scale up, scale out, fault-tolerance / HA

Gaming and Betting (MOM, online gaming, betting)

Scale up, scale out, fault-tolerance / HA

Business Intelligence/Data Mining/general purpose crunching

Scale up, scale out, fault-tolerance / HA

Complex Event Stream Processing

Scale up, scale out, fault-tolerance / HA

1.6. Examples of use-cases for Akka 8

CHAPTER

TWO

GENERAL

2.1 Terminology, Concepts

In this chapter we attempt to establish a common terminology to define a solid ground for communicating about
concurrent, distributed systems which Akka targets. Please note that, for many of these terms, there is no sin-
gle agreed definition. We simply seek to give working definitions that will be used in the scope of the Akka
documentation.

2.1.1 Concurrency vs. Parallelism

Concurrency and parallelism are related concepts, but there are small differences. Concurrency means that two or
more tasks are making progress even though they might not be executing simultaneously. This can for example
be realized with time slicing where parts of tasks are executed sequentially and mixed with parts of other tasks.
Parallelism on the other hand arise when the execution can be truly simultaneous.

2.1.2 Asynchronous vs. Synchronous

A method call is considered synchronous if the caller cannot make progress until the method returns a value or
throws an exception. On the other hand, an asynchronous call allows the caller to progress after a finite number of
steps, and the completion of the method may be signalled via some additional mechanism (it might be a registered
callback, a Future, or a message).

A synchronous API may use blocking to implement synchrony, but this is not a necessity. A very CPU intensive
task might give a similar behavior as blocking. In general, it is preferred to use asynchronous APIs, as they
guarantee that the system is able to progress. Actors are asynchronous by nature: an actor can progress after a
message send without waiting for the actual delivery to happen.

2.1.3 Non-blocking vs. Blocking

We talk about blocking if the delay of one thread can indefinitely delay some of the other threads. A good example
is a resource which can be used exclusively by one thread using mutual exclusion. If a thread holds on to the
resource indefinitely (for example accidentally running an infinite loop) other threads waiting on the resource can
not progress. In contrast, non-blocking means that no thread is able to indefinitely delay others.

Non-blocking operations are preferred to blocking ones, as the overall progress of the system is not trivially
guaranteed when it contains blocking operations.

2.1.4 Deadlock vs. Starvation vs. Live-lock

Deadlock arises when several participants are waiting on each other to reach a specific state to be able to progress.
As none of them can progress without some other participant to reach a certain state (a “Catch-22” problem) all
affected subsystems stall. Deadlock is closely related to blocking, as it is necessary that a participant thread be
able to delay the progression of other threads indefinitely.

9

Akka Java Documentation, Release 2.3.16

In the case of deadlock, no participants can make progress, while in contrast Starvation happens, when there are
participants that can make progress, but there might be one or more that cannot. Typical scenario is the case
of a naive scheduling algorithm that always selects high-priority tasks over low-priority ones. If the number of
incoming high-priority tasks is constantly high enough, no low-priority ones will be ever finished.

Livelock is similar to deadlock as none of the participants make progress. The difference though is that instead
of being frozen in a state of waiting for others to progress, the participants continuously change their state. An
example scenario when two participants have two identical resources available. They each try to get the resource,
but they also check if the other needs the resource, too. If the resource is requested by the other participant, they
try to get the other instance of the resource. In the unfortunate case it might happen that the two participants
“bounce” between the two resources, never acquiring it, but always yielding to the other.

2.1.5 Race Condition

We call it a Race condition when an assumption about the ordering of a set of events might be violated by external
non-deterministic effects. Race conditions often arise when multiple threads have a shared mutable state, and the
operations of thread on the state might be interleaved causing unexpected behavior. While this is a common case,
shared state is not necessary to have race conditions. One example could be a client sending unordered packets
(e.g UDP datagrams) P1, P2 to a server. As the packets might potentially travel via different network routes, it
is possible that the server receives P2 first and P1 afterwards. If the messages contain no information about their
sending order it is impossible to determine by the server that they were sent in a different order. Depending on the
meaning of the packets this can cause race conditions.

Note: The only guarantee that Akka provides about messages sent between a given pair of actors is that their
order is always preserved. see Message Delivery Reliability

2.1.6 Non-blocking Guarantees (Progress Conditions)

As discussed in the previous sections blocking is undesirable for several reasons, including the dangers of dead-
locks and reduced throughput in the system. In the following sections we discuss various non-blocking properties
with different strength.

Wait-freedom

A method is wait-free if every call is guaranteed to finish in a finite number of steps. If a method is bounded
wait-free then the number of steps has a finite upper bound.

From this definition it follows that wait-free methods are never blocking, therefore deadlock can not happen.
Additionally, as each participant can progress after a finite number of steps (when the call finishes), wait-free
methods are free of starvation.

Lock-freedom

Lock-freedom is a weaker property than wait-freedom. In the case of lock-free calls, infinitely often some method
finishes in a finite number of steps. This definition implies that no deadlock is possible for lock-free calls. On the
other hand, the guarantee that some call finishes in a finite number of steps is not enough to guarantee that all of
them eventually finish. In other words, lock-freedom is not enough to guarantee the lack of starvation.

Obstruction-freedom

Obstruction-freedom is the weakest non-blocking guarantee discussed here. A method is called obstruction-free if
there is a point in time after which it executes in isolation (other threads make no steps, e.g.: become suspended),
it finishes in a bounded number of steps. All lock-free objects are obstruction-free, but the opposite is generally
not true.

2.1. Terminology, Concepts 10

Akka Java Documentation, Release 2.3.16

Optimistic concurrency control (OCC) methods are usually obstruction-free. The OCC approach is that every
participant tries to execute its operation on the shared object, but if a participant detects conflicts from others, it
rolls back the modifications, and tries again according to some schedule. If there is a point in time, where one of
the participants is the only one trying, the operation will succeed.

2.1.7 Recommended literature

• The Art of Multiprocessor Programming, M. Herlihy and N Shavit, 2008. ISBN 978-0123705914

• Java Concurrency in Practice, B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes and D. Lea, 2006.
ISBN 978-0321349606

2.2 Actor Systems

Actors are objects which encapsulate state and behavior, they communicate exclusively by exchanging messages
which are placed into the recipient’s mailbox. In a sense, actors are the most stringent form of object-oriented
programming, but it serves better to view them as persons: while modeling a solution with actors, envision a group
of people and assign sub-tasks to them, arrange their functions into an organizational structure and think about
how to escalate failure (all with the benefit of not actually dealing with people, which means that we need not
concern ourselves with their emotional state or moral issues). The result can then serve as a mental scaffolding for
building the software implementation.

Note: An ActorSystem is a heavyweight structure that will allocate 1. . . N Threads, so create one per logical
application.

2.2.1 Hierarchical Structure

Like in an economic organization, actors naturally form hierarchies. One actor, which is to oversee a certain
function in the program might want to split up its task into smaller, more manageable pieces. For this purpose it
starts child actors which it supervises. While the details of supervision are explained here, we shall concentrate on
the underlying concepts in this section. The only prerequisite is to know that each actor has exactly one supervisor,
which is the actor that created it.

The quintessential feature of actor systems is that tasks are split up and delegated until they become small enough
to be handled in one piece. In doing so, not only is the task itself clearly structured, but the resulting actors can
be reasoned about in terms of which messages they should process, how they should react normally and how
failure should be handled. If one actor does not have the means for dealing with a certain situation, it sends a
corresponding failure message to its supervisor, asking for help. The recursive structure then allows to handle
failure at the right level.

Compare this to layered software design which easily devolves into defensive programming with the aim of not
leaking any failure out: if the problem is communicated to the right person, a better solution can be found than if
trying to keep everything “under the carpet”.

Now, the difficulty in designing such a system is how to decide who should supervise what. There is of course no
single best solution, but there are a few guidelines which might be helpful:

• If one actor manages the work another actor is doing, e.g. by passing on sub-tasks, then the manager should
supervise the child. The reason is that the manager knows which kind of failures are expected and how to
handle them.

• If one actor carries very important data (i.e. its state shall not be lost if avoidable), this actor should source
out any possibly dangerous sub-tasks to children it supervises and handle failures of these children as ap-
propriate. Depending on the nature of the requests, it may be best to create a new child for each request,
which simplifies state management for collecting the replies. This is known as the “Error Kernel Pattern”
from Erlang.

2.2. Actor Systems 11

Akka Java Documentation, Release 2.3.16

• If one actor depends on another actor for carrying out its duty, it should watch that other actor’s liveness
and act upon receiving a termination notice. This is different from supervision, as the watching party has
no influence on the supervisor strategy, and it should be noted that a functional dependency alone is not a
criterion for deciding where to place a certain child actor in the hierarchy.

There are of course always exceptions to these rules, but no matter whether you follow the rules or break them,
you should always have a reason.

2.2.2 Configuration Container

The actor system as a collaborating ensemble of actors is the natural unit for managing shared facilities like
scheduling services, configuration, logging, etc. Several actor systems with different configuration may co-exist
within the same JVM without problems, there is no global shared state within Akka itself. Couple this with the
transparent communication between actor systems—within one node or across a network connection—to see that
actor systems themselves can be used as building blocks in a functional hierarchy.

2.2.3 Actor Best Practices

1. Actors should be like nice co-workers: do their job efficiently without bothering everyone else needlessly
and avoid hogging resources. Translated to programming this means to process events and generate re-
sponses (or more requests) in an event-driven manner. Actors should not block (i.e. passively wait while
occupying a Thread) on some external entity—which might be a lock, a network socket, etc.—unless it is
unavoidable; in the latter case see below.

2. Do not pass mutable objects between actors. In order to ensure that, prefer immutable messages. If the
encapsulation of actors is broken by exposing their mutable state to the outside, you are back in normal Java
concurrency land with all the drawbacks.

3. Actors are made to be containers for behavior and state, embracing this means to not routinely send behavior
within messages (which may be tempting using Scala closures). One of the risks is to accidentally share
mutable state between actors, and this violation of the actor model unfortunately breaks all the properties
which make programming in actors such a nice experience.

4. Top-level actors are the innermost part of your Error Kernel, so create them sparingly and prefer truly
hierarchical systems. This has benefits with respect to fault-handling (both considering the granularity of
configuration and the performance) and it also reduces the strain on the guardian actor, which is a single
point of contention if over-used.

2.2.4 Blocking Needs Careful Management

In some cases it is unavoidable to do blocking operations, i.e. to put a thread to sleep for an indeterminate
time, waiting for an external event to occur. Examples are legacy RDBMS drivers or messaging APIs, and the
underlying reason is typically that (network) I/O occurs under the covers. When facing this, you may be tempted
to just wrap the blocking call inside a Future and work with that instead, but this strategy is too simple: you are
quite likely to find bottlenecks or run out of memory or threads when the application runs under increased load.

The non-exhaustive list of adequate solutions to the “blocking problem” includes the following suggestions:

• Do the blocking call within an actor (or a set of actors managed by a router [Java, Scala]), making sure to
configure a thread pool which is either dedicated for this purpose or sufficiently sized.

• Do the blocking call within a Future, ensuring an upper bound on the number of such calls at any point in
time (submitting an unbounded number of tasks of this nature will exhaust your memory or thread limits).

• Do the blocking call within a Future, providing a thread pool with an upper limit on the number of threads
which is appropriate for the hardware on which the application runs.

• Dedicate a single thread to manage a set of blocking resources (e.g. a NIO selector driving multiple chan-
nels) and dispatch events as they occur as actor messages.

2.2. Actor Systems 12

Akka Java Documentation, Release 2.3.16

The first possibility is especially well-suited for resources which are single-threaded in nature, like database han-
dles which traditionally can only execute one outstanding query at a time and use internal synchronization to
ensure this. A common pattern is to create a router for N actors, each of which wraps a single DB connection and
handles queries as sent to the router. The number N must then be tuned for maximum throughput, which will vary
depending on which DBMS is deployed on what hardware.

Note: Configuring thread pools is a task best delegated to Akka, simply configure in the application.conf
and instantiate through an ActorSystem [Java, Scala]

2.2.5 What you should not concern yourself with

An actor system manages the resources it is configured to use in order to run the actors which it contains. There
may be millions of actors within one such system, after all the mantra is to view them as abundant and they
weigh in at an overhead of only roughly 300 bytes per instance. Naturally, the exact order in which messages are
processed in large systems is not controllable by the application author, but this is also not intended. Take a step
back and relax while Akka does the heavy lifting under the hood.

2.3 What is an Actor?

The previous section about Actor Systems explained how actors form hierarchies and are the smallest unit when
building an application. This section looks at one such actor in isolation, explaining the concepts you encounter
while implementing it. For a more in depth reference with all the details please refer to Actors (Scala) and Untyped
Actors (Java).

An actor is a container for State, Behavior, a Mailbox, Children and a Supervisor Strategy. All of this is encapsu-
lated behind an Actor Reference. Finally, this happens When an Actor Terminates.

2.3.1 Actor Reference

As detailed below, an actor object needs to be shielded from the outside in order to benefit from the actor model.
Therefore, actors are represented to the outside using actor references, which are objects that can be passed around
freely and without restriction. This split into inner and outer object enables transparency for all the desired
operations: restarting an actor without needing to update references elsewhere, placing the actual actor object on
remote hosts, sending messages to actors in completely different applications. But the most important aspect is
that it is not possible to look inside an actor and get hold of its state from the outside, unless the actor unwisely
publishes this information itself.

2.3.2 State

Actor objects will typically contain some variables which reflect possible states the actor may be in. This can be an
explicit state machine (e.g. using the fsm-scala module), or it could be a counter, set of listeners, pending requests,
etc. These data are what make an actor valuable, and they must be protected from corruption by other actors. The
good news is that Akka actors conceptually each have their own light-weight thread, which is completely shielded
from the rest of the system. This means that instead of having to synchronize access using locks you can just write
your actor code without worrying about concurrency at all.

Behind the scenes Akka will run sets of actors on sets of real threads, where typically many actors share one
thread, and subsequent invocations of one actor may end up being processed on different threads. Akka ensures
that this implementation detail does not affect the single-threadedness of handling the actor’s state.

Because the internal state is vital to an actor’s operations, having inconsistent state is fatal. Thus, when the actor
fails and is restarted by its supervisor, the state will be created from scratch, like upon first creating the actor. This
is to enable the ability of self-healing of the system.

2.3. What is an Actor? 13

Akka Java Documentation, Release 2.3.16

Optionally, an actor’s state can be automatically recovered to the state before a restart by persisting received
messages and replaying them after restart (see persistence-scala).

2.3.3 Behavior

Every time a message is processed, it is matched against the current behavior of the actor. Behavior means a
function which defines the actions to be taken in reaction to the message at that point in time, say forward a
request if the client is authorized, deny it otherwise. This behavior may change over time, e.g. because different
clients obtain authorization over time, or because the actor may go into an “out-of-service” mode and later come
back. These changes are achieved by either encoding them in state variables which are read from the behavior
logic, or the function itself may be swapped out at runtime, see the become and unbecome operations. However,
the initial behavior defined during construction of the actor object is special in the sense that a restart of the actor
will reset its behavior to this initial one.

2.3.4 Mailbox

An actor’s purpose is the processing of messages, and these messages were sent to the actor from other actors (or
from outside the actor system). The piece which connects sender and receiver is the actor’s mailbox: each actor
has exactly one mailbox to which all senders enqueue their messages. Enqueuing happens in the time-order of
send operations, which means that messages sent from different actors may not have a defined order at runtime
due to the apparent randomness of distributing actors across threads. Sending multiple messages to the same target
from the same actor, on the other hand, will enqueue them in the same order.

There are different mailbox implementations to choose from, the default being a FIFO: the order of the messages
processed by the actor matches the order in which they were enqueued. This is usually a good default, but
applications may need to prioritize some messages over others. In this case, a priority mailbox will enqueue not
always at the end but at a position as given by the message priority, which might even be at the front. While using
such a queue, the order of messages processed will naturally be defined by the queue’s algorithm and in general
not be FIFO.

An important feature in which Akka differs from some other actor model implementations is that the current
behavior must always handle the next dequeued message, there is no scanning the mailbox for the next matching
one. Failure to handle a message will typically be treated as a failure, unless this behavior is overridden.

2.3.5 Children

Each actor is potentially a supervisor: if it creates children for delegating sub-tasks, it will automatically supervise
them. The list of children is maintained within the actor’s context and the actor has access to it. Modifications to
the list are done by creating (context.actorOf(...)) or stopping (context.stop(child)) children
and these actions are reflected immediately. The actual creation and termination actions happen behind the scenes
in an asynchronous way, so they do not “block” their supervisor.

2.3.6 Supervisor Strategy

The final piece of an actor is its strategy for handling faults of its children. Fault handling is then done transparently
by Akka, applying one of the strategies described in Supervision and Monitoring for each incoming failure. As
this strategy is fundamental to how an actor system is structured, it cannot be changed once an actor has been
created.

Considering that there is only one such strategy for each actor, this means that if different strategies apply to
the various children of an actor, the children should be grouped beneath intermediate supervisors with matching
strategies, preferring once more the structuring of actor systems according to the splitting of tasks into sub-tasks.

2.3. What is an Actor? 14

Akka Java Documentation, Release 2.3.16

2.3.7 When an Actor Terminates

Once an actor terminates, i.e. fails in a way which is not handled by a restart, stops itself or is stopped by its
supervisor, it will free up its resources, draining all remaining messages from its mailbox into the system’s “dead
letter mailbox” which will forward them to the EventStream as DeadLetters. The mailbox is then replaced within
the actor reference with a system mailbox, redirecting all new messages to the EventStream as DeadLetters. This
is done on a best effort basis, though, so do not rely on it in order to construct “guaranteed delivery”.

The reason for not just silently dumping the messages was inspired by our tests: we register the TestEventLis-
tener on the event bus to which the dead letters are forwarded, and that will log a warning for every dead letter
received—this has been very helpful for deciphering test failures more quickly. It is conceivable that this feature
may also be of use for other purposes.

2.4 Supervision and Monitoring

This chapter outlines the concept behind supervision, the primitives offered and their semantics. For details on
how that translates into real code, please refer to the corresponding chapters for Scala and Java APIs.

2.4.1 What Supervision Means

As described in Actor Systems supervision describes a dependency relationship between actors: the supervisor
delegates tasks to subordinates and therefore must respond to their failures. When a subordinate detects a failure
(i.e. throws an exception), it suspends itself and all its subordinates and sends a message to its supervisor, signaling
failure. Depending on the nature of the work to be supervised and the nature of the failure, the supervisor has a
choice of the following four options:

1. Resume the subordinate, keeping its accumulated internal state

2. Restart the subordinate, clearing out its accumulated internal state

3. Stop the subordinate permanently

4. Escalate the failure, thereby failing itself

It is important to always view an actor as part of a supervision hierarchy, which explains the existence of the fourth
choice (as a supervisor also is subordinate to another supervisor higher up) and has implications on the first three:
resuming an actor resumes all its subordinates, restarting an actor entails restarting all its subordinates (but see
below for more details), similarly terminating an actor will also terminate all its subordinates. It should be noted
that the default behavior of the preRestart hook of the Actor class is to terminate all its children before
restarting, but this hook can be overridden; the recursive restart applies to all children left after this hook has been
executed.

Each supervisor is configured with a function translating all possible failure causes (i.e. exceptions) into one of
the four choices given above; notably, this function does not take the failed actor’s identity as an input. It is quite
easy to come up with examples of structures where this might not seem flexible enough, e.g. wishing for different
strategies to be applied to different subordinates. At this point it is vital to understand that supervision is about
forming a recursive fault handling structure. If you try to do too much at one level, it will become hard to reason
about, hence the recommended way in this case is to add a level of supervision.

Akka implements a specific form called “parental supervision”. Actors can only be created by other actors—where
the top-level actor is provided by the library—and each created actor is supervised by its parent. This restriction
makes the formation of actor supervision hierarchies implicit and encourages sound design decisions. It should
be noted that this also guarantees that actors cannot be orphaned or attached to supervisors from the outside,
which might otherwise catch them unawares. In addition, this yields a natural and clean shutdown procedure for
(sub-trees of) actor applications.

2.4. Supervision and Monitoring 15

Akka Java Documentation, Release 2.3.16

Warning: Supervision related parent-child communication happens by special system messages that have
their own mailboxes separate from user messages. This implies that supervision related events are not deter-
ministically ordered relative to ordinary messages. In general, the user cannot influence the order of normal
messages and failure notifications. For details and example see the Discussion: Message Ordering section.

2.4.2 The Top-Level Supervisors

An actor system will during its creation start at least three actors, shown in the image above. For more information
about the consequences for actor paths see Top-Level Scopes for Actor Paths.

/user: The Guardian Actor

The actor which is probably most interacted with is the parent of all user-created actors, the guardian named
"/user". Actors created using system.actorOf() are children of this actor. This means that when this
guardian terminates, all normal actors in the system will be shutdown, too. It also means that this guardian’s
supervisor strategy determines how the top-level normal actors are supervised. Since Akka 2.1 it is possible to
configure this using the setting akka.actor.guardian-supervisor-strategy, which takes the fully-
qualified class-name of a SupervisorStrategyConfigurator. When the guardian escalates a failure, the
root guardian’s response will be to terminate the guardian, which in effect will shut down the whole actor system.

/system: The System Guardian

This special guardian has been introduced in order to achieve an orderly shut-down sequence where logging re-
mains active while all normal actors terminate, even though logging itself is implemented using actors. This
is realized by having the system guardian watch the user guardian and initiate its own shut-down upon re-
ception of the Terminated message. The top-level system actors are supervised using a strategy which
will restart indefinitely upon all types of Exception except for ActorInitializationException and
ActorKilledException, which will terminate the child in question. All other throwables are escalated,
which will shut down the whole actor system.

/: The Root Guardian

The root guardian is the grand-parent of all so-called “top-level” actors and supervises all the special actors
mentioned in Top-Level Scopes for Actor Paths using the SupervisorStrategy.stoppingStrategy,
whose purpose is to terminate the child upon any type of Exception. All other throwables will be escalated
. . . but to whom? Since every real actor has a supervisor, the supervisor of the root guardian cannot be a real

2.4. Supervision and Monitoring 16

Akka Java Documentation, Release 2.3.16

actor. And because this means that it is “outside of the bubble”, it is called the “bubble-walker”. This is a
synthetic ActorRef which in effect stops its child upon the first sign of trouble and sets the actor system’s
isTerminated status to true as soon as the root guardian is fully terminated (all children recursively stopped).

2.4.3 What Restarting Means

When presented with an actor which failed while processing a certain message, causes for the failure fall into three
categories:

• Systematic (i.e. programming) error for the specific message received

• (Transient) failure of some external resource used during processing the message

• Corrupt internal state of the actor

Unless the failure is specifically recognizable, the third cause cannot be ruled out, which leads to the conclusion
that the internal state needs to be cleared out. If the supervisor decides that its other children or itself is not
affected by the corruption—e.g. because of conscious application of the error kernel pattern—it is therefore best
to restart the child. This is carried out by creating a new instance of the underlying Actor class and replacing
the failed instance with the fresh one inside the child’s ActorRef; the ability to do this is one of the reasons for
encapsulating actors within special references. The new actor then resumes processing its mailbox, meaning that
the restart is not visible outside of the actor itself with the notable exception that the message during which the
failure occurred is not re-processed.

The precise sequence of events during a restart is the following:

1. suspend the actor (which means that it will not process normal messages until resumed), and recursively
suspend all children

2. call the old instance’s preRestart hook (defaults to sending termination requests to all children and
calling postStop)

3. wait for all children which were requested to terminate (using context.stop()) during preRestart
to actually terminate; this—like all actor operations—is non-blocking, the termination notice from the last
killed child will effect the progression to the next step

4. create new actor instance by invoking the originally provided factory again

5. invoke postRestart on the new instance (which by default also calls preStart)

6. send restart request to all children which were not killed in step 3; restarted children will follow the same
process recursively, from step 2

7. resume the actor

2.4.4 What Lifecycle Monitoring Means

Note: Lifecycle Monitoring in Akka is usually referred to as DeathWatch

In contrast to the special relationship between parent and child described above, each actor may monitor any other
actor. Since actors emerge from creation fully alive and restarts are not visible outside of the affected supervisors,
the only state change available for monitoring is the transition from alive to dead. Monitoring is thus used to tie
one actor to another so that it may react to the other actor’s termination, in contrast to supervision which reacts to
failure.

Lifecycle monitoring is implemented using a Terminated message to be received by the monitoring actor,
where the default behavior is to throw a special DeathPactException if not otherwise handled. In order to
start listening for Terminated messages, invoke ActorContext.watch(targetActorRef). To stop
listening, invoke ActorContext.unwatch(targetActorRef). One important property is that the mes-
sage will be delivered irrespective of the order in which the monitoring request and target’s termination occur, i.e.
you still get the message even if at the time of registration the target is already dead.

2.4. Supervision and Monitoring 17

Akka Java Documentation, Release 2.3.16

Monitoring is particularly useful if a supervisor cannot simply restart its children and has to terminate them, e.g.
in case of errors during actor initialization. In that case it should monitor those children and re-create them or
schedule itself to retry this at a later time.

Another common use case is that an actor needs to fail in the absence of an external resource, which may also be
one of its own children. If a third party terminates a child by way of the system.stop(child) method or
sending a PoisonPill, the supervisor might well be affected.

2.4.5 One-For-One Strategy vs. All-For-One Strategy

There are two classes of supervision strategies which come with Akka: OneForOneStrategy and
AllForOneStrategy. Both are configured with a mapping from exception type to supervision directive (see
above) and limits on how often a child is allowed to fail before terminating it. The difference between them is that
the former applies the obtained directive only to the failed child, whereas the latter applies it to all siblings as well.
Normally, you should use the OneForOneStrategy, which also is the default if none is specified explicitly.

The AllForOneStrategy is applicable in cases where the ensemble of children has such tight dependencies
among them, that a failure of one child affects the function of the others, i.e. they are inextricably linked. Since
a restart does not clear out the mailbox, it often is best to terminate the children upon failure and re-create them
explicitly from the supervisor (by watching the children’s lifecycle); otherwise you have to make sure that it is no
problem for any of the actors to receive a message which was queued before the restart but processed afterwards.

Normally stopping a child (i.e. not in response to a failure) will not automatically terminate the other children
in an all-for-one strategy; this can easily be done by watching their lifecycle: if the Terminated message is
not handled by the supervisor, it will throw a DeathPactException which (depending on its supervisor) will
restart it, and the default preRestart action will terminate all children. Of course this can be handled explicitly
as well.

Please note that creating one-off actors from an all-for-one supervisor entails that failures escalated by the tempo-
rary actor will affect all the permanent ones. If this is not desired, install an intermediate supervisor; this can very
easily be done by declaring a router of size 1 for the worker, see routing-scala or Routing.

2.5 Actor References, Paths and Addresses

This chapter describes how actors are identified and located within a possibly distributed actor system. It ties into
the central idea that Actor Systems form intrinsic supervision hierarchies as well as that communication between
actors is transparent with respect to their placement across multiple network nodes.

2.5. Actor References, Paths and Addresses 18

Akka Java Documentation, Release 2.3.16

The above image displays the relationship between the most important entities within an actor system, please read
on for the details.

2.5.1 What is an Actor Reference?

An actor reference is a subtype of ActorRef, whose foremost purpose is to support sending messages to the
actor it represents. Each actor has access to its canonical (local) reference through the self field; this reference
is also included as sender reference by default for all messages sent to other actors. Conversely, during message
processing the actor has access to a reference representing the sender of the current message through the sender
method.

There are several different types of actor references that are supported depending on the configuration of the actor
system:

• Purely local actor references are used by actor systems which are not configured to support networking
functions. These actor references will not function if sent across a network connection to a remote JVM.

• Local actor references when remoting is enabled are used by actor systems which support networking func-
tions for those references which represent actors within the same JVM. In order to also be reachable when
sent to other network nodes, these references include protocol and remote addressing information.

• There is a subtype of local actor references which is used for routers (i.e. actors mixing in the Router
trait). Its logical structure is the same as for the aforementioned local references, but sending a message to
them dispatches to one of their children directly instead.

• Remote actor references represent actors which are reachable using remote communication, i.e. sending
messages to them will serialize the messages transparently and send them to the remote JVM.

• There are several special types of actor references which behave like local actor references for all practical
purposes:

– PromiseActorRef is the special representation of a Promise for the purpose of being completed
by the response from an actor. akka.pattern.ask creates this actor reference.

– DeadLetterActorRef is the default implementation of the dead letters service to which Akka
routes all messages whose destinations are shut down or non-existent.

– EmptyLocalActorRef is what Akka returns when looking up a non-existent local actor path: it
is equivalent to a DeadLetterActorRef, but it retains its path so that Akka can send it over the
network and compare it to other existing actor references for that path, some of which might have been
obtained before the actor died.

• And then there are some one-off internal implementations which you should never really see:

– There is an actor reference which does not represent an actor but acts only as a pseudo-supervisor for
the root guardian, we call it “the one who walks the bubbles of space-time”.

– The first logging service started before actually firing up actor creation facilities is a fake
actor reference which accepts log events and prints them directly to standard output; it is
Logging.StandardOutLogger.

2.5.2 What is an Actor Path?

Since actors are created in a strictly hierarchical fashion, there exists a unique sequence of actor names given by
recursively following the supervision links between child and parent down towards the root of the actor system.
This sequence can be seen as enclosing folders in a file system, hence we adopted the name “path” to refer to
it. As in some real file-systems there also are “symbolic links”, i.e. one actor may be reachable using more than
one path, where all but one involve some translation which decouples part of the path from the actor’s actual
supervision ancestor line; these specialities are described in the sub-sections to follow.

An actor path consists of an anchor, which identifies the actor system, followed by the concatenation of the path
elements, from root guardian to the designated actor; the path elements are the names of the traversed actors and
are separated by slashes.

2.5. Actor References, Paths and Addresses 19

Akka Java Documentation, Release 2.3.16

What is the Difference Between Actor Reference and Path?

An actor reference designates a single actor and the life-cycle of the reference matches that actor’s life-cycle; an
actor path represents a name which may or may not be inhabited by an actor and the path itself does not have a
life-cycle, it never becomes invalid. You can create an actor path without creating an actor, but you cannot create
an actor reference without creating corresponding actor.

Note: That definition does not hold for actorFor, which is one of the reasons why actorFor is deprecated
in favor of actorSelection.

You can create an actor, terminate it, and then create a new actor with the same actor path. The newly created
actor is a new incarnation of the actor. It is not the same actor. An actor reference to the old incarnation is not
valid for the new incarnation. Messages sent to the old actor reference will not be delivered to the new incarnation
even though they have the same path.

Actor Path Anchors

Each actor path has an address component, describing the protocol and location by which the corresponding actor
is reachable, followed by the names of the actors in the hierarchy from the root up. Examples are:

"akka://my-sys/user/service-a/worker1" // purely local
"akka.tcp://my-sys@host.example.com:5678/user/service-b" // remote

Here, akka.tcp is the default remote transport for the 2.2 release; other transports are pluggable. A re-
mote host using UDP would be accessible by using akka.udp. The interpretation of the host and port part
(i.e.‘‘serv.example.com:5678‘‘ in the example) depends on the transport mechanism used, but it must abide by the
URI structural rules.

Logical Actor Paths

The unique path obtained by following the parental supervision links towards the root guardian is called the logical
actor path. This path matches exactly the creation ancestry of an actor, so it is completely deterministic as soon as
the actor system’s remoting configuration (and with it the address component of the path) is set.

Physical Actor Paths

While the logical actor path describes the functional location within one actor system, configuration-based remote
deployment means that an actor may be created on a different network host than its parent, i.e. within a different
actor system. In this case, following the actor path from the root guardian up entails traversing the network, which
is a costly operation. Therefore, each actor also has a physical path, starting at the root guardian of the actor
system where the actual actor object resides. Using this path as sender reference when querying other actors will
let them reply directly to this actor, minimizing delays incurred by routing.

One important aspect is that a physical actor path never spans multiple actor systems or JVMs. This means that
the logical path (supervision hierarchy) and the physical path (actor deployment) of an actor may diverge if one
of its ancestors is remotely supervised.

2.5.3 How are Actor References obtained?

There are two general categories to how actor references may be obtained: by creating actors or by looking them
up, where the latter functionality comes in the two flavours of creating actor references from concrete actor paths
and querying the logical actor hierarchy.

2.5. Actor References, Paths and Addresses 20

Akka Java Documentation, Release 2.3.16

Creating Actors

An actor system is typically started by creating actors beneath the guardian actor using the
ActorSystem.actorOf method and then using ActorContext.actorOf from within the created
actors to spawn the actor tree. These methods return a reference to the newly created actor. Each actor has direct
access (through its ActorContext) to references for its parent, itself and its children. These references may be
sent within messages to other actors, enabling those to reply directly.

Looking up Actors by Concrete Path

In addition, actor references may be looked up using the ActorSystem.actorSelection method. The
selection can be used for communicating with said actor and the actor corresponding to the selection is looked up
when delivering each message.

To acquire an ActorRef that is bound to the life-cycle of a specific actor you need to send a message, such as
the built-in Identify message, to the actor and use the sender() reference of a reply from the actor.

Note: actorFor is deprecated in favor of actorSelection because actor references acquired with
actorFor behave differently for local and remote actors. In the case of a local actor reference, the named
actor needs to exist before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This
will be true even if an actor with that exact path is created after acquiring the actor reference. For remote actor
references acquired with actorFor the behaviour is different and sending messages to such a reference will under
the hood look up the actor by path on the remote system for every message send.

Absolute vs. Relative Paths

In addition to ActorSystem.actorSelection there is also ActorContext.actorSelection, which
is available inside any actor as context.actorSelection. This yields an actor selection much like its twin
on ActorSystem, but instead of looking up the path starting from the root of the actor tree it starts out on the
current actor. Path elements consisting of two dots ("..") may be used to access the parent actor. You can for
example send a message to a specific sibling:

context.actorSelection("../brother") ! msg

Absolute paths may of course also be looked up on context in the usual way, i.e.

context.actorSelection("/user/serviceA") ! msg

will work as expected.

Querying the Logical Actor Hierarchy

Since the actor system forms a file-system like hierarchy, matching on paths is possible in the same way as sup-
ported by Unix shells: you may replace (parts of) path element names with wildcards («*» and «?») to formulate
a selection which may match zero or more actual actors. Because the result is not a single actor reference, it has a
different type ActorSelection and does not support the full set of operations an ActorRef does. Selections
may be formulated using the ActorSystem.actorSelection and ActorContext.actorSelection
methods and do support sending messages:

context.actorSelection("../*") ! msg

will send msg to all siblings including the current actor. As for references obtained using actorFor, a traversal of
the supervision hierarchy is done in order to perform the message send. As the exact set of actors which match
a selection may change even while a message is making its way to the recipients, it is not possible to watch a
selection for liveliness changes. In order to do that, resolve the uncertainty by sending a request and gathering all
answers, extracting the sender references, and then watch all discovered concrete actors. This scheme of resolving
a selection may be improved upon in a future release.

2.5. Actor References, Paths and Addresses 21

Akka Java Documentation, Release 2.3.16

Summary: actorOf vs. actorSelection vs. actorFor

Note: What the above sections described in some detail can be summarized and memorized easily as follows:

• actorOf only ever creates a new actor, and it creates it as a direct child of the context on which this method
is invoked (which may be any actor or actor system).

• actorSelection only ever looks up existing actors when messages are delivered, i.e. does not create
actors, or verify existence of actors when the selection is created.

• actorFor (deprecated in favor of actorSelection) only ever looks up an existing actor, i.e. does not create
one.

2.5.4 Actor Reference and Path Equality

Equality of ActorRef match the intention that an ActorRef corresponds to the target actor incarnation. Two
actor references are compared equal when they have the same path and point to the same actor incarnation. A
reference pointing to a terminated actor does not compare equal to a reference pointing to another (re-created)
actor with the same path. Note that a restart of an actor caused by a failure still means that it is the same actor
incarnation, i.e. a restart is not visible for the consumer of the ActorRef.

Remote actor references acquired with actorFor do not include the full information about the underlying actor
identity and therefore such references do not compare equal to references acquired with actorOf, sender, or
context.self. Because of this actorFor is deprecated in favor of actorSelection.

If you need to keep track of actor references in a collection and do not care about the exact actor incarnation you
can use the ActorPath as key, because the identifier of the target actor is not taken into account when comparing
actor paths.

2.5.5 Reusing Actor Paths

When an actor is terminated, its reference will point to the dead letter mailbox, DeathWatch will publish its final
transition and in general it is not expected to come back to life again (since the actor life cycle does not allow this).
While it is possible to create an actor at a later time with an identical path—simply due to it being impossible to
enforce the opposite without keeping the set of all actors ever created available—this is not good practice: remote
actor references acquired with actorFor which “died” suddenly start to work again, but without any guarantee
of ordering between this transition and any other event, hence the new inhabitant of the path may receive messages
which were destined for the previous tenant.

It may be the right thing to do in very specific circumstances, but make sure to confine the handling of this precisely
to the actor’s supervisor, because that is the only actor which can reliably detect proper deregistration of the name,
before which creation of the new child will fail.

It may also be required during testing, when the test subject depends on being instantiated at a specific path. In
that case it is best to mock its supervisor so that it will forward the Terminated message to the appropriate point in
the test procedure, enabling the latter to await proper deregistration of the name.

2.5.6 The Interplay with Remote Deployment

When an actor creates a child, the actor system’s deployer will decide whether the new actor resides in the same
JVM or on another node. In the second case, creation of the actor will be triggered via a network connection to
happen in a different JVM and consequently within a different actor system. The remote system will place the
new actor below a special path reserved for this purpose and the supervisor of the new actor will be a remote actor
reference (representing that actor which triggered its creation). In this case, context.parent (the supervisor
reference) and context.path.parent (the parent node in the actor’s path) do not represent the same actor.
However, looking up the child’s name within the supervisor will find it on the remote node, preserving logical
structure e.g. when sending to an unresolved actor reference.

2.5. Actor References, Paths and Addresses 22

Akka Java Documentation, Release 2.3.16

2.5.7 What is the Address part used for?

When sending an actor reference across the network, it is represented by its path. Hence, the path must fully
encode all information necessary to send messages to the underlying actor. This is achieved by encoding protocol,
host and port in the address part of the path string. When an actor system receives an actor path from a remote
node, it checks whether that path’s address matches the address of this actor system, in which case it will be
resolved to the actor’s local reference. Otherwise, it will be represented by a remote actor reference.

2.5.8 Top-Level Scopes for Actor Paths

At the root of the path hierarchy resides the root guardian above which all other actors are found; its name is "/".
The next level consists of the following:

• "/user" is the guardian actor for all user-created top-level actors; actors created using
ActorSystem.actorOf are found below this one.

• "/system" is the guardian actor for all system-created top-level actors, e.g. logging listeners or actors
automatically deployed by configuration at the start of the actor system.

• "/deadLetters" is the dead letter actor, which is where all messages sent to stopped or non-existing
actors are re-routed (on a best-effort basis: messages may be lost even within the local JVM).

• "/temp" is the guardian for all short-lived system-created actors, e.g. those which are used in the imple-
mentation of ActorRef.ask.

• "/remote" is an artificial path below which all actors reside whose supervisors are remote actor references

The need to structure the name space for actors like this arises from a central and very simple design goal:
everything in the hierarchy is an actor, and all actors function in the same way. Hence you can not only look
up the actors you created, you can also look up the system guardian and send it a message (which it will dutifully

2.5. Actor References, Paths and Addresses 23

Akka Java Documentation, Release 2.3.16

discard in this case). This powerful principle means that there are no quirks to remember, it makes the whole
system more uniform and consistent.

If you want to read more about the top-level structure of an actor system, have a look at The Top-Level Supervisors.

2.6 Location Transparency

The previous section describes how actor paths are used to enable location transparency. This special feature
deserves some extra explanation, because the related term “transparent remoting” was used quite differently in the
context of programming languages, platforms and technologies.

2.6.1 Distributed by Default

Everything in Akka is designed to work in a distributed setting: all interactions of actors use purely message
passing and everything is asynchronous. This effort has been undertaken to ensure that all functions are available
equally when running within a single JVM or on a cluster of hundreds of machines. The key for enabling this
is to go from remote to local by way of optimization instead of trying to go from local to remote by way of
generalization. See this classic paper for a detailed discussion on why the second approach is bound to fail.

2.6.2 Ways in which Transparency is Broken

What is true of Akka need not be true of the application which uses it, since designing for distributed execution
poses some restrictions on what is possible. The most obvious one is that all messages sent over the wire must be
serializable. While being a little less obvious this includes closures which are used as actor factories (i.e. within
Props) if the actor is to be created on a remote node.

Another consequence is that everything needs to be aware of all interactions being fully asynchronous, which in
a computer network might mean that it may take several minutes for a message to reach its recipient (depending
on configuration). It also means that the probability for a message to be lost is much higher than within one JVM,
where it is close to zero (still: no hard guarantee!).

2.6.3 How is Remoting Used?

We took the idea of transparency to the limit in that there is nearly no API for the remoting layer of Akka: it is
purely driven by configuration. Just write your application according to the principles outlined in the previous
sections, then specify remote deployment of actor sub-trees in the configuration file. This way, your application
can be scaled out without having to touch the code. The only piece of the API which allows programmatic
influence on remote deployment is that Props contain a field which may be set to a specific Deploy instance; this
has the same effect as putting an equivalent deployment into the configuration file (if both are given, configuration
file wins).

2.6.4 Peer-to-Peer vs. Client-Server

Akka Remoting is a communication module for connecting actor systems in a peer-to-peer fashion, and it is the
foundation for Akka Clustering. The design of remoting is driven by two (related) design decisions:

1. Communication between involved systems is symmetric: if a system A can connect to a system B then
system B must also be able to connect to system A independently.

2. The role of the communicating systems are symmetric in regards to connection patterns: there is no system
that only accepts connections, and there is no system that only initiates connections.

The consequence of these decisions is that it is not possible to safely create pure client-server setups with prede-
fined roles (violates assumption 2) and using setups involving Network Address Translation or Load Balancers
(violates assumption 1).

2.6. Location Transparency 24

http://doc.akka.io/docs/misc/smli_tr-94-29.pdf

Akka Java Documentation, Release 2.3.16

For client-server setups it is better to use HTTP or Akka I/O.

2.6.5 Marking Points for Scaling Up with Routers

In addition to being able to run different parts of an actor system on different nodes of a cluster, it is also possible
to scale up onto more cores by multiplying actor sub-trees which support parallelization (think for example a
search engine processing different queries in parallel). The clones can then be routed to in different fashions, e.g.
round-robin. The only thing necessary to achieve this is that the developer needs to declare a certain actor as
“withRouter”, then—in its stead—a router actor will be created which will spawn up a configurable number of
children of the desired type and route to them in the configured fashion. Once such a router has been declared, its
configuration can be freely overridden from the configuration file, including mixing it with the remote deployment
of (some of) the children. Read more about this in Routing (Scala) and Routing (Java).

2.7 Akka and the Java Memory Model

A major benefit of using the Typesafe Platform, including Scala and Akka, is that it simplifies the process of
writing concurrent software. This article discusses how the Typesafe Platform, and Akka in particular, approaches
shared memory in concurrent applications.

2.7.1 The Java Memory Model

Prior to Java 5, the Java Memory Model (JMM) was ill defined. It was possible to get all kinds of strange results
when shared memory was accessed by multiple threads, such as:

• a thread not seeing values written by other threads: a visibility problem

• a thread observing ‘impossible’ behavior of other threads, caused by instructions not being executed in the
order expected: an instruction reordering problem.

With the implementation of JSR 133 in Java 5, a lot of these issues have been resolved. The JMM is a set of rules
based on the “happens-before” relation, which constrain when one memory access must happen before another,
and conversely, when they are allowed to happen out of order. Two examples of these rules are:

• The monitor lock rule: a release of a lock happens before every subsequent acquire of the same lock.

• The volatile variable rule: a write of a volatile variable happens before every subsequent read of the same
volatile variable

Although the JMM can seem complicated, the specification tries to find a balance between ease of use and the
ability to write performant and scalable concurrent data structures.

2.7.2 Actors and the Java Memory Model

With the Actors implementation in Akka, there are two ways multiple threads can execute actions on shared
memory:

• if a message is sent to an actor (e.g. by another actor). In most cases messages are immutable, but if
that message is not a properly constructed immutable object, without a “happens before” rule, it would be
possible for the receiver to see partially initialized data structures and possibly even values out of thin air
(longs/doubles).

• if an actor makes changes to its internal state while processing a message, and accesses that state while
processing another message moments later. It is important to realize that with the actor model you don’t get
any guarantee that the same thread will be executing the same actor for different messages.

To prevent visibility and reordering problems on actors, Akka guarantees the following two “happens before”
rules:

2.7. Akka and the Java Memory Model 25

Akka Java Documentation, Release 2.3.16

• The actor send rule: the send of the message to an actor happens before the receive of that message by the
same actor.

• The actor subsequent processing rule: processing of one message happens before processing of the next
message by the same actor.

Note: In layman’s terms this means that changes to internal fields of the actor are visible when the next message
is processed by that actor. So fields in your actor need not be volatile or equivalent.

Both rules only apply for the same actor instance and are not valid if different actors are used.

2.7.3 Futures and the Java Memory Model

The completion of a Future “happens before” the invocation of any callbacks registered to it are executed.

We recommend not to close over non-final fields (final in Java and val in Scala), and if you do choose to close
over non-final fields, they must be marked volatile in order for the current value of the field to be visible to the
callback.

If you close over a reference, you must also ensure that the instance that is referred to is thread safe. We highly
recommend staying away from objects that use locking, since it can introduce performance problems and in the
worst case, deadlocks. Such are the perils of synchronized.

2.7.4 STM and the Java Memory Model

Akka’s Software Transactional Memory (STM) also provides a “happens before” rule:

• The transactional reference rule: a successful write during commit, on an transactional reference, happens
before every subsequent read of the same transactional reference.

This rule looks a lot like the ‘volatile variable’ rule from the JMM. Currently the Akka STM only supports
deferred writes, so the actual writing to shared memory is deferred until the transaction commits. Writes during
the transaction are placed in a local buffer (the writeset of the transaction) and are not visible to other transactions.
That is why dirty reads are not possible.

How these rules are realized in Akka is an implementation detail and can change over time, and the exact details
could even depend on the used configuration. But they will build on the other JMM rules like the monitor lock rule
or the volatile variable rule. This means that you, the Akka user, do not need to worry about adding synchronization
to provide such a “happens before” relation, because it is the responsibility of Akka. So you have your hands free
to deal with your business logic, and the Akka framework makes sure that those rules are guaranteed on your
behalf.

2.7.5 Actors and shared mutable state

Since Akka runs on the JVM there are still some rules to be followed.

• Closing over internal Actor state and exposing it to other threads

class MyActor extends Actor {
var state = ...
def receive = {

case _ =>
//Wrongs

// Very bad, shared mutable state,
// will break your application in weird ways

Future { state = NewState }
anotherActor ? message onSuccess { r => state = r }

2.7. Akka and the Java Memory Model 26

Akka Java Documentation, Release 2.3.16

// Very bad, "sender" changes for every message,
// shared mutable state bug

Future { expensiveCalculation(sender()) }

//Rights

// Completely safe, "self" is OK to close over
// and it's an ActorRef, which is thread-safe

Future { expensiveCalculation() } onComplete { f => self ! f.value.get }

// Completely safe, we close over a fixed value
// and it's an ActorRef, which is thread-safe

val currentSender = sender()
Future { expensiveCalculation(currentSender) }

}
}

• Messages should be immutable, this is to avoid the shared mutable state trap.

2.8 Message Delivery Reliability

Akka helps you build reliable applications which make use of multiple processor cores in one machine (“scaling
up”) or distributed across a computer network (“scaling out”). The key abstraction to make this work is that all
interactions between your code units—actors—happen via message passing, which is why the precise semantics
of how messages are passed between actors deserve their own chapter.

In order to give some context to the discussion below, consider an application which spans multiple network hosts.
The basic mechanism for communication is the same whether sending to an actor on the local JVM or to a remote
actor, but of course there will be observable differences in the latency of delivery (possibly also depending on the
bandwidth of the network link and the message size) and the reliability. In case of a remote message send there
are obviously more steps involved which means that more can go wrong. Another aspect is that local sending will
just pass a reference to the message inside the same JVM, without any restrictions on the underlying object which
is sent, whereas a remote transport will place a limit on the message size.

Writing your actors such that every interaction could possibly be remote is the safe, pessimistic bet. It means to
only rely on those properties which are always guaranteed and which are discussed in detail below. This has of
course some overhead in the actor’s implementation. If you are willing to sacrifice full location transparency—for
example in case of a group of closely collaborating actors—you can place them always on the same JVM and
enjoy stricter guarantees on message delivery. The details of this trade-off are discussed further below.

As a supplementary part we give a few pointers at how to build stronger reliability on top of the built-in ones. The
chapter closes by discussing the role of the “Dead Letter Office”.

2.8.1 The General Rules

These are the rules for message sends (i.e. the tell or ! method, which also underlies the ask pattern):

• at-most-once delivery, i.e. no guaranteed delivery

• message ordering per sender–receiver pair

The first rule is typically found also in other actor implementations while the second is specific to Akka.

Discussion: What does “at-most-once” mean?

When it comes to describing the semantics of a delivery mechanism, there are three basic categories:

• at-most-once delivery means that for each message handed to the mechanism, that message is delivered
zero or one times; in more casual terms it means that messages may be lost.

2.8. Message Delivery Reliability 27

Akka Java Documentation, Release 2.3.16

• at-least-once delivery means that for each message handed to the mechanism potentially multiple attempts
are made at delivering it, such that at least one succeeds; again, in more casual terms this means that
messages may be duplicated but not lost.

• exactly-once delivery means that for each message handed to the mechanism exactly one delivery is made
to the recipient; the message can neither be lost nor duplicated.

The first one is the cheapest—highest performance, least implementation overhead—because it can be done in
a fire-and-forget fashion without keeping state at the sending end or in the transport mechanism. The second
one requires retries to counter transport losses, which means keeping state at the sending end and having an
acknowledgement mechanism at the receiving end. The third is most expensive—and has consequently worst
performance—because in addition to the second it requires state to be kept at the receiving end in order to filter
out duplicate deliveries.

Discussion: Why No Guaranteed Delivery?

At the core of the problem lies the question what exactly this guarantee shall mean:

1. The message is sent out on the network?

2. The message is received by the other host?

3. The message is put into the target actor’s mailbox?

4. The message is starting to be processed by the target actor?

5. The message is processed successfully by the target actor?

Each one of these have different challenges and costs, and it is obvious that there are conditions under which
any message passing library would be unable to comply; think for example about configurable mailbox types
and how a bounded mailbox would interact with the third point, or even what it would mean to decide upon the
“successfully” part of point five.

Along those same lines goes the reasoning in Nobody Needs Reliable Messaging. The only meaningful way for a
sender to know whether an interaction was successful is by receiving a business-level acknowledgement message,
which is not something Akka could make up on its own (neither are we writing a “do what I mean” framework
nor would you want us to).

Akka embraces distributed computing and makes the fallibility of communication explicit through message pass-
ing, therefore it does not try to lie and emulate a leaky abstraction. This is a model that has been used with great
success in Erlang and requires the users to design their applications around it. You can read more about this
approach in the Erlang documentation (section 10.9 and 10.10), Akka follows it closely.

Another angle on this issue is that by providing only basic guarantees those use cases which do not need stronger
reliability do not pay the cost of their implementation; it is always possible to add stronger reliability on top of
basic ones, but it is not possible to retro-actively remove reliability in order to gain more performance.

Discussion: Message Ordering

The rule more specifically is that for a given pair of actors, messages sent directly from the first to the second will
not be received out-of-order. The word directly emphasizes that this guarantee only applies when sending with
the tell operator to the final destination, not when employing mediators or other message dissemination features
(unless stated otherwise).

The guarantee is illustrated in the following:

Actor A1 sends messages M1, M2, M3 to A2

Actor A3 sends messages M4, M5, M6 to A2

This means that:

1. If M1 is delivered it must be delivered before M2 and M3

2. If M2 is delivered it must be delivered before M3

2.8. Message Delivery Reliability 28

http://www.infoq.com/articles/no-reliable-messaging
http://www.erlang.org/faq/academic.html

Akka Java Documentation, Release 2.3.16

3. If M4 is delivered it must be delivered before M5 and M6

4. If M5 is delivered it must be delivered before M6

5. A2 can see messages from A1 interleaved with messages from A3

6. Since there is no guaranteed delivery, any of the messages may be dropped, i.e. not arrive
at A2

Note: It is important to note that Akka’s guarantee applies to the order in which messages are enqueued into the
recipient’s mailbox. If the mailbox implementation does not respect FIFO order (e.g. a PriorityMailbox),
then the order of processing by the actor can deviate from the enqueueing order.

Please note that this rule is not transitive:

Actor A sends message M1 to actor C

Actor A then sends message M2 to actor B

Actor B forwards message M2 to actor C

Actor C may receive M1 and M2 in any order

Causal transitive ordering would imply that M2 is never received before M1 at actor C (though any of them might
be lost). This ordering can be violated due to different message delivery latencies when A, B and C reside on
different network hosts, see more below.

Note: Actor creation is treated as a message sent from the parent to the child, with the same semantics as discussed
above. Sending a message to an actor in a way which could be reordered with this initial creation message means
that the message might not arrive because the actor does not exist yet. An example where the message might arrive
too early would be to create a remote-deployed actor R1, send its reference to another remote actor R2 and have
R2 send a message to R1. An example of well-defined ordering is a parent which creates an actor and immediately
sends a message to it.

Communication of failure

Please note, that the ordering guarantees discussed above only hold for user messages between actors. Failure
of a child of an actor is communicated by special system messages that are not ordered relative to ordinary user
messages. In particular:

Child actor C sends message M to its parent P

Child actor fails with failure F

Parent actor P might receive the two events either in order M, F or F, M

The reason for this is that internal system messages has their own mailboxes therefore the ordering of enqueue
calls of a user and system message cannot guarantee the ordering of their dequeue times.

2.8.2 The Rules for In-JVM (Local) Message Sends

Be careful what you do with this section!

Relying on the stronger reliability in this section is not recommended since it will bind your application to local-
only deployment: an application may have to be designed differently (as opposed to just employing some message
exchange patterns local to some actors) in order to be fit for running on a cluster of machines. Our credo is “design
once, deploy any way you wish”, and to achieve this you should only rely on The General Rules.

2.8. Message Delivery Reliability 29

Akka Java Documentation, Release 2.3.16

Reliability of Local Message Sends

The Akka test suite relies on not losing messages in the local context (and for non-error condition tests also for
remote deployment), meaning that we actually do apply the best effort to keep our tests stable. A local tell
operation can however fail for the same reasons as a normal method call can on the JVM:

• StackOverflowError

• OutOfMemoryError

• other VirtualMachineError

In addition, local sends can fail in Akka-specific ways:

• if the mailbox does not accept the message (e.g. full BoundedMailbox)

• if the receiving actor fails while processing the message or is already terminated

While the first is clearly a matter of configuration the second deserves some thought: the sender of a message does
not get feedback if there was an exception while processing, that notification goes to the supervisor instead. This
is in general not distinguishable from a lost message for an outside observer.

Ordering of Local Message Sends

Assuming strict FIFO mailboxes the abovementioned caveat of non-transitivity of the message ordering guarantee
is eliminated under certain conditions. As you will note, these are quite subtle as it stands, and it is even possible
that future performance optimizations will invalidate this whole paragraph. The possibly non-exhaustive list of
counter-indications is:

• Before receiving the first reply from a top-level actor, there is a lock which protects an internal interim
queue, and this lock is not fair; the implication is that enqueue requests from different senders which arrive
during the actor’s construction (figuratively, the details are more involved) may be reordered depending on
low-level thread scheduling. Since completely fair locks do not exist on the JVM this is unfixable.

• The same mechanism is used during the construction of a Router, more precisely the routed ActorRef, hence
the same problem exists for actors deployed with Routers.

• As mentioned above, the problem occurs anywhere a lock is involved during enqueueing, which may also
apply to custom mailboxes.

This list has been compiled carefully, but other problematic scenarios may have escaped our analysis.

How does Local Ordering relate to Network Ordering

As explained in the previous paragraph local message sends obey transitive causal ordering under certain condi-
tions. If the remote message transport would respect this ordering as well, that would translate to transitive causal
ordering across one network link, i.e. if exactly two network hosts are involved. Involving multiple links, e.g. the
three actors on three different nodes mentioned above, then no guarantees can be made.

The current remote transport does not support this (again this is caused by non-FIFO wake-up order of a lock, this
time serializing connection establishment).

As a speculative view into the future it might be possible to support this ordering guarantee by re-implementing
the remote transport layer based completely on actors; at the same time we are looking into providing other low-
level transport protocols like UDP or SCTP which would enable higher throughput or lower latency by removing
this guarantee again, which would mean that choosing between different implementations would allow trading
guarantees versus performance.

2.8.3 Higher-level abstractions

Based on a small and consistent tool set in Akka’s core, Akka also provides powerful, higher-level abstractions on
top it.

2.8. Message Delivery Reliability 30

Akka Java Documentation, Release 2.3.16

Messaging Patterns

As discussed above a straight-forward answer to the requirement of reliable delivery is an explicit ACK–RETRY
protocol. In its simplest form this requires

• a way to identify individual messages to correlate message with acknowledgement

• a retry mechanism which will resend messages if not acknowledged in time

• a way for the receiver to detect and discard duplicates

The third becomes necessary by virtue of the acknowledgements not being guaranteed to arrive either. An ACK-
RETRY protocol with business-level acknowledgements is supported by at-least-once-delivery of the Akka Per-
sistence module. Duplicates can be detected by tracking the identifiers of messages sent via at-least-once-delivery.
Another way of implementing the third part would be to make processing the messages idempotent on the level of
the business logic.

Another example of implementing all three requirements is shown at Reliable Proxy Pattern (which is now super-
seded by at-least-once-delivery).

Event Sourcing

Event sourcing (and sharding) is what makes large websites scale to billions of users, and the idea is quite simple:
when a component (think actor) processes a command it will generate a list of events representing the effect of
the command. These events are stored in addition to being applied to the component’s state. The nice thing about
this scheme is that events only ever are appended to the storage, nothing is ever mutated; this enables perfect
replication and scaling of consumers of this event stream (i.e. other components may consume the event stream as
a means to replicate the component’s state on a different continent or to react to changes). If the component’s state
is lost—due to a machine failure or by being pushed out of a cache—it can easily be reconstructed by replaying
the event stream (usually employing snapshots to speed up the process). event-sourcing is supported by Akka
Persistence.

Mailbox with Explicit Acknowledgement

By implementing a custom mailbox type it is possible retry message processing at the receiving actor’s end in order
to handle temporary failures. This pattern is mostly useful in the local communication context where delivery
guarantees are otherwise sufficient to fulfill the application’s requirements.

Please note that the caveats for The Rules for In-JVM (Local) Message Sends do apply.

An example implementation of this pattern is shown at Mailbox with Explicit Acknowledgement.

2.8.4 Dead Letters

Messages which cannot be delivered (and for which this can be ascertained) will be delivered to a synthetic actor
called /deadLetters. This delivery happens on a best-effort basis; it may fail even within the local JVM (e.g.
during actor termination). Messages sent via unreliable network transports will be lost without turning up as dead
letters.

What Should I Use Dead Letters For?

The main use of this facility is for debugging, especially if an actor send does not arrive consistently (where
usually inspecting the dead letters will tell you that the sender or recipient was set wrong somewhere along the
way). In order to be useful for this purpose it is good practice to avoid sending to deadLetters where possible, i.e.
run your application with a suitable dead letter logger (see more below) from time to time and clean up the log
output. This exercise—like all else—requires judicious application of common sense: it may well be that avoiding
to send to a terminated actor complicates the sender’s code more than is gained in debug output clarity.

2.8. Message Delivery Reliability 31

Akka Java Documentation, Release 2.3.16

The dead letter service follows the same rules with respect to delivery guarantees as all other message sends, hence
it cannot be used to implement guaranteed delivery.

How do I Receive Dead Letters?

An actor can subscribe to class akka.actor.DeadLetter on the event stream, see Event Stream (Java) or
event-stream-scala (Scala) for how to do that. The subscribed actor will then receive all dead letters published
in the (local) system from that point onwards. Dead letters are not propagated over the network, if you want to
collect them in one place you will have to subscribe one actor per network node and forward them manually. Also
consider that dead letters are generated at that node which can determine that a send operation is failed, which for
a remote send can be the local system (if no network connection can be established) or the remote one (if the actor
you are sending to does not exist at that point in time).

Dead Letters Which are (Usually) not Worrisome

Every time an actor does not terminate by its own decision, there is a chance that some messages which it sends
to itself are lost. There is one which happens quite easily in complex shutdown scenarios that is usually benign:
seeing a akka.dispatch.Terminate message dropped means that two termination requests were given, but
of course only one can succeed. In the same vein, you might see akka.actor.Terminated messages from
children while stopping a hierarchy of actors turning up in dead letters if the parent is still watching the child when
the parent terminates.

2.9 Configuration

You can start using Akka without defining any configuration, since sensible default values are provided. Later on
you might need to amend the settings to change the default behavior or adapt for specific runtime environments.
Typical examples of settings that you might amend:

• log level and logger backend

• enable remoting

• message serializers

• definition of routers

• tuning of dispatchers

Akka uses the Typesafe Config Library, which might also be a good choice for the configuration of your own ap-
plication or library built with or without Akka. This library is implemented in Java with no external dependencies;
you should have a look at its documentation (in particular about ConfigFactory), which is only summarized in the
following.

Warning: If you use Akka from the Scala REPL from the 2.9.x series, and you do not provide your own
ClassLoader to the ActorSystem, start the REPL with “-Yrepl-sync” to work around a deficiency in the REPLs
provided Context ClassLoader.

2.9.1 Where configuration is read from

All configuration for Akka is held within instances of ActorSystem, or put differently, as viewed from
the outside, ActorSystem is the only consumer of configuration information. While constructing an ac-
tor system, you can either pass in a Config object or not, where the second case is equivalent to passing
ConfigFactory.load() (with the right class loader). This means roughly that the default is to parse all
application.conf, application.json and application.properties found at the root of the
class path—please refer to the aforementioned documentation for details. The actor system then merges in all

2.9. Configuration 32

https://github.com/typesafehub/config
http://typesafehub.github.io/config/v1.2.0/com/typesafe/config/ConfigFactory.html

Akka Java Documentation, Release 2.3.16

reference.conf resources found at the root of the class path to form the fallback configuration, i.e. it inter-
nally uses

appConfig.withFallback(ConfigFactory.defaultReference(classLoader))

The philosophy is that code never contains default values, but instead relies upon their presence in the
reference.conf supplied with the library in question.

Highest precedence is given to overrides given as system properties, see the HOCON specification (near the
bottom). Also noteworthy is that the application configuration—which defaults to application—may be
overridden using the config.resource property (there are more, please refer to the Config docs).

Note: If you are writing an Akka application, keep you configuration in application.conf at the root of
the class path. If you are writing an Akka-based library, keep its configuration in reference.conf at the root
of the JAR file.

2.9.2 When using JarJar, OneJar, Assembly or any jar-bundler

Warning: Akka’s configuration approach relies heavily on the notion of every module/jar having its own
reference.conf file, all of these will be discovered by the configuration and loaded. Unfortunately this also
means that if you put/merge multiple jars into the same jar, you need to merge all the reference.confs as well.
Otherwise all defaults will be lost and Akka will not function.

If you are using Maven to package your application, you can also make use of the Apache Maven Shade Plugin
support for Resource Transformers to merge all the reference.confs on the build classpath into one.

The plugin configuration might look like this:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>1.5</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>

</goals>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>allinone</shadedClassifierName>
<artifactSet>
<includes>
<include>*:*</include>

</includes>
</artifactSet>
<transformers>

<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>

</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<manifestEntries>
<Main-Class>akka.Main</Main-Class>

</manifestEntries>
</transformer>

</transformers>
</configuration>

2.9. Configuration 33

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/README.md
http://maven.apache.org/plugins/maven-shade-plugin
http://maven.apache.org/plugins/maven-shade-plugin/examples/resource-transformers.html#AppendingTransformer

Akka Java Documentation, Release 2.3.16

</execution>
</executions>

</plugin>

2.9.3 Custom application.conf

A custom application.conf might look like this:

In this file you can override any option defined in the reference files.
Copy in parts of the reference files and modify as you please.

akka {

Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.slf4j.Slf4jLogger"]

Log level used by the configured loggers (see "loggers") as soon
as they have been started; before that, see "stdout-loglevel"
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

Log level for the very basic logger activated during ActorSystem startup.
This logger prints the log messages to stdout (System.out).
Options: OFF, ERROR, WARNING, INFO, DEBUG
stdout-loglevel = "DEBUG"

actor {
provider = "akka.cluster.ClusterActorRefProvider"

default-dispatcher {
Throughput for default Dispatcher, set to 1 for as fair as possible
throughput = 10

}
}

remote {
The port clients should connect to. Default is 2552.
netty.tcp.port = 4711

}
}

2.9.4 Including files

Sometimes it can be useful to include another configuration file, for example if you have one
application.conf with all environment independent settings and then override some settings for specific
environments.

Specifying system property with -Dconfig.resource=/dev.conf will load the dev.conf file, which
includes the application.conf

dev.conf:

include "application"

akka {
loglevel = "DEBUG"

}

More advanced include and substitution mechanisms are explained in the HOCON specification.

2.9. Configuration 34

https://github.com/typesafehub/config/blob/master/HOCON.md

Akka Java Documentation, Release 2.3.16

2.9.5 Logging of Configuration

If the system or config property akka.log-config-on-start is set to on, then the complete configuration
at INFO level when the actor system is started. This is useful when you are uncertain of what configuration is
used.

If in doubt, you can also easily and nicely inspect configuration objects before or after using them to construct an
actor system:

Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_27).
Type in expressions to have them evaluated.
Type :help for more information.

scala> import com.typesafe.config._
import com.typesafe.config._

scala> ConfigFactory.parseString("a.b=12")
res0: com.typesafe.config.Config = Config(SimpleConfigObject({"a" : {"b" : 12}}))

scala> res0.root.render
res1: java.lang.String =
{

String: 1
"a" : {

String: 1
"b" : 12

}
}

The comments preceding every item give detailed information about the origin of the setting (file & line number)
plus possible comments which were present, e.g. in the reference configuration. The settings as merged with the
reference and parsed by the actor system can be displayed like this:

final ActorSystem system = ActorSystem.create();
System.out.println(system.settings());
// this is a shortcut for system.settings().config().root().render()

2.9.6 A Word About ClassLoaders

In several places of the configuration file it is possible to specify the fully-qualified class name of something to be
instantiated by Akka. This is done using Java reflection, which in turn uses a ClassLoader. Getting the right
one in challenging environments like application containers or OSGi bundles is not always trivial, the current
approach of Akka is that each ActorSystem implementation stores the current thread’s context class loader
(if available, otherwise just its own loader as in this.getClass.getClassLoader) and uses that for all
reflective accesses. This implies that putting Akka on the boot class path will yield NullPointerException
from strange places: this is simply not supported.

2.9.7 Application specific settings

The configuration can also be used for application specific settings. A good practice is to place those settings in
an Extension, as described in:

• Scala API: extending-akka-scala.settings

• Java API: Application specific settings

2.9.8 Configuring multiple ActorSystem

If you have more than one ActorSystem (or you’re writing a library and have an ActorSystem that may be
separate from the application’s) you may want to separate the configuration for each system.

2.9. Configuration 35

Akka Java Documentation, Release 2.3.16

Given that ConfigFactory.load() merges all resources with matching name from the whole class path, it
is easiest to utilize that functionality and differentiate actor systems within the hierarchy of the configuration:

myapp1 {
akka.loglevel = "WARNING"
my.own.setting = 43

}
myapp2 {

akka.loglevel = "ERROR"
app2.setting = "appname"

}
my.own.setting = 42
my.other.setting = "hello"

val config = ConfigFactory.load()
val app1 = ActorSystem("MyApp1", config.getConfig("myapp1").withFallback(config))
val app2 = ActorSystem("MyApp2",

config.getConfig("myapp2").withOnlyPath("akka").withFallback(config))

These two samples demonstrate different variations of the “lift-a-subtree” trick: in the first case, the configuration
accessible from within the actor system is this

akka.loglevel = "WARNING"
my.own.setting = 43
my.other.setting = "hello"
// plus myapp1 and myapp2 subtrees

while in the second one, only the “akka” subtree is lifted, with the following result

akka.loglevel = "ERROR"
my.own.setting = 42
my.other.setting = "hello"
// plus myapp1 and myapp2 subtrees

Note: The configuration library is really powerful, explaining all features exceeds the scope affordable here.
In particular not covered are how to include other configuration files within other files (see a small example at
Including files) and copying parts of the configuration tree by way of path substitutions.

You may also specify and parse the configuration programmatically in other ways when instantiating the
ActorSystem.

import akka.actor.ActorSystem
import com.typesafe.config.ConfigFactory

val customConf = ConfigFactory.parseString("""
akka.actor.deployment {

/my-service {
router = round-robin-pool
nr-of-instances = 3

}
}
""")

// ConfigFactory.load sandwiches customConfig between default reference
// config and default overrides, and then resolves it.
val system = ActorSystem("MySystem", ConfigFactory.load(customConf))

2.9.9 Reading configuration from a custom location

You can replace or supplement application.conf either in code or using system properties.

If you’re using ConfigFactory.load() (which Akka does by default) you can replace
application.conf by defining -Dconfig.resource=whatever, -Dconfig.file=whatever, or

2.9. Configuration 36

Akka Java Documentation, Release 2.3.16

-Dconfig.url=whatever.

From inside your replacement file specified with -Dconfig.resource and friends, you can include
"application" if you still want to use application.{conf,json,properties} as well. Settings
specified before include "application" would be overridden by the included file, while those after would
override the included file.

In code, there are many customization options.

There are several overloads of ConfigFactory.load(); these allow you to specify something to be sand-
wiched between system properties (which override) and the defaults (from reference.conf), replacing the
usual application.{conf,json,properties} and replacing -Dconfig.file and friends.

The simplest variant of ConfigFactory.load() takes a resource basename (instead of application);
myname.conf, myname.json, and myname.properties would then be used instead of
application.{conf,json,properties}.

The most flexible variant takes a Config object, which you can load using any method in ConfigFactory.
For example you could put a config string in code using ConfigFactory.parseString() or you could
make a map and ConfigFactory.parseMap(), or you could load a file.

You can also combine your custom config with the usual config, that might look like:

// make a Config with just your special setting
Config myConfig =

ConfigFactory.parseString("something=somethingElse");
// load the normal config stack (system props,
// then application.conf, then reference.conf)
Config regularConfig =

ConfigFactory.load();
// override regular stack with myConfig
Config combined =

myConfig.withFallback(regularConfig);
// put the result in between the overrides
// (system props) and defaults again
Config complete =

ConfigFactory.load(combined);
// create ActorSystem
ActorSystem system =

ActorSystem.create("myname", complete);

When working with Config objects, keep in mind that there are three “layers” in the cake:

• ConfigFactory.defaultOverrides() (system properties)

• the app’s settings

• ConfigFactory.defaultReference() (reference.conf)

The normal goal is to customize the middle layer while leaving the other two alone.

• ConfigFactory.load() loads the whole stack

• the overloads of ConfigFactory.load() let you specify a different middle layer

• the ConfigFactory.parse() variations load single files or resources

To stack two layers, use override.withFallback(fallback); try to keep system props
(defaultOverrides()) on top and reference.conf (defaultReference()) on the bottom.

Do keep in mind, you can often just add another include statement in application.conf rather than writ-
ing code. Includes at the top of application.conf will be overridden by the rest of application.conf,
while those at the bottom will override the earlier stuff.

2.9. Configuration 37

Akka Java Documentation, Release 2.3.16

2.9.10 Actor Deployment Configuration

Deployment settings for specific actors can be defined in the akka.actor.deployment section of the con-
figuration. In the deployment section it is possible to define things like dispatcher, mailbox, router settings, and
remote deployment. Configuration of these features are described in the chapters detailing corresponding topics.
An example may look like this:

akka.actor.deployment {

'/user/actorA/actorB' is a remote deployed actor
/actorA/actorB {
remote = "akka.tcp://sampleActorSystem@127.0.0.1:2553"

}

all direct children of '/user/actorC' have a dedicated dispatcher
"/actorC/*" {
dispatcher = my-dispatcher

}

'/user/actorD/actorE' has a special priority mailbox
/actorD/actorE {
mailbox = prio-mailbox

}

'/user/actorF/actorG/actorH' is a random pool
/actorF/actorG/actorH {
router = random-pool
nr-of-instances = 5

}
}

my-dispatcher {
fork-join-executor.parallelism-min = 10
fork-join-executor.parallelism-max = 10

}
prio-mailbox {

mailbox-type = "a.b.MyPrioMailbox"
}

Note: The deployment section for a specific actor is identified by the path of the actor relative to /user.

You can use asterisks as wildcard matches for the actor path sections, so you could specify: /*/sampleActor
and that would match all sampleActor on that level in the hierarchy. You can also use wildcard in the last
position to match all actors at a certain level: /someParent/*. Non-wildcard matches always have higher
priority to match than wildcards, so: /foo/bar is considered more specific than /foo/* and only the highest
priority match is used. Please note that it cannot be used to partially match section, like this: /foo*/bar,
/f*o/bar etc.

2.9.11 Listing of the Reference Configuration

Each Akka module has a reference configuration file with the default values.

akka-actor

####################################
Akka Actor Reference Config File
####################################

2.9. Configuration 38

Akka Java Documentation, Release 2.3.16

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
Akka version, checked against the runtime version of Akka.
version = "2.3.16"

Home directory of Akka, modules in the deploy directory will be loaded
home = ""

Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]

Loggers are created and registered synchronously during ActorSystem
start-up, and since they are actors, this timeout is used to bound the
waiting time
logger-startup-timeout = 5s

Log level used by the configured loggers (see "loggers") as soon
as they have been started; before that, see "stdout-loglevel"
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "INFO"

Log level for the very basic logger activated during ActorSystem startup.
This logger prints the log messages to stdout (System.out).
Options: OFF, ERROR, WARNING, INFO, DEBUG
stdout-loglevel = "WARNING"

Log the complete configuration at INFO level when the actor system is started.
This is useful when you are uncertain of what configuration is used.
log-config-on-start = off

Log at info level when messages are sent to dead letters.
Possible values:
on: all dead letters are logged
off: no logging of dead letters
n: positive integer, number of dead letters that will be logged
log-dead-letters = 10

Possibility to turn off logging of dead letters while the actor system
is shutting down. Logging is only done when enabled by 'log-dead-letters'
setting.
log-dead-letters-during-shutdown = on

List FQCN of extensions which shall be loaded at actor system startup.
Should be on the format: 'extensions = ["foo", "bar"]' etc.
See the Akka Documentation for more info about Extensions
extensions = []

Toggles whether threads created by this ActorSystem should be daemons or not
daemonic = off

JVM shutdown, System.exit(-1), in case of a fatal error,
such as OutOfMemoryError
jvm-exit-on-fatal-error = on

actor {

FQCN of the ActorRefProvider to be used; the below is the built-in default,
another one is akka.remote.RemoteActorRefProvider in the akka-remote bundle.
provider = "akka.actor.LocalActorRefProvider"

2.9. Configuration 39

Akka Java Documentation, Release 2.3.16

The guardian "/user" will use this class to obtain its supervisorStrategy.
It needs to be a subclass of akka.actor.SupervisorStrategyConfigurator.
In addition to the default there is akka.actor.StoppingSupervisorStrategy.
guardian-supervisor-strategy = "akka.actor.DefaultSupervisorStrategy"

Timeout for ActorSystem.actorOf
creation-timeout = 20s

Frequency with which stopping actors are prodded in case they had to be
removed from their parents
reaper-interval = 5s

Serializes and deserializes (non-primitive) messages to ensure immutability,
this is only intended for testing.
serialize-messages = off

Serializes and deserializes creators (in Props) to ensure that they can be
sent over the network, this is only intended for testing. Purely local deployments
as marked with deploy.scope == LocalScope are exempt from verification.
serialize-creators = off

Timeout for send operations to top-level actors which are in the process
of being started. This is only relevant if using a bounded mailbox or the
CallingThreadDispatcher for a top-level actor.
unstarted-push-timeout = 10s

typed {
Default timeout for typed actor methods with non-void return type
timeout = 5s

}

Mapping between ´deployment.router' short names to fully qualified class names
router.type-mapping {

from-code = "akka.routing.NoRouter"
round-robin-pool = "akka.routing.RoundRobinPool"
round-robin-group = "akka.routing.RoundRobinGroup"
random-pool = "akka.routing.RandomPool"
random-group = "akka.routing.RandomGroup"
balancing-pool = "akka.routing.BalancingPool"
smallest-mailbox-pool = "akka.routing.SmallestMailboxPool"
broadcast-pool = "akka.routing.BroadcastPool"
broadcast-group = "akka.routing.BroadcastGroup"
scatter-gather-pool = "akka.routing.ScatterGatherFirstCompletedPool"
scatter-gather-group = "akka.routing.ScatterGatherFirstCompletedGroup"
tail-chopping-pool = "akka.routing.TailChoppingPool"
tail-chopping-group = "akka.routing.TailChoppingGroup"
consistent-hashing-pool = "akka.routing.ConsistentHashingPool"
consistent-hashing-group = "akka.routing.ConsistentHashingGroup"

}

deployment {

deployment id pattern - on the format: /parent/child etc.
default {

The id of the dispatcher to use for this actor.
If undefined or empty the dispatcher specified in code
(Props.withDispatcher) is used, or default-dispatcher if not
specified at all.
dispatcher = ""

The id of the mailbox to use for this actor.
If undefined or empty the default mailbox of the configured dispatcher

2.9. Configuration 40

Akka Java Documentation, Release 2.3.16

is used or if there is no mailbox configuration the mailbox specified
in code (Props.withMailbox) is used.
If there is a mailbox defined in the configured dispatcher then that
overrides this setting.
mailbox = ""

routing (load-balance) scheme to use
- available: "from-code", "round-robin", "random", "smallest-mailbox",
"scatter-gather", "broadcast"
- or: Fully qualified class name of the router class.
The class must extend akka.routing.CustomRouterConfig and
have a public constructor with com.typesafe.config.Config
and optional akka.actor.DynamicAccess parameter.
- default is "from-code";
Whether or not an actor is transformed to a Router is decided in code
only (Props.withRouter). The type of router can be overridden in the
configuration; specifying "from-code" means that the values specified
in the code shall be used.
In case of routing, the actors to be routed to can be specified
in several ways:
- nr-of-instances: will create that many children
- routees.paths: will route messages to these paths using ActorSelection,
i.e. will not create children
- resizer: dynamically resizable number of routees as specified in
resizer below
router = "from-code"

number of children to create in case of a router;
this setting is ignored if routees.paths is given
nr-of-instances = 1

within is the timeout used for routers containing future calls
within = 5 seconds

number of virtual nodes per node for consistent-hashing router
virtual-nodes-factor = 10

tail-chopping-router {
interval is duration between sending message to next routee
interval = 10 milliseconds

}

routees {
Alternatively to giving nr-of-instances you can specify the full
paths of those actors which should be routed to. This setting takes
precedence over nr-of-instances
paths = []

}

To use a dedicated dispatcher for the routees of the pool you can
define the dispatcher configuration inline with the property name
'pool-dispatcher' in the deployment section of the router.
For example:
pool-dispatcher {
fork-join-executor.parallelism-min = 5
fork-join-executor.parallelism-max = 5
}

Routers with dynamically resizable number of routees; this feature is
enabled by including (parts of) this section in the deployment
resizer {

enabled = off

2.9. Configuration 41

Akka Java Documentation, Release 2.3.16

The fewest number of routees the router should ever have.
lower-bound = 1

The most number of routees the router should ever have.
Must be greater than or equal to lower-bound.
upper-bound = 10

Threshold used to evaluate if a routee is considered to be busy
(under pressure). Implementation depends on this value (default is 1).
0: number of routees currently processing a message.
1: number of routees currently processing a message has
some messages in mailbox.
> 1: number of routees with at least the configured pressure-threshold
messages in their mailbox. Note that estimating mailbox size of
default UnboundedMailbox is O(N) operation.
pressure-threshold = 1

Percentage to increase capacity whenever all routees are busy.
For example, 0.2 would increase 20% (rounded up), i.e. if current
capacity is 6 it will request an increase of 2 more routees.
rampup-rate = 0.2

Minimum fraction of busy routees before backing off.
For example, if this is 0.3, then we'll remove some routees only when
less than 30% of routees are busy, i.e. if current capacity is 10 and
3 are busy then the capacity is unchanged, but if 2 or less are busy
the capacity is decreased.
Use 0.0 or negative to avoid removal of routees.
backoff-threshold = 0.3

Fraction of routees to be removed when the resizer reaches the
backoffThreshold.
For example, 0.1 would decrease 10% (rounded up), i.e. if current
capacity is 9 it will request an decrease of 1 routee.
backoff-rate = 0.1

Number of messages between resize operation.
Use 1 to resize before each message.
messages-per-resize = 10

}
}

}

default-dispatcher {
Must be one of the following
Dispatcher, PinnedDispatcher, or a FQCN to a class inheriting
MessageDispatcherConfigurator with a public constructor with
both com.typesafe.config.Config parameter and
akka.dispatch.DispatcherPrerequisites parameters.
PinnedDispatcher must be used together with executor=thread-pool-executor.
type = "Dispatcher"

Which kind of ExecutorService to use for this dispatcher
Valid options:
- "default-executor" requires a "default-executor" section
- "fork-join-executor" requires a "fork-join-executor" section
- "thread-pool-executor" requires a "thread-pool-executor" section
- A FQCN of a class extending ExecutorServiceConfigurator
executor = "default-executor"

This will be used if you have set "executor = "default-executor"".
If an ActorSystem is created with a given ExecutionContext, this

2.9. Configuration 42

Akka Java Documentation, Release 2.3.16

ExecutionContext will be used as the default executor for all
dispatchers in the ActorSystem configured with
executor = "default-executor". Note that "default-executor"
is the default value for executor, and therefore used if not
specified otherwise. If no ExecutionContext is given,
the executor configured in "fallback" will be used.
default-executor {

fallback = "fork-join-executor"
}

This will be used if you have set "executor = "fork-join-executor""
fork-join-executor {

Min number of threads to cap factor-based parallelism number to
parallelism-min = 8

The parallelism factor is used to determine thread pool size using the
following formula: ceil(available processors * factor). Resulting size
is then bounded by the parallelism-min and parallelism-max values.
parallelism-factor = 3.0

Max number of threads to cap factor-based parallelism number to
parallelism-max = 64

Setting to "FIFO" to use queue like peeking mode which "poll" or "LIFO" to use stack
like peeking mode which "pop".
task-peeking-mode = "FIFO"

}

This will be used if you have set "executor = "thread-pool-executor""
thread-pool-executor {

Keep alive time for threads
keep-alive-time = 60s

Min number of threads to cap factor-based core number to
core-pool-size-min = 8

The core pool size factor is used to determine thread pool core size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the core-pool-size-min and
core-pool-size-max values.
core-pool-size-factor = 3.0

Max number of threads to cap factor-based number to
core-pool-size-max = 64

Minimum number of threads to cap factor-based max number to
(if using a bounded task queue)
max-pool-size-min = 8

Max no of threads (if using a bounded task queue) is determined by
calculating: ceil(available processors * factor)
max-pool-size-factor = 3.0

Max number of threads to cap factor-based max number to
(if using a bounded task queue)
max-pool-size-max = 64

Specifies the bounded capacity of the task queue (< 1 == unbounded)
task-queue-size = -1

Specifies which type of task queue will be used, can be "array" or
"linked" (default)
task-queue-type = "linked"

2.9. Configuration 43

Akka Java Documentation, Release 2.3.16

Allow core threads to time out
allow-core-timeout = on

}

How long time the dispatcher will wait for new actors until it shuts down
shutdown-timeout = 1s

Throughput defines the number of messages that are processed in a batch
before the thread is returned to the pool. Set to 1 for as fair as possible.
throughput = 5

Throughput deadline for Dispatcher, set to 0 or negative for no deadline
throughput-deadline-time = 0ms

For BalancingDispatcher: If the balancing dispatcher should attempt to
schedule idle actors using the same dispatcher when a message comes in,
and the dispatchers ExecutorService is not fully busy already.
attempt-teamwork = on

If this dispatcher requires a specific type of mailbox, specify the
fully-qualified class name here; the actually created mailbox will
be a subtype of this type. The empty string signifies no requirement.
mailbox-requirement = ""

}

default-mailbox {
FQCN of the MailboxType. The Class of the FQCN must have a public
constructor with
(akka.actor.ActorSystem.Settings, com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedMailbox"

If the mailbox is bounded then it uses this setting to determine its
capacity. The provided value must be positive.
NOTICE:
Up to version 2.1 the mailbox type was determined based on this setting;
this is no longer the case, the type must explicitly be a bounded mailbox.
mailbox-capacity = 1000

If the mailbox is bounded then this is the timeout for enqueueing
in case the mailbox is full. Negative values signify infinite
timeout, which should be avoided as it bears the risk of dead-lock.
mailbox-push-timeout-time = 10s

For Actor with Stash: The default capacity of the stash.
If negative (or zero) then an unbounded stash is used (default)
If positive then a bounded stash is used and the capacity is set using
the property
stash-capacity = -1

}

mailbox {
Mapping between message queue semantics and mailbox configurations.
Used by akka.dispatch.RequiresMessageQueue[T] to enforce different
mailbox types on actors.
If your Actor implements RequiresMessageQueue[T], then when you create
an instance of that actor its mailbox type will be decided by looking
up a mailbox configuration via T in this mapping
requirements {

"akka.dispatch.UnboundedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-queue-based

"akka.dispatch.BoundedMessageQueueSemantics" =
akka.actor.mailbox.bounded-queue-based

2.9. Configuration 44

Akka Java Documentation, Release 2.3.16

"akka.dispatch.DequeBasedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-deque-based

"akka.dispatch.UnboundedDequeBasedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-deque-based

"akka.dispatch.BoundedDequeBasedMessageQueueSemantics" =
akka.actor.mailbox.bounded-deque-based

"akka.dispatch.MultipleConsumerSemantics" =
akka.actor.mailbox.unbounded-queue-based

}

unbounded-queue-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedMailbox"

}

bounded-queue-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.BoundedMailbox"

}

unbounded-deque-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox"

}

bounded-deque-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.BoundedDequeBasedMailbox"

}
}

debug {
enable function of Actor.loggable(), which is to log any received message
at DEBUG level, see the “Testing Actor Systems” section of the Akka
Documentation at http://akka.io/docs
receive = off

enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill et.c.)
autoreceive = off

enable DEBUG logging of actor lifecycle changes
lifecycle = off

enable DEBUG logging of all LoggingFSMs for events, transitions and timers
fsm = off

enable DEBUG logging of subscription changes on the eventStream
event-stream = off

enable DEBUG logging of unhandled messages
unhandled = off

enable WARN logging of misconfigured routers
router-misconfiguration = off

}

2.9. Configuration 45

Akka Java Documentation, Release 2.3.16

Entries for pluggable serializers and their bindings.
serializers {

java = "akka.serialization.JavaSerializer"
bytes = "akka.serialization.ByteArraySerializer"

}

Class to Serializer binding. You only need to specify the name of an
interface or abstract base class of the messages. In case of ambiguity it
is using the most specific configured class, or giving a warning and
choosing the “first” one.
#
To disable one of the default serializers, assign its class to "none", like
"java.io.Serializable" = none
serialization-bindings {

"[B" = bytes
"java.io.Serializable" = java

}

Configuration items which are used by the akka.actor.ActorDSL._ methods
dsl {

Maximum queue size of the actor created by newInbox(); this protects
against faulty programs which use select() and consistently miss messages
inbox-size = 1000

Default timeout to assume for operations like Inbox.receive et al
default-timeout = 5s

}
}

Used to set the behavior of the scheduler.
Changing the default values may change the system behavior drastically so make
sure you know what you're doing! See the Scheduler section of the Akka
Documentation for more details.
scheduler {
The LightArrayRevolverScheduler is used as the default scheduler in the
system. It does not execute the scheduled tasks on exact time, but on every
tick, it will run everything that is (over)due. You can increase or decrease
the accuracy of the execution timing by specifying smaller or larger tick
duration. If you are scheduling a lot of tasks you should consider increasing
the ticks per wheel.
Note that it might take up to 1 tick to stop the Timer, so setting the
tick-duration to a high value will make shutting down the actor system
take longer.
tick-duration = 10ms

The timer uses a circular wheel of buckets to store the timer tasks.
This should be set such that the majority of scheduled timeouts (for high
scheduling frequency) will be shorter than one rotation of the wheel
(ticks-per-wheel * ticks-duration)
THIS MUST BE A POWER OF TWO!
ticks-per-wheel = 512

This setting selects the timer implementation which shall be loaded at
system start-up.
The class given here must implement the akka.actor.Scheduler interface
and offer a public constructor which takes three arguments:
1) com.typesafe.config.Config
2) akka.event.LoggingAdapter
3) java.util.concurrent.ThreadFactory
implementation = akka.actor.LightArrayRevolverScheduler

When shutting down the scheduler, there will typically be a thread which

2.9. Configuration 46

Akka Java Documentation, Release 2.3.16

needs to be stopped, and this timeout determines how long to wait for
that to happen. In case of timeout the shutdown of the actor system will
proceed without running possibly still enqueued tasks.
shutdown-timeout = 5s

}

io {

By default the select loops run on dedicated threads, hence using a
PinnedDispatcher
pinned-dispatcher {

type = "PinnedDispatcher"
executor = "thread-pool-executor"
thread-pool-executor.allow-core-timeout = off

}

tcp {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this TCP module; there is
no intrinsic general limit, this setting is meant to enable DoS
protection by limiting the number of concurrently connected clients.
Also note that this is a "soft" limit; in certain cases the implementation
will accept a few connections more or a few less than the number configured
here. Must be an integer > 0 or "unlimited".
max-channels = 256000

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment
this many times before giving up
selector-association-retries = 10

The maximum number of connection that are accepted in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
batch-accept-limit = 10

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The duration a connection actor waits for a `Register` message from
its commander before aborting the connection.
register-timeout = 5s

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
The purpose of this setting is to impose a smaller limit than the
configured receive buffer size. When using value 'unlimited' it will
try to read all from the receive buffer.
max-received-message-size = unlimited

Enable fine grained logging of what goes on inside the implementation.
Be aware that this may log more than once per message sent to the actors
of the tcp implementation.

2.9. Configuration 47

Akka Java Documentation, Release 2.3.16

trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
on which file IO tasks are scheduled
file-io-dispatcher = "akka.actor.default-dispatcher"

The maximum number of bytes (or "unlimited") to transfer in one batch
when using `WriteFile` command which uses `FileChannel.transferTo` to
pipe files to a TCP socket. On some OS like Linux `FileChannel.transferTo`
may block for a long time when network IO is faster than file IO.
Decreasing the value may improve fairness while increasing may improve
throughput.
file-io-transferTo-limit = 512 KiB

The number of times to retry the `finishConnect` call after being notified about
OP_CONNECT. Retries are needed if the OP_CONNECT notification doesn't imply that
`finishConnect` will succeed, which is the case on Android.
finish-connect-retries = 5

On Windows connection aborts are not reliably detected unless an OP_READ is
registered on the selector _after_ the connection has been reset. This
workaround enables an OP_CONNECT which forces the abort to be visible on Windows.
Enabling this setting on other platforms than Windows will cause various failures
and undefined behavior.
Possible values of this key are on, off and auto where auto will enable the
workaround if Windows is detected automatically.
windows-connection-abort-workaround-enabled = off

}

udp {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this UDP module Generally
UDP does not require a large number of channels, therefore it is
recommended to keep this setting low.
max-channels = 4096

The select loop can be used in two modes:
- setting "infinite" will select without a timeout, hogging a thread
- setting a positive timeout will do a bounded select call,
enabling sharing of a single thread between multiple selectors
(in this case you will have to use a different configuration for the
selector-dispatcher, e.g. using "type=Dispatcher" with size 1)
- setting it to zero means polling, i.e. calling selectNow()
select-timeout = infinite

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment

2.9. Configuration 48

Akka Java Documentation, Release 2.3.16

this many times before giving up
selector-association-retries = 10

The maximum number of datagrams that are read in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
receive-throughput = 3

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
received-message-size-limit = unlimited

Enable fine grained logging of what goes on inside the implementation.
Be aware that this may log more than once per message sent to the actors
of the tcp implementation.
trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

}

udp-connected {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this UDP module Generally
UDP does not require a large number of channels, therefore it is
recommended to keep this setting low.
max-channels = 4096

The select loop can be used in two modes:
- setting "infinite" will select without a timeout, hogging a thread
- setting a positive timeout will do a bounded select call,
enabling sharing of a single thread between multiple selectors
(in this case you will have to use a different configuration for the
selector-dispatcher, e.g. using "type=Dispatcher" with size 1)
- setting it to zero means polling, i.e. calling selectNow()
select-timeout = infinite

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment
this many times before giving up
selector-association-retries = 10

2.9. Configuration 49

Akka Java Documentation, Release 2.3.16

The maximum number of datagrams that are read in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
receive-throughput = 3

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
received-message-size-limit = unlimited

Enable fine grained logging of what goes on inside the implementation.
Be aware that this may log more than once per message sent to the actors
of the tcp implementation.
trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

}

}

}

akka-agent

####################################
Akka Agent Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
agent {

The dispatcher used for agent-send-off actor
send-off-dispatcher {

executor = thread-pool-executor
type = PinnedDispatcher

}

The dispatcher used for agent-alter-off actor
alter-off-dispatcher {

2.9. Configuration 50

Akka Java Documentation, Release 2.3.16

executor = thread-pool-executor
type = PinnedDispatcher

}
}

}

akka-camel

####################################
Akka Camel Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
camel {
FQCN of the ContextProvider to be used to create or locate a CamelContext
it must implement akka.camel.ContextProvider and have a no-arg constructor
the built-in default create a fresh DefaultCamelContext
context-provider = akka.camel.DefaultContextProvider

Whether JMX should be enabled or disabled for the Camel Context
jmx = off
enable/disable streaming cache on the Camel Context
streamingCache = on
consumer {

Configured setting which determines whether one-way communications
between an endpoint and this consumer actor
should be auto-acknowledged or application-acknowledged.
This flag has only effect when exchange is in-only.
auto-ack = on

When endpoint is out-capable (can produce responses) reply-timeout is the
maximum time the endpoint can take to send the response before the message
exchange fails. This setting is used for out-capable, in-only,
manually acknowledged communication.
reply-timeout = 1m

The duration of time to await activation of an endpoint.
activation-timeout = 10s

}

#Scheme to FQCN mappings for CamelMessage body conversions
conversions {

"file" = "java.io.InputStream"
}

}
}

akka-cluster

######################################
Akka Cluster Reference Config File
######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {

2.9. Configuration 51

Akka Java Documentation, Release 2.3.16

cluster {
Initial contact points of the cluster.
The nodes to join automatically at startup.
Comma separated full URIs defined by a string on the form of
"akka.tcp://system@hostname:port"
Leave as empty if the node is supposed to be joined manually.
seed-nodes = []

how long to wait for one of the seed nodes to reply to initial join request
seed-node-timeout = 5s

If a join request fails it will be retried after this period.
Disable join retry by specifying "off".
retry-unsuccessful-join-after = 10s

Should the 'leader' in the cluster be allowed to automatically mark
unreachable nodes as DOWN after a configured time of unreachability?
Using auto-down implies that two separate clusters will automatically be
formed in case of network partition.
Disable with "off" or specify a duration to enable auto-down.
auto-down-unreachable-after = off

deprecated in 2.3, use 'auto-down-unreachable-after' instead
auto-down = off

The roles of this member. List of strings, e.g. roles = ["A", "B"].
The roles are part of the membership information and can be used by
routers or other services to distribute work to certain member types,
e.g. front-end and back-end nodes.
roles = []

role {
Minimum required number of members of a certain role before the leader
changes member status of 'Joining' members to 'Up'. Typically used together
with 'Cluster.registerOnMemberUp' to defer some action, such as starting
actors, until the cluster has reached a certain size.
E.g. to require 2 nodes with role 'frontend' and 3 nodes with role 'backend':
frontend.min-nr-of-members = 2
backend.min-nr-of-members = 3
#<role-name>.min-nr-of-members = 1

}

Minimum required number of members before the leader changes member status
of 'Joining' members to 'Up'. Typically used together with
'Cluster.registerOnMemberUp' to defer some action, such as starting actors,
until the cluster has reached a certain size.
min-nr-of-members = 1

Enable/disable info level logging of cluster events
log-info = on

Enable or disable JMX MBeans for management of the cluster
jmx.enabled = on

how long should the node wait before starting the periodic tasks
maintenance tasks?
periodic-tasks-initial-delay = 1s

how often should the node send out gossip information?
gossip-interval = 1s

discard incoming gossip messages if not handled within this duration

2.9. Configuration 52

Akka Java Documentation, Release 2.3.16

gossip-time-to-live = 2s

how often should the leader perform maintenance tasks?
leader-actions-interval = 1s

how often should the node move nodes, marked as unreachable by the failure
detector, out of the membership ring?
unreachable-nodes-reaper-interval = 1s

How often the current internal stats should be published.
A value of 0s can be used to always publish the stats, when it happens.
Disable with "off".
publish-stats-interval = off

The id of the dispatcher to use for cluster actors. If not specified
default dispatcher is used.
If specified you need to define the settings of the actual dispatcher.
use-dispatcher = ""

Gossip to random node with newer or older state information, if any with
this probability. Otherwise Gossip to any random live node.
Probability value is between 0.0 and 1.0. 0.0 means never, 1.0 means always.
gossip-different-view-probability = 0.8

Reduced the above probability when the number of nodes in the cluster
greater than this value.
reduce-gossip-different-view-probability = 400

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used by the cluster subsystem to detect unreachable
members.
failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 8.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 1000

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or

2.9. Configuration 53

Akka Java Documentation, Release 2.3.16

network drop.
acceptable-heartbeat-pause = 3 s

Number of member nodes that each member will send heartbeat messages to,
i.e. each node will be monitored by this number of other nodes.
monitored-by-nr-of-members = 5

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 5 s

}

metrics {
Enable or disable metrics collector for load-balancing nodes.
enabled = on

FQCN of the metrics collector implementation.
It must implement akka.cluster.MetricsCollector and
have public constructor with akka.actor.ActorSystem parameter.
The default SigarMetricsCollector uses JMX and Hyperic SIGAR, if SIGAR
is on the classpath, otherwise only JMX.
collector-class = "akka.cluster.SigarMetricsCollector"

How often metrics are sampled on a node.
Shorter interval will collect the metrics more often.
collect-interval = 3s

How often a node publishes metrics information.
gossip-interval = 3s

How quickly the exponential weighting of past data is decayed compared to
new data. Set lower to increase the bias toward newer values.
The relevance of each data sample is halved for every passing half-life
duration, i.e. after 4 times the half-life, a data sample’s relevance is
reduced to 6% of its original relevance. The initial relevance of a data
sample is given by 1 - 0.5 ^ (collect-interval / half-life).
See http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
moving-average-half-life = 12s

}

If the tick-duration of the default scheduler is longer than the
tick-duration configured here a dedicated scheduler will be used for
periodic tasks of the cluster, otherwise the default scheduler is used.
See akka.scheduler settings for more details.
scheduler {

tick-duration = 33ms
ticks-per-wheel = 512

}

}

Default configuration for routers
actor.deployment.default {
MetricsSelector to use
- available: "mix", "heap", "cpu", "load"
- or: Fully qualified class name of the MetricsSelector class.
The class must extend akka.cluster.routing.MetricsSelector
and have a public constructor with com.typesafe.config.Config
parameter.
- default is "mix"
metrics-selector = mix

2.9. Configuration 54

Akka Java Documentation, Release 2.3.16

}
actor.deployment.default.cluster {
enable cluster aware router that deploys to nodes in the cluster
enabled = off

Maximum number of routees that will be deployed on each cluster
member node.
Note that nr-of-instances defines total number of routees, but
number of routees per node will not be exceeded, i.e. if you
define nr-of-instances = 50 and max-nr-of-instances-per-node = 2
it will deploy 2 routees per new member in the cluster, up to
25 members.
max-nr-of-instances-per-node = 1

Defines if routees are allowed to be located on the same node as
the head router actor, or only on remote nodes.
Useful for master-worker scenario where all routees are remote.
allow-local-routees = on

Deprecated in 2.3, use routees.paths instead
routees-path = ""

Use members with specified role, or all members if undefined or empty.
use-role = ""

}

Protobuf serializer for cluster messages
actor {
serializers {

akka-cluster = "akka.cluster.protobuf.ClusterMessageSerializer"
}

serialization-bindings {
"akka.cluster.ClusterMessage" = akka-cluster

}

router.type-mapping {
adaptive-pool = "akka.cluster.routing.AdaptiveLoadBalancingPool"
adaptive-group = "akka.cluster.routing.AdaptiveLoadBalancingGroup"

}
}

}

akka-multi-node-testkit

###
Akka Remote Testing Reference Config File
###

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
testconductor {

Timeout for joining a barrier: this is the maximum time any participants
waits for everybody else to join a named barrier.
barrier-timeout = 30s

2.9. Configuration 55

Akka Java Documentation, Release 2.3.16

Timeout for interrogation of TestConductor’s Controller actor
query-timeout = 5s

Threshold for packet size in time unit above which the failure injector will
split the packet and deliver in smaller portions; do not give value smaller
than HashedWheelTimer resolution (would not make sense)
packet-split-threshold = 100ms

amount of time for the ClientFSM to wait for the connection to the conductor
to be successful
connect-timeout = 20s

Number of connect attempts to be made to the conductor controller
client-reconnects = 10

minimum time interval which is to be inserted between reconnect attempts
reconnect-backoff = 1s

netty {
(I&O) Used to configure the number of I/O worker threads on server sockets
server-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 1

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

(I&O) Used to configure the number of I/O worker threads on client sockets
client-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 1

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}
}

}
}

akka-persistence

##
Akka Persistence Reference Config File
##

akka {

2.9. Configuration 56

Akka Java Documentation, Release 2.3.16

Protobuf serialization for persistent messages
actor {

serializers {

akka-persistence-snapshot = "akka.persistence.serialization.SnapshotSerializer"
akka-persistence-message = "akka.persistence.serialization.MessageSerializer"

}

serialization-bindings {

"akka.persistence.serialization.Snapshot" = akka-persistence-snapshot
"akka.persistence.serialization.Message" = akka-persistence-message

}
}

persistence {

journal {

Maximum size of a persistent message batch written to the journal.
max-message-batch-size = 200

Maximum size of a confirmation batch written to the journal.
max-confirmation-batch-size = 10000

Maximum size of a deletion batch written to the journal.
max-deletion-batch-size = 10000

Path to the journal plugin to be used
plugin = "akka.persistence.journal.leveldb"

In-memory journal plugin.
inmem {

Class name of the plugin.
class = "akka.persistence.journal.inmem.InmemJournal"

Dispatcher for the plugin actor.
plugin-dispatcher = "akka.actor.default-dispatcher"

}

LevelDB journal plugin.
leveldb {

Class name of the plugin.
class = "akka.persistence.journal.leveldb.LeveldbJournal"

Dispatcher for the plugin actor.
plugin-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

Dispatcher for message replay.
replay-dispatcher = "akka.persistence.dispatchers.default-replay-dispatcher"

Storage location of LevelDB files.
dir = "journal"

Use fsync on write
fsync = on

Verify checksum on read.
checksum = off

2.9. Configuration 57

Akka Java Documentation, Release 2.3.16

Native LevelDB (via JNI) or LevelDB Java port
native = on

}

Shared LevelDB journal plugin (for testing only).
leveldb-shared {

Class name of the plugin.
class = "akka.persistence.journal.leveldb.SharedLeveldbJournal"

Dispatcher for the plugin actor.
plugin-dispatcher = "akka.actor.default-dispatcher"

timeout for async journal operations
timeout = 10s

store {

Dispatcher for shared store actor.
store-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

Dispatcher for message replay.
replay-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

Storage location of LevelDB files.
dir = "journal"

Use fsync on write
fsync = on

Verify checksum on read.
checksum = off

Native LevelDB (via JNI) or LevelDB Java port
native = on

}
}

}

snapshot-store {

Path to the snapshot store plugin to be used
plugin = "akka.persistence.snapshot-store.local"

Local filesystem snapshot store plugin.
local {

Class name of the plugin.
class = "akka.persistence.snapshot.local.LocalSnapshotStore"

Dispatcher for the plugin actor.
plugin-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

Dispatcher for streaming snapshot IO.
stream-dispatcher = "akka.persistence.dispatchers.default-stream-dispatcher"

Storage location of snapshot files.
dir = "snapshots"

}
}

view {

2.9. Configuration 58

Akka Java Documentation, Release 2.3.16

Automated incremental view update.
auto-update = on

Interval between incremental updates
auto-update-interval = 5s

Maximum number of messages to replay per incremental view update. Set to
-1 for no upper limit.
auto-update-replay-max = -1

}

at-least-once-delivery {
Interval between redelivery attempts
redeliver-interval = 5s

After this number of delivery attempts a `ReliableRedelivery.UnconfirmedWarning`
message will be sent to the actor.
warn-after-number-of-unconfirmed-attempts = 5

Maximum number of unconfirmed messages that an actor with AtLeastOnceDelivery is
allowed to hold in memory.
max-unconfirmed-messages = 100000

}

dispatchers {
default-plugin-dispatcher {

type = PinnedDispatcher
executor = "thread-pool-executor"

}
default-replay-dispatcher {

type = Dispatcher
executor = "fork-join-executor"
fork-join-executor {
parallelism-min = 2
parallelism-max = 8

}
}
default-stream-dispatcher {

type = Dispatcher
executor = "fork-join-executor"
fork-join-executor {
parallelism-min = 2
parallelism-max = 8

}
}

}
}

}

akka-remote

#####################################
Akka Remote Reference Config File
#####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

comments about akka.actor settings left out where they are already in akka-
actor.jar, because otherwise they would be repeated in config rendering.

2.9. Configuration 59

Akka Java Documentation, Release 2.3.16

akka {

actor {

serializers {
akka-containers = "akka.remote.serialization.MessageContainerSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
daemon-create = "akka.remote.serialization.DaemonMsgCreateSerializer"

}

serialization-bindings {
Since com.google.protobuf.Message does not extend Serializable but
GeneratedMessage does, need to use the more specific one here in order
to avoid ambiguity
"akka.actor.ActorSelectionMessage" = akka-containers
"com.google.protobuf.GeneratedMessage" = proto
"akka.remote.DaemonMsgCreate" = daemon-create

}

deployment {

default {

if this is set to a valid remote address, the named actor will be
deployed at that node e.g. "akka.tcp://sys@host:port"
remote = ""

target {

A list of hostnames and ports for instantiating the children of a
router
The format should be on "akka.tcp://sys@host:port", where:
- sys is the remote actor system name
- hostname can be either hostname or IP address the remote actor
should connect to
- port should be the port for the remote server on the other node
The number of actor instances to be spawned is still taken from the
nr-of-instances setting as for local routers; the instances will be
distributed round-robin among the given nodes.
nodes = []

}
}

}
}

remote {

General settings

Timeout after which the startup of the remoting subsystem is considered
to be failed. Increase this value if your transport drivers (see the
enabled-transports section) need longer time to be loaded.
startup-timeout = 10 s

Timout after which the graceful shutdown of the remoting subsystem is
considered to be failed. After the timeout the remoting system is
forcefully shut down. Increase this value if your transport drivers
(see the enabled-transports section) need longer time to stop properly.
shutdown-timeout = 10 s

Before shutting down the drivers, the remoting subsystem attempts to flush

2.9. Configuration 60

Akka Java Documentation, Release 2.3.16

all pending writes. This setting controls the maximum time the remoting is
willing to wait before moving on to shut down the drivers.
flush-wait-on-shutdown = 2 s

Reuse inbound connections for outbound messages
use-passive-connections = on

Controls the backoff interval after a refused write is reattempted.
(Transports may refuse writes if their internal buffer is full)
backoff-interval = 5 ms

Acknowledgment timeout of management commands sent to the transport stack.
command-ack-timeout = 30 s

The timeout for outbound associations to perform the handshake.
If the transport is akka.remote.netty.tcp or akka.remote.netty.ssl
the configured connection-timeout for the transport will be used instead.
handshake-timeout = 15 s

If set to a nonempty string remoting will use the given dispatcher for
its internal actors otherwise the default dispatcher is used. Please note
that since remoting can load arbitrary 3rd party drivers (see
"enabled-transport" and "adapters" entries) it is not guaranteed that
every module will respect this setting.
use-dispatcher = "akka.remote.default-remote-dispatcher"

Security settings

Enable untrusted mode for full security of server managed actors, prevents
system messages to be send by clients, e.g. messages like 'Create',
'Suspend', 'Resume', 'Terminate', 'Supervise', 'Link' etc.
untrusted-mode = off

When 'untrusted-mode=on' inbound actor selections are by default discarded.
Actors with paths defined in this white list are granted permission to receive actor
selections messages.
E.g. trusted-selection-paths = ["/user/receptionist", "/user/namingService"]
trusted-selection-paths = []

Should the remote server require that its peers share the same
secure-cookie (defined in the 'remote' section)? Secure cookies are passed
between during the initial handshake. Connections are refused if the initial
message contains a mismatching cookie or the cookie is missing.
require-cookie = off

Generate your own with the script availbale in
'$AKKA_HOME/scripts/generate_config_with_secure_cookie.sh' or using
'akka.util.Crypt.generateSecureCookie'
secure-cookie = ""

Logging

If this is "on", Akka will log all inbound messages at DEBUG level,
if off then they are not logged
log-received-messages = off

If this is "on", Akka will log all outbound messages at DEBUG level,
if off then they are not logged
log-sent-messages = off

Sets the log granularity level at which Akka logs remoting events. This setting
can take the values OFF, ERROR, WARNING, INFO, DEBUG, or ON. For compatibility
reasons the setting "on" will default to "debug" level. Please note that the effective

2.9. Configuration 61

Akka Java Documentation, Release 2.3.16

logging level is still determined by the global logging level of the actor system:
for example debug level remoting events will be only logged if the system
is running with debug level logging.
Failures to deserialize received messages also fall under this flag.
log-remote-lifecycle-events = on

Logging of message types with payload size in bytes larger than
this value. Maximum detected size per message type is logged once,
with an increase threshold of 10%.
By default this feature is turned off. Activate it by setting the property to
a value in bytes, such as 1000b. Note that for all messages larger than this
limit there will be extra performance and scalability cost.
log-frame-size-exceeding = off

Log warning if the number of messages in the backoff buffer in the endpoint
writer exceeds this limit. It can be disabled by setting the value to off.
log-buffer-size-exceeding = 50000

Failure detection and recovery

Settings for the failure detector to monitor connections.
For TCP it is not important to have fast failure detection, since
most connection failures are captured by TCP itself.
transport-failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.DeadlineFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 4 s

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
A margin to the `heartbeat-interval` is important to be able to survive sudden,
occasional, pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 20 s

}

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used for remote death watch.
watch-failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 10.0

Number of the samples of inter-heartbeat arrival times to adaptively

2.9. Configuration 62

Akka Java Documentation, Release 2.3.16

calculate the failure timeout for connections.
max-sample-size = 200

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 10 s

How often to check for nodes marked as unreachable by the failure
detector
unreachable-nodes-reaper-interval = 1s

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 3 s

}

After failed to establish an outbound connection, the remoting will mark the
address as failed. This configuration option controls how much time should
be elapsed before reattempting a new connection. While the address is
gated, all messages sent to the address are delivered to dead-letters.
Since this setting limits the rate of reconnects setting it to a
very short interval (i.e. less than a second) may result in a storm of
reconnect attempts.
retry-gate-closed-for = 5 s

After catastrophic communication failures that result in the loss of system
messages or after the remote DeathWatch triggers the remote system gets
quarantined to prevent inconsistent behavior.
This setting controls how long the Quarantine marker will be kept around
before being removed to avoid long-term memory leaks.
WARNING: DO NOT change this to a small value to re-enable communication with
quarantined nodes. Such feature is not supported and any behavior between
the affected systems after lifting the quarantine is undefined.
prune-quarantine-marker-after = 5 d

If system messages have been exchanged between two systems (i.e. remote death
watch or remote deployment has been used) a remote system will be marked as
quarantined after the two system has no active association, and no
communication happens during the time configured here.
The only purpose of this setting is to avoid storing system message redelivery
data (sequence number state, etc.) for an undefined amount of time leading to long
term memory leak. Instead, if a system has been gone for this period,
or more exactly
- there is no association between the two systems (TCP connection, if TCP transport is used)
- neither side has been attempting to communicate with the other
- there are no pending system messages to deliver
for the amount of time configured here, the remote system will be quarantined and all state
associated with it will be dropped.
quarantine-after-silence = 5 d

This setting defines the maximum number of unacknowledged system messages

2.9. Configuration 63

Akka Java Documentation, Release 2.3.16

allowed for a remote system. If this limit is reached the remote system is
declared to be dead and its UID marked as tainted.
system-message-buffer-size = 20000

This setting defines the maximum idle time after an individual
acknowledgement for system messages is sent. System message delivery
is guaranteed by explicit acknowledgement messages. These acks are
piggybacked on ordinary traffic messages. If no traffic is detected
during the time period configured here, the remoting will send out
an individual ack.
system-message-ack-piggyback-timeout = 0.3 s

This setting defines the time after internal management signals
between actors (used for DeathWatch and supervision) that have not been
explicitly acknowledged or negatively acknowledged are resent.
Messages that were negatively acknowledged are always immediately
resent.
resend-interval = 2 s

Maximum number of unacknowledged system messages that will be resent
each 'resend-interval'. If you watch many (> 1000) remote actors you can
increase this value to for example 600, but a too large limit (e.g. 10000)
may flood the connection and might cause false failure detection to trigger.
Test such a configuration by watching all actors at the same time and stop
all watched actors at the same time.
resend-limit = 200

WARNING: this setting should not be not changed unless all of its consequences
are properly understood which assumes experience with remoting internals
or expert advice.
This setting defines the time after redelivery attempts of internal management
signals are stopped to a remote system that has been not confirmed to be alive by
this system before.
initial-system-message-delivery-timeout = 3 m

Transports and adapters

List of the transport drivers that will be loaded by the remoting.
A list of fully qualified config paths must be provided where
the given configuration path contains a transport-class key
pointing to an implementation class of the Transport interface.
If multiple transports are provided, the address of the first
one will be used as a default address.
enabled-transports = ["akka.remote.netty.tcp"]

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters setting in the configuration of a
transport. The available adapters should be configured in this
section by providing a name, and the fully qualified name of
their corresponding implementation. The class given here
must implement akka.akka.remote.transport.TransportAdapterProvider
and have public constructor without parameters.
adapters {

gremlin = "akka.remote.transport.FailureInjectorProvider"
trttl = "akka.remote.transport.ThrottlerProvider"

}

Default configuration for the Netty based transport drivers

netty.tcp {
The class given here must implement the akka.remote.transport.Transport
interface and offer a public constructor which takes two arguments:
1) akka.actor.ExtendedActorSystem

2.9. Configuration 64

Akka Java Documentation, Release 2.3.16

2) com.typesafe.config.Config
transport-class = "akka.remote.transport.netty.NettyTransport"

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters list. The last adapter in the
list is the adapter immediately above the driver, while
the first one is the top of the stack below the standard
Akka protocol
applied-adapters = []

transport-protocol = tcp

The default remote server port clients should connect to.
Default is 2552 (AKKA), use 0 if you want a random available port
This port needs to be unique for each actor system on the same machine.
port = 2552

The hostname or ip to bind the remoting to,
InetAddress.getLocalHost.getHostAddress is used if empty
hostname = ""

Enables SSL support on this transport
enable-ssl = false

Sets the connectTimeoutMillis of all outbound connections,
i.e. how long a connect may take until it is timed out
connection-timeout = 15 s

If set to "<id.of.dispatcher>" then the specified dispatcher
will be used to accept inbound connections, and perform IO. If "" then
dedicated threads will be used.
Please note that the Netty driver only uses this configuration and does
not read the "akka.remote.use-dispatcher" entry. Instead it has to be
configured manually to point to the same dispatcher if needed.
use-dispatcher-for-io = ""

Sets the high water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-high-water-mark = 0b

Sets the low water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-low-water-mark = 0b

Sets the send buffer size of the Sockets,
set to 0b for platform default
send-buffer-size = 256000b

Sets the receive buffer size of the Sockets,
set to 0b for platform default
receive-buffer-size = 256000b

Maximum message size the transport will accept, but at least
32000 bytes.
Please note that UDP does not support arbitrary large datagrams,
so this setting has to be chosen carefully when using UDP.
Both send-buffer-size and receive-buffer-size settings has to
be adjusted to be able to buffer messages of maximum size.
maximum-frame-size = 128000b

Sets the size of the connection backlog
backlog = 4096

2.9. Configuration 65

Akka Java Documentation, Release 2.3.16

Enables the TCP_NODELAY flag, i.e. disables Nagle’s algorithm
tcp-nodelay = on

Enables TCP Keepalive, subject to the O/S kernel’s configuration
tcp-keepalive = on

Enables SO_REUSEADDR, which determines when an ActorSystem can open
the specified listen port (the meaning differs between *nix and Windows)
Valid values are "on", "off" and "off-for-windows"
due to the following Windows bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378
"off-for-windows" of course means that it's "on" for all other platforms
tcp-reuse-addr = off-for-windows

Used to configure the number of I/O worker threads on server sockets
server-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

Used to configure the number of I/O worker threads on client sockets
client-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

}

netty.udp = ${akka.remote.netty.tcp}
netty.udp {

transport-protocol = udp
}

netty.ssl = ${akka.remote.netty.tcp}
netty.ssl = {

Enable SSL/TLS encryption.
This must be enabled on both the client and server to work.
enable-ssl = true

security {
This is the Java Key Store used by the server connection
key-store = "keystore"

This password is used for decrypting the key store
key-store-password = "changeme"

2.9. Configuration 66

Akka Java Documentation, Release 2.3.16

This password is used for decrypting the key
key-password = "changeme"

This is the Java Key Store used by the client connection
trust-store = "truststore"

This password is used for decrypting the trust store
trust-store-password = "changeme"

Protocol to use for SSL encryption, choose from:
Java 6 & 7:
'SSLv3', 'TLSv1'
Java 7:
'TLSv1.1', 'TLSv1.2'
protocol = "TLSv1"

Example: ["TLS_RSA_WITH_AES_128_CBC_SHA", "TLS_RSA_WITH_AES_256_CBC_SHA"]
You need to install the JCE Unlimited Strength Jurisdiction Policy
Files to use AES 256.
More info here:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
enabled-algorithms = ["TLS_RSA_WITH_AES_128_CBC_SHA"]

There are three options, in increasing order of security:
"" or SecureRandom => (default)
"SHA1PRNG" => Can be slow because of blocking issues on Linux
"AES128CounterSecureRNG" => fastest startup and based on AES encryption
algorithm
"AES256CounterSecureRNG"
The following use one of 3 possible seed sources, depending on
availability: /dev/random, random.org and SecureRandom (provided by Java)
"AES128CounterInetRNG"
"AES256CounterInetRNG" (Install JCE Unlimited Strength Jurisdiction
Policy Files first)
Setting a value here may require you to supply the appropriate cipher
suite (see enabled-algorithms section above)
random-number-generator = ""

}
}

Default configuration for the failure injector transport adapter

gremlin {
Enable debug logging of the failure injector transport adapter
debug = off

}

Default dispatcher for the remoting subsystem

default-remote-dispatcher {
type = Dispatcher
executor = "fork-join-executor"
fork-join-executor {

Min number of threads to cap factor-based parallelism number to
parallelism-min = 2
parallelism-max = 2

}
}

backoff-remote-dispatcher {
type = Dispatcher
executor = "fork-join-executor"

2.9. Configuration 67

Akka Java Documentation, Release 2.3.16

fork-join-executor {
Min number of threads to cap factor-based parallelism number to
parallelism-min = 2
parallelism-max = 2

}
}

}

}

akka-testkit

######################################
Akka Testkit Reference Config File
######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
test {
factor by which to scale timeouts during tests, e.g. to account for shared
build system load
timefactor = 1.0

duration of EventFilter.intercept waits after the block is finished until
all required messages are received
filter-leeway = 3s

duration to wait in expectMsg and friends outside of within() block
by default
single-expect-default = 3s

The timeout that is added as an implicit by DefaultTimeout trait
default-timeout = 5s

calling-thread-dispatcher {
type = akka.testkit.CallingThreadDispatcherConfigurator

}
}

}

akka-zeromq

#####################################
Akka ZeroMQ Reference Config File
#####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {

zeromq {

The default timeout for a poll on the actual zeromq socket.
poll-timeout = 100ms

2.9. Configuration 68

Akka Java Documentation, Release 2.3.16

Timeout for creating a new socket
new-socket-timeout = 5s

socket-dispatcher {
A zeromq socket needs to be pinned to the thread that created it.
Changing this value results in weird errors and race conditions within
zeromq
executor = thread-pool-executor
type = "PinnedDispatcher"
thread-pool-executor.allow-core-timeout = off

}
}

}

2.9. Configuration 69

CHAPTER

THREE

ACTORS

3.1 Actors

The Actor Model provides a higher level of abstraction for writing concurrent and distributed systems. It alleviates
the developer from having to deal with explicit locking and thread management, making it easier to write correct
concurrent and parallel systems. Actors were defined in the 1973 paper by Carl Hewitt but have been popularized
by the Erlang language, and used for example at Ericsson with great success to build highly concurrent and reliable
telecom systems.

The API of Akka’s Actors is similar to Scala Actors which has borrowed some of its syntax from Erlang.

3.1.1 Creating Actors

Note: Since Akka enforces parental supervision every actor is supervised and (potentially) the supervisor of its
children, it is advisable that you familiarize yourself with Actor Systems and Supervision and Monitoring and it
may also help to read Actor References, Paths and Addresses.

Defining an Actor class

Actors in Java are implemented by extending the UntypedActor class and implementing the onReceive
method. This method takes the message as a parameter.

Here is an example:

import akka.actor.UntypedActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;

public class MyUntypedActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {
if (message instanceof String) {

log.info("Received String message: {}", message);
getSender().tell(message, getSelf());

} else
unhandled(message);

}
}

70

http://en.wikipedia.org/wiki/Actor_model

Akka Java Documentation, Release 2.3.16

Props

Props is a configuration class to specify options for the creation of actors, think of it as an immutable and thus
freely shareable recipe for creating an actor including associated deployment information (e.g. which dispatcher
to use, see more below). Here are some examples of how to create a Props instance.

import akka.actor.Props;
import akka.japi.Creator;

static class MyActorC implements Creator<MyActor> {
@Override public MyActor create() {
return new MyActor("...");

}
}

Props props1 = Props.create(MyUntypedActor.class);
Props props2 = Props.create(MyActor.class, "...");
Props props3 = Props.create(new MyActorC());

The second line shows how to pass constructor arguments to the Actor being created. The presence of a matching
constructor is verified during construction of the Props object, resulting in an IllegalArgumentEception
if no or multiple matching constructors are found.

The third line demonstrates the use of a Creator. The creator class must be static, which is verified during
Props construction. The type parameter’s upper bound is used to determine the produced actor class, falling
back to Actor if fully erased. An example of a parametric factory could be:

static class ParametricCreator<T extends MyActor> implements Creator<T> {
@Override public T create() {
// ... fabricate actor here

}
}

Note: In order for mailbox requirements—like using a deque-based mailbox for actors using the stash—to be
picked up, the actor type needs to be known before creating it, which is what the Creator type argument allows.
Therefore make sure to use the specific type for your actors wherever possible.

Recommended Practices

It is a good idea to provide static factory methods on the UntypedActor which help keeping the creation of
suitable Props as close to the actor definition as possible. This also allows usage of the Creator-based methods
which statically verify that the used constructor actually exists instead relying only on a runtime check.

public class DemoActor extends UntypedActor {

/**
* Create Props for an actor of this type.

* @param magicNumber The magic number to be passed to this actor’s constructor.

* @return a Props for creating this actor, which can then be further configured

* (e.g. calling `.withDispatcher()` on it)

*/
public static Props props(final int magicNumber) {
return Props.create(new Creator<DemoActor>() {

private static final long serialVersionUID = 1L;

@Override
public DemoActor create() throws Exception {

return new DemoActor(magicNumber);
}

});

3.1. Actors 71

Akka Java Documentation, Release 2.3.16

}

final int magicNumber;

public DemoActor(int magicNumber) {
this.magicNumber = magicNumber;

}

@Override
public void onReceive(Object msg) {
// some behavior here

}

}

system.actorOf(DemoActor.props(42), "demo");

Creating Actors with Props

Actors are created by passing a Props instance into the actorOf factory method which is available on
ActorSystem and ActorContext.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;

// ActorSystem is a heavy object: create only one per application
final ActorSystem system = ActorSystem.create("MySystem");
final ActorRef myActor = system.actorOf(Props.create(MyUntypedActor.class),

"myactor");

Using the ActorSystem will create top-level actors, supervised by the actor system’s provided guardian actor,
while using an actor’s context will create a child actor.

class A extends UntypedActor {
final ActorRef child =

getContext().actorOf(Props.create(MyUntypedActor.class), "myChild");
// plus some behavior ...

}

It is recommended to create a hierarchy of children, grand-children and so on such that it fits the logical failure-
handling structure of the application, see Actor Systems.

The call to actorOf returns an instance of ActorRef. This is a handle to the actor instance and the only way to
interact with it. The ActorRef is immutable and has a one to one relationship with the Actor it represents. The
ActorRef is also serializable and network-aware. This means that you can serialize it, send it over the wire and
use it on a remote host and it will still be representing the same Actor on the original node, across the network.

The name parameter is optional, but you should preferably name your actors, since that is used in log messages
and for identifying actors. The name must not be empty or start with $, but it may contain URL encoded char-
acters (eg. %20 for a blank space). If the given name is already in use by another child to the same parent an
InvalidActorNameException is thrown.

Actors are automatically started asynchronously when created.

Dependency Injection

If your UntypedActor has a constructor that takes parameters then those need to be part of the Props as well, as
described above. But there are cases when a factory method must be used, for example when the actual constructor
arguments are determined by a dependency injection framework.

3.1. Actors 72

Akka Java Documentation, Release 2.3.16

import akka.actor.Actor;
import akka.actor.IndirectActorProducer;

class DependencyInjector implements IndirectActorProducer {
final Object applicationContext;
final String beanName;

public DependencyInjector(Object applicationContext, String beanName) {
this.applicationContext = applicationContext;
this.beanName = beanName;

}

@Override
public Class<? extends Actor> actorClass() {
return MyActor.class;

}

@Override
public MyActor produce() {
MyActor result;
// obtain fresh Actor instance from DI framework ...
return result;

}
}

final ActorRef myActor = getContext().actorOf(
Props.create(DependencyInjector.class, applicationContext, "MyActor"),

"myactor3");

Warning: You might be tempted at times to offer an IndirectActorProducer which always returns
the same instance, e.g. by using a static field. This is not supported, as it goes against the meaning of an actor
restart, which is described here: What Restarting Means.
When using a dependency injection framework, actor beans MUST NOT have singleton scope.

Techniques for dependency injection and integration with dependency injection frameworks are described in more
depth in the Using Akka with Dependency Injection guideline and the Akka Java Spring tutorial in Typesafe
Activator.

The Inbox

When writing code outside of actors which shall communicate with actors, the ask pattern can be a solution (see
below), but there are two thing it cannot do: receiving multiple replies (e.g. by subscribing an ActorRef to a
notification service) and watching other actors’ lifecycle. For these purposes there is the Inbox class:

final Inbox inbox = Inbox.create(system);
inbox.send(target, "hello");
assert inbox.receive(Duration.create(1, TimeUnit.SECONDS)).equals("world");

The send method wraps a normal tell and supplies the internal actor’s reference as the sender. This allows the
reply to be received on the last line. Watching an actor is quite simple as well:

final Inbox inbox = Inbox.create(system);
inbox.watch(target);
target.tell(PoisonPill.getInstance(), ActorRef.noSender());
assert inbox.receive(Duration.create(1, TimeUnit.SECONDS)) instanceof Terminated;

3.1. Actors 73

http://letitcrash.com/post/55958814293/akka-dependency-injection
http://www.typesafe.com/activator/template/akka-java-spring

Akka Java Documentation, Release 2.3.16

3.1.2 UntypedActor API

The UntypedActor class defines only one abstract method, the above mentioned onReceive(Object
message), which implements the behavior of the actor.

If the current actor behavior does not match a received message, it’s recommended that you call the unhandled
method, which by default publishes a new akka.actor.UnhandledMessage(message, sender,
recipient) on the actor system’s event stream (set configuration item akka.actor.debug.unhandled
to on to have them converted into actual Debug messages).

In addition, it offers:

• getSelf reference to the ActorRef of the actor

• getSender reference sender Actor of the last received message, typically used as described in Reply to
messages

• supervisorStrategy user overridable definition the strategy to use for supervising child actors

This strategy is typically declared inside the actor in order to have access to the actor’s internal state within
the decider function: since failure is communicated as a message sent to the supervisor and processed like
other messages (albeit outside of the normal behavior), all values and variables within the actor are available,
as is the getSender() reference (which will be the immediate child reporting the failure; if the original
failure occurred within a distant descendant it is still reported one level up at a time).

• getContext exposes contextual information for the actor and the current message, such as:

– factory methods to create child actors (actorOf)

– system that the actor belongs to

– parent supervisor

– supervised children

– lifecycle monitoring

– hotswap behavior stack as described in HotSwap

The remaining visible methods are user-overridable life-cycle hooks which are described in the following:

public void preStart() {
}

public void preRestart(Throwable reason, scala.Option<Object> message) {
for (ActorRef each : getContext().getChildren()) {
getContext().unwatch(each);
getContext().stop(each);

}
postStop();

}

public void postRestart(Throwable reason) {
preStart();

}

public void postStop() {
}

The implementations shown above are the defaults provided by the UntypedActor class.

3.1. Actors 74

Akka Java Documentation, Release 2.3.16

Actor Lifecycle

A path in an actor system represents a “place” which might be occupied by a living actor. Initially (apart from
system initialized actors) a path is empty. When actorOf() is called it assigns an incarnation of the actor
described by the passed Props to the given path. An actor incarnation is identified by the path and a UID. A
restart only swaps the Actor instance defined by the Props but the incarnation and hence the UID remains the
same.

The lifecycle of an incarnation ends when the actor is stopped. At that point the appropriate lifecycle events are
called and watching actors are notified of the termination. After the incarnation is stopped, the path can be reused
again by creating an actor with actorOf(). In this case the name of the new incarnation will be the same as the
previous one but the UIDs will differ.

An ActorRef always represents an incarnation (path and UID) not just a given path. Therefore if an actor is
stopped and a new one with the same name is created an ActorRef of the old incarnation will not point to the
new one.

ActorSelection on the other hand points to the path (or multiple paths if wildcards are used) and is completely
oblivious to which incarnation is currently occupying it. ActorSelection cannot be watched for this reason.
It is possible to resolve the current incarnation’s ActorRef living under the path by sending an Identify
message to the ActorSelection which will be replied to with an ActorIdentity containing the correct
reference (see Identifying Actors via Actor Selection). This can also be done with the resolveOne method of
the ActorSelection, which returns a Future of the matching ActorRef.

Lifecycle Monitoring aka DeathWatch

In order to be notified when another actor terminates (i.e. stops permanently, not temporary failure and restart), an
actor may register itself for reception of the Terminatedmessage dispatched by the other actor upon termination
(see Stopping Actors). This service is provided by the DeathWatch component of the actor system.

3.1. Actors 75

Akka Java Documentation, Release 2.3.16

Registering a monitor is easy (see fourth line, the rest is for demonstrating the whole functionality):

import akka.actor.Terminated;

public class WatchActor extends UntypedActor {
final ActorRef child = this.getContext().actorOf(Props.empty(), "child");
{
this.getContext().watch(child); // <-- the only call needed for registration

}
ActorRef lastSender = getContext().system().deadLetters();

@Override
public void onReceive(Object message) {
if (message.equals("kill")) {

getContext().stop(child);
lastSender = getSender();

} else if (message instanceof Terminated) {
final Terminated t = (Terminated) message;
if (t.getActor() == child) {

lastSender.tell("finished", getSelf());
}

} else {
unhandled(message);

}
}

}

It should be noted that the Terminated message is generated independent of the order in which registration and
termination occur. In particular, the watching actor will receive a Terminated message even if the watched
actor has already been terminated at the time of registration.

Registering multiple times does not necessarily lead to multiple messages being generated, but there is no guaran-
tee that only exactly one such message is received: if termination of the watched actor has generated and queued
the message, and another registration is done before this message has been processed, then a second message will
be queued, because registering for monitoring of an already terminated actor leads to the immediate generation of
the Terminated message.

It is also possible to deregister from watching another actor’s liveliness using
getContext().unwatch(target). This works even if the Terminated message has already
been enqueued in the mailbox; after calling unwatch no Terminated message for that actor will be processed
anymore.

Start Hook

Right after starting the actor, its preStart method is invoked.

@Override
public void preStart() {

child = getContext().actorOf(Props.empty());
}

This method is called when the actor is first created. During restarts it is called by the default implementation of
postRestart, which means that by overriding that method you can choose whether the initialization code in
this method is called only exactly once for this actor or for every restart. Initialization code which is part of the
actor’s constructor will always be called when an instance of the actor class is created, which happens at every
restart.

Restart Hooks

All actors are supervised, i.e. linked to another actor with a fault handling strategy. Actors may be restarted in
case an exception is thrown while processing a message (see Supervision and Monitoring). This restart involves

3.1. Actors 76

Akka Java Documentation, Release 2.3.16

the hooks mentioned above:

1. The old actor is informed by calling preRestart with the exception which caused the restart and the
message which triggered that exception; the latter may be None if the restart was not caused by processing
a message, e.g. when a supervisor does not trap the exception and is restarted in turn by its supervisor, or if
an actor is restarted due to a sibling’s failure. If the message is available, then that message’s sender is also
accessible in the usual way (i.e. by calling getSender()).

This method is the best place for cleaning up, preparing hand-over to the fresh actor instance, etc. By default
it stops all children and calls postStop.

2. The initial factory from the actorOf call is used to produce the fresh instance.

3. The new actor’s postRestart method is invoked with the exception which caused the restart. By default
the preStart is called, just as in the normal start-up case.

An actor restart replaces only the actual actor object; the contents of the mailbox is unaffected by the restart,
so processing of messages will resume after the postRestart hook returns. The message that triggered the
exception will not be received again. Any message sent to an actor while it is being restarted will be queued to its
mailbox as usual.

Warning: Be aware that the ordering of failure notifications relative to user messages is not deterministic. In
particular, a parent might restart its child before it has processed the last messages sent by the child before the
failure. See Discussion: Message Ordering for details.

Stop Hook

After stopping an actor, its postStop hook is called, which may be used e.g. for deregistering this actor from
other services. This hook is guaranteed to run after message queuing has been disabled for this actor, i.e. messages
sent to a stopped actor will be redirected to the deadLetters of the ActorSystem.

3.1.3 Identifying Actors via Actor Selection

As described in Actor References, Paths and Addresses, each actor has a unique logical path, which is obtained
by following the chain of actors from child to parent until reaching the root of the actor system, and it has a
physical path, which may differ if the supervision chain includes any remote supervisors. These paths are used
by the system to look up actors, e.g. when a remote message is received and the recipient is searched, but they
are also useful more directly: actors may look up other actors by specifying absolute or relative paths—logical or
physical—and receive back an ActorSelection with the result:

// will look up this absolute path
getContext().actorSelection("/user/serviceA/actor");
// will look up sibling beneath same supervisor
getContext().actorSelection("../joe");

Note: It is always preferable to communicate with other Actors using their ActorRef instead of relying upon
ActorSelection. Exceptions are

• sending messages using the At-Least-Once Delivery facility

• initiating first contact with a remote system

In all other cases ActorRefs can be provided during Actor creation or initialization, passing them from parent to
child or introducing Actors by sending their ActorRefs to other Actors within messages.

The supplied path is parsed as a java.net.URI, which basically means that it is split on / into path elements.
If the path starts with /, it is absolute and the look-up starts at the root guardian (which is the parent of "/user");
otherwise it starts at the current actor. If a path element equals .., the look-up will take a step “up” towards the

3.1. Actors 77

Akka Java Documentation, Release 2.3.16

supervisor of the currently traversed actor, otherwise it will step “down” to the named child. It should be noted
that the .. in actor paths here always means the logical structure, i.e. the supervisor.

The path elements of an actor selection may contain wildcard patterns allowing for broadcasting of messages to
that section:

// will look all children to serviceB with names starting with worker
getContext().actorSelection("/user/serviceB/worker*");
// will look up all siblings beneath same supervisor
getContext().actorSelection("../*");

Messages can be sent via the ActorSelection and the path of the ActorSelection is looked up when
delivering each message. If the selection does not match any actors the message will be dropped.

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
getSender reference of the reply from the actor. There is a built-in Identify message that all Actors will
understand and automatically reply to with a ActorIdentity message containing the ActorRef. This mes-
sage is handled specially by the actors which are traversed in the sense that if a concrete name lookup fails (i.e.
a non-wildcard path element does not correspond to a live actor) then a negative result is generated. Please note
that this does not mean that delivery of that reply is guaranteed, it still is a normal message.

import akka.actor.ActorIdentity;
import akka.actor.ActorSelection;
import akka.actor.Identify;

public class Follower extends UntypedActor {
final String identifyId = "1";
{
ActorSelection selection =

getContext().actorSelection("/user/another");
selection.tell(new Identify(identifyId), getSelf());

}
ActorRef another;

final ActorRef probe;
public Follower(ActorRef probe) {
this.probe = probe;

}

@Override
public void onReceive(Object message) {
if (message instanceof ActorIdentity) {

ActorIdentity identity = (ActorIdentity) message;
if (identity.correlationId().equals(identifyId)) {

ActorRef ref = identity.getRef();
if (ref == null)
getContext().stop(getSelf());

else {
another = ref;
getContext().watch(another);
probe.tell(ref, getSelf());

}
}

} else if (message instanceof Terminated) {
final Terminated t = (Terminated) message;
if (t.getActor().equals(another)) {

getContext().stop(getSelf());
}

} else {
unhandled(message);

}
}

}

3.1. Actors 78

Akka Java Documentation, Release 2.3.16

You can also acquire an ActorRef for an ActorSelection with the resolveOne method of the
ActorSelection. It returns a Future of the matching ActorRef if such an actor exists. It is completed
with failure [[akka.actor.ActorNotFound]] if no such actor exists or the identification didn’t complete within the
supplied timeout.

Remote actor addresses may also be looked up, if remoting is enabled:

getContext().actorSelection("akka.tcp://app@otherhost:1234/user/serviceB");

An example demonstrating remote actor look-up is given in Remoting Sample.

Note: actorFor is deprecated in favor of actorSelection because actor references acquired with
actorFor behave differently for local and remote actors. In the case of a local actor reference, the named
actor needs to exist before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This
will be true even if an actor with that exact path is created after acquiring the actor reference. For remote actor
references acquired with actorFor the behaviour is different and sending messages to such a reference will under
the hood look up the actor by path on the remote system for every message send.

3.1.4 Messages and immutability

IMPORTANT: Messages can be any kind of object but have to be immutable. Akka can’t enforce immutability
(yet) so this has to be by convention.

Here is an example of an immutable message:

public class ImmutableMessage {
private final int sequenceNumber;
private final List<String> values;

public ImmutableMessage(int sequenceNumber, List<String> values) {
this.sequenceNumber = sequenceNumber;
this.values = Collections.unmodifiableList(new ArrayList<String>(values));

}

public int getSequenceNumber() {
return sequenceNumber;

}

public List<String> getValues() {
return values;

}
}

3.1.5 Send messages

Messages are sent to an Actor through one of the following methods.

• tell means “fire-and-forget”, e.g. send a message asynchronously and return immediately.

• ask sends a message asynchronously and returns a Future representing a possible reply.

Message ordering is guaranteed on a per-sender basis.

Note: There are performance implications of using ask since something needs to keep track of when it times
out, there needs to be something that bridges a Promise into an ActorRef and it also needs to be reachable
through remoting. So always prefer tell for performance, and only ask if you must.

3.1. Actors 79

Akka Java Documentation, Release 2.3.16

In all these methods you have the option of passing along your own ActorRef. Make it a practice of doing so
because it will allow the receiver actors to be able to respond to your message, since the sender reference is sent
along with the message.

Tell: Fire-forget

This is the preferred way of sending messages. No blocking waiting for a message. This gives the best concurrency
and scalability characteristics.

// don’t forget to think about who is the sender (2nd argument)
target.tell(message, getSelf());

The sender reference is passed along with the message and available within the receiving actor via its getSender
method while processing this message. Inside of an actor it is usually getSelf who shall be the sender, but there
can be cases where replies shall be routed to some other actor—e.g. the parent—in which the second argument to
tell would be a different one. Outside of an actor and if no reply is needed the second argument can be null;
if a reply is needed outside of an actor you can use the ask-pattern described next..

Ask: Send-And-Receive-Future

The ask pattern involves actors as well as futures, hence it is offered as a use pattern rather than a method on
ActorRef:

import static akka.pattern.Patterns.ask;
import static akka.pattern.Patterns.pipe;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import akka.dispatch.Futures;
import akka.dispatch.Mapper;
import akka.util.Timeout;

final Timeout t = new Timeout(Duration.create(5, TimeUnit.SECONDS));

final ArrayList<Future<Object>> futures = new ArrayList<Future<Object>>();
futures.add(ask(actorA, "request", 1000)); // using 1000ms timeout
futures.add(ask(actorB, "another request", t)); // using timeout from

// above

final Future<Iterable<Object>> aggregate = Futures.sequence(futures,
system.dispatcher());

final Future<Result> transformed = aggregate.map(
new Mapper<Iterable<Object>, Result>() {

public Result apply(Iterable<Object> coll) {
final Iterator<Object> it = coll.iterator();
final String x = (String) it.next();
final String s = (String) it.next();
return new Result(x, s);

}
}, system.dispatcher());

pipe(transformed, system.dispatcher()).to(actorC);

This example demonstrates ask together with the pipe pattern on futures, because this is likely to be a common
combination. Please note that all of the above is completely non-blocking and asynchronous: ask produces a
Future, two of which are composed into a new future using the Futures.sequence and map methods and
then pipe installs an onComplete-handler on the future to effect the submission of the aggregated Result to
another actor.

Using ask will send a message to the receiving Actor as with tell, and the receiving actor must reply with
getSender().tell(reply, getSelf()) in order to complete the returned Future with a value. The

3.1. Actors 80

Akka Java Documentation, Release 2.3.16

ask operation involves creating an internal actor for handling this reply, which needs to have a timeout after
which it is destroyed in order not to leak resources; see more below.

Warning: To complete the future with an exception you need send a Failure message to the sender. This is
not done automatically when an actor throws an exception while processing a message.

try {
String result = operation();
getSender().tell(result, getSelf());

} catch (Exception e) {
getSender().tell(new akka.actor.Status.Failure(e), getSelf());
throw e;

}

If the actor does not complete the future, it will expire after the timeout period, specified as parameter to the ask
method; this will complete the Future with an AskTimeoutException.

See Futures for more information on how to await or query a future.

The onComplete, onSuccess, or onFailure methods of the Future can be used to register a callback to
get a notification when the Future completes. Gives you a way to avoid blocking.

Warning: When using future callbacks, inside actors you need to carefully avoid closing over the containing
actor’s reference, i.e. do not call methods or access mutable state on the enclosing actor from within the call-
back. This would break the actor encapsulation and may introduce synchronization bugs and race conditions
because the callback will be scheduled concurrently to the enclosing actor. Unfortunately there is not yet a
way to detect these illegal accesses at compile time. See also: Actors and shared mutable state

Forward message

You can forward a message from one actor to another. This means that the original sender address/reference is
maintained even though the message is going through a ‘mediator’. This can be useful when writing actors that
work as routers, load-balancers, replicators etc. You need to pass along your context variable as well.

target.forward(result, getContext());

3.1.6 Receive messages

When an actor receives a message it is passed into the onReceive method, this is an abstract method on the
UntypedActor base class that needs to be defined.

Here is an example:

import akka.actor.UntypedActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;

public class MyUntypedActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) throws Exception {
if (message instanceof String) {

log.info("Received String message: {}", message);
getSender().tell(message, getSelf());

} else
unhandled(message);

}
}

3.1. Actors 81

Akka Java Documentation, Release 2.3.16

An alternative to using if-instanceof checks is to use Apache Commons MethodUtils to invoke a named method
whose parameter type matches the message type.

3.1.7 Reply to messages

If you want to have a handle for replying to a message, you can use getSender(), which gives you an ActorRef.
You can reply by sending to that ActorRef with getSender().tell(replyMsg, getSelf()). You can
also store the ActorRef for replying later, or passing on to other actors. If there is no sender (a message was sent
without an actor or future context) then the sender defaults to a ‘dead-letter’ actor ref.

@Override
public void onReceive(Object msg) {

Object result =
// calculate result ...

// do not forget the second argument!
getSender().tell(result, getSelf());

}

3.1.8 Receive timeout

The UntypedActorContext setReceiveTimeout defines the inactivity timeout after which the sending of
a ReceiveTimeout message is triggered. When specified, the receive function should be able to handle an
akka.actor.ReceiveTimeout message. 1 millisecond is the minimum supported timeout.

Please note that the receive timeout might fire and enqueue the ReceiveTimeout message right after another mes-
sage was enqueued; hence it is not guaranteed that upon reception of the receive timeout there must have been
an idle period beforehand as configured via this method.

Once set, the receive timeout stays in effect (i.e. continues firing repeatedly after inactivity periods). Pass in
Duration.Undefined to switch off this feature.

import akka.actor.ActorRef;
import akka.actor.ReceiveTimeout;
import akka.actor.UntypedActor;
import scala.concurrent.duration.Duration;

public class MyReceiveTimeoutUntypedActor extends UntypedActor {

public MyReceiveTimeoutUntypedActor() {
// To set an initial delay
getContext().setReceiveTimeout(Duration.create("30 seconds"));

}

public void onReceive(Object message) {
if (message.equals("Hello")) {

// To set in a response to a message
getContext().setReceiveTimeout(Duration.create("1 second"));

} else if (message instanceof ReceiveTimeout) {
// To turn it off
getContext().setReceiveTimeout(Duration.Undefined());

} else {
unhandled(message);

}
}

}

3.1. Actors 82

http://commons.apache.org/beanutils/api/org/apache/commons/beanutils/MethodUtils.html#invokeMethod(java.lang.Object,%20java.lang.String,%20java.lang.Object)

Akka Java Documentation, Release 2.3.16

3.1.9 Stopping actors

Actors are stopped by invoking the stop method of a ActorRefFactory, i.e. ActorContext or
ActorSystem. Typically the context is used for stopping child actors and the system for stopping top level
actors. The actual termination of the actor is performed asynchronously, i.e. stop may return before the actor is
stopped.

Processing of the current message, if any, will continue before the actor is stopped, but additional messages in the
mailbox will not be processed. By default these messages are sent to the deadLetters of the ActorSystem,
but that depends on the mailbox implementation.

Termination of an actor proceeds in two steps: first the actor suspends its mailbox processing and sends a stop
command to all its children, then it keeps processing the internal termination notifications from its children until
the last one is gone, finally terminating itself (invoking postStop, dumping mailbox, publishing Terminated
on the DeathWatch, telling its supervisor). This procedure ensures that actor system sub-trees terminate in an
orderly fashion, propagating the stop command to the leaves and collecting their confirmation back to the stopped
supervisor. If one of the actors does not respond (i.e. processing a message for extended periods of time and
therefore not receiving the stop command), this whole process will be stuck.

Upon ActorSystem.shutdown, the system guardian actors will be stopped, and the aforementioned process
will ensure proper termination of the whole system.

The postStop hook is invoked after an actor is fully stopped. This enables cleaning up of resources:

@Override
public void postStop() {

// clean up resources here ...
}

Note: Since stopping an actor is asynchronous, you cannot immediately reuse the name of the child you just
stopped; this will result in an InvalidActorNameException. Instead, watch the terminating actor and
create its replacement in response to the Terminated message which will eventually arrive.

PoisonPill

You can also send an actor the akka.actor.PoisonPill message, which will stop the actor when the mes-
sage is processed. PoisonPill is enqueued as ordinary messages and will be handled after messages that were
already queued in the mailbox.

Use it like this:

myActor.tell(akka.actor.PoisonPill.getInstance(), sender);

Graceful Stop

gracefulStop is useful if you need to wait for termination or compose ordered termination of several actors:

import static akka.pattern.Patterns.gracefulStop;
import scala.concurrent.Await;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import akka.pattern.AskTimeoutException;

try {
Future<Boolean> stopped =
gracefulStop(actorRef, Duration.create(5, TimeUnit.SECONDS), Manager.SHUTDOWN);

Await.result(stopped, Duration.create(6, TimeUnit.SECONDS));
// the actor has been stopped

} catch (AskTimeoutException e) {

3.1. Actors 83

Akka Java Documentation, Release 2.3.16

// the actor wasn't stopped within 5 seconds
}

public class Manager extends UntypedActor {

public static final String SHUTDOWN = "shutdown";

ActorRef worker = getContext().watch(getContext().actorOf(
Props.create(Cruncher.class), "worker"));

public void onReceive(Object message) {
if (message.equals("job")) {

worker.tell("crunch", getSelf());
} else if (message.equals(SHUTDOWN)) {

worker.tell(PoisonPill.getInstance(), getSelf());
getContext().become(shuttingDown);

}
}

Procedure<Object> shuttingDown = new Procedure<Object>() {
@Override
public void apply(Object message) {

if (message.equals("job")) {
getSender().tell("service unavailable, shutting down", getSelf());

} else if (message instanceof Terminated) {
getContext().stop(getSelf());

}
}

};
}

When gracefulStop() returns successfully, the actor’s postStop() hook will have been executed: there
exists a happens-before edge between the end of postStop() and the return of gracefulStop().

In the above example a custom Manager.SHUTDOWN message is sent to the target actor to initiate the process
of stopping the actor. You can use PoisonPill for this, but then you have limited possibilities to perform
interactions with other actors before stopping the target actor. Simple cleanup tasks can be handled in postStop.

Warning: Keep in mind that an actor stopping and its name being deregistered are separate events which
happen asynchronously from each other. Therefore it may be that you will find the name still in use after
gracefulStop() returned. In order to guarantee proper deregistration, only reuse names from within a
supervisor you control and only in response to a Terminated message, i.e. not for top-level actors.

3.1.10 HotSwap

Upgrade

Akka supports hotswapping the Actor’s message loop (e.g. its implementation) at runtime. Use the
getContext().become method from within the Actor. The hotswapped code is kept in a Stack which can be
pushed (replacing or adding at the top) and popped.

Warning: Please note that the actor will revert to its original behavior when restarted by its Supervisor.

To hotswap the Actor using getContext().become:

import akka.japi.Procedure;

public class HotSwapActor extends UntypedActor {

3.1. Actors 84

Akka Java Documentation, Release 2.3.16

Procedure<Object> angry = new Procedure<Object>() {
@Override
public void apply(Object message) {

if (message.equals("bar")) {
getSender().tell("I am already angry?", getSelf());

} else if (message.equals("foo")) {
getContext().become(happy);

}
}

};

Procedure<Object> happy = new Procedure<Object>() {
@Override
public void apply(Object message) {

if (message.equals("bar")) {
getSender().tell("I am already happy :-)", getSelf());

} else if (message.equals("foo")) {
getContext().become(angry);

}
}

};

public void onReceive(Object message) {
if (message.equals("bar")) {

getContext().become(angry);
} else if (message.equals("foo")) {

getContext().become(happy);
} else {

unhandled(message);
}

}
}

This variant of the become method is useful for many different things, such as to implement a Finite State
Machine (FSM). It will replace the current behavior (i.e. the top of the behavior stack), which means that you do
not use unbecome, instead always the next behavior is explicitly installed.

The other way of using become does not replace but add to the top of the behavior stack. In this case care must
be taken to ensure that the number of “pop” operations (i.e. unbecome) matches the number of “push” ones in
the long run, otherwise this amounts to a memory leak (which is why this behavior is not the default).

public class UntypedActorSwapper {

public static class Swap {
public static Swap SWAP = new Swap();

private Swap() {
}

}

public static class Swapper extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public void onReceive(Object message) {
if (message == SWAP) {

log.info("Hi");
getContext().become(new Procedure<Object>() {
@Override
public void apply(Object message) {

log.info("Ho");
getContext().unbecome(); // resets the latest 'become'

}
}, false); // this signals stacking of the new behavior

3.1. Actors 85

Akka Java Documentation, Release 2.3.16

} else {
unhandled(message);

}
}

}

public static void main(String... args) {
ActorSystem system = ActorSystem.create("MySystem");
ActorRef swap = system.actorOf(Props.create(Swapper.class));
swap.tell(SWAP, ActorRef.noSender()); // logs Hi
swap.tell(SWAP, ActorRef.noSender()); // logs Ho
swap.tell(SWAP, ActorRef.noSender()); // logs Hi
swap.tell(SWAP, ActorRef.noSender()); // logs Ho
swap.tell(SWAP, ActorRef.noSender()); // logs Hi
swap.tell(SWAP, ActorRef.noSender()); // logs Ho

}

}

3.1.11 Stash

The UntypedActorWithStash class enables an actor to temporarily stash away messages that can not or
should not be handled using the actor’s current behavior. Upon changing the actor’s message handler, i.e., right
before invoking getContext().become() or getContext().unbecome(), all stashed messages can
be “unstashed”, thereby prepending them to the actor’s mailbox. This way, the stashed messages can be processed
in the same order as they have been received originally. An actor that extends UntypedActorWithStash will
automatically get a deque-based mailbox.

Note: The abstract class UntypedActorWithStash implements the marker interface
RequiresMessageQueue<DequeBasedMessageQueueSemantics> which requests the system
to automatically choose a deque based mailbox implementation for the actor. If you want more control over the
mailbox, see the documentation on mailboxes: Mailboxes.

Here is an example of the UntypedActorWithStash class in action:

import akka.actor.UntypedActorWithStash;

public class ActorWithProtocol extends UntypedActorWithStash {
public void onReceive(Object msg) {
if (msg.equals("open")) {

unstashAll();
getContext().become(new Procedure<Object>() {

public void apply(Object msg) throws Exception {
if (msg.equals("write")) {

// do writing...
} else if (msg.equals("close")) {

unstashAll();
getContext().unbecome();

} else {
stash();

}
}

}, false); // add behavior on top instead of replacing
} else {

stash();
}

}
}

3.1. Actors 86

Akka Java Documentation, Release 2.3.16

Invoking stash() adds the current message (the message that the actor received last) to the actor’s stash.
It is typically invoked when handling the default case in the actor’s message handler to stash messages that
aren’t handled by the other cases. It is illegal to stash the same message twice; to do so results in an
IllegalStateException being thrown. The stash may also be bounded in which case invoking stash()
may lead to a capacity violation, which results in a StashOverflowException. The capacity of the stash
can be configured using the stash-capacity setting (an Int) of the mailbox’s configuration.

Invoking unstashAll() enqueues messages from the stash to the actor’s mailbox until the capacity of the mail-
box (if any) has been reached (note that messages from the stash are prepended to the mailbox). In case a bounded
mailbox overflows, a MessageQueueAppendFailedException is thrown. The stash is guaranteed to be
empty after calling unstashAll().

The stash is backed by a scala.collection.immutable.Vector. As a result, even a very large number
of messages may be stashed without a major impact on performance.

Note that the stash is part of the ephemeral actor state, unlike the mailbox. Therefore, it should be managed like
other parts of the actor’s state which have the same property. The UntypedActorWithStash implementation
of preRestart will call unstashAll(), which is usually the desired behavior.

Note: If you want to enforce that your actor can only work with an unbounded stash, then you should use the
UntypedActorWithUnboundedStash class instead.

3.1.12 Killing an Actor

You can kill an actor by sending a Kill message. This will cause the actor to throw a
ActorKilledException, triggering a failure. The actor will suspend operation and its supervisor will be
asked how to handle the failure, which may mean resuming the actor, restarting it or terminating it completely.
See What Supervision Means for more information.

Use Kill like this:

victim.tell(akka.actor.Kill.getInstance(), ActorRef.noSender());

3.1.13 Actors and exceptions

It can happen that while a message is being processed by an actor, that some kind of exception is thrown, e.g. a
database exception.

What happens to the Message

If an exception is thrown while a message is being processed (i.e. taken out of its mailbox and handed over to the
current behavior), then this message will be lost. It is important to understand that it is not put back on the mailbox.
So if you want to retry processing of a message, you need to deal with it yourself by catching the exception and
retry your flow. Make sure that you put a bound on the number of retries since you don’t want a system to livelock
(so consuming a lot of cpu cycles without making progress). Another possibility would be to have a look at the
PeekMailbox pattern.

What happens to the mailbox

If an exception is thrown while a message is being processed, nothing happens to the mailbox. If the actor is
restarted, the same mailbox will be there. So all messages on that mailbox will be there as well.

3.1. Actors 87

Akka Java Documentation, Release 2.3.16

What happens to the actor

If code within an actor throws an exception, that actor is suspended and the supervision process is started (see Su-
pervision and Monitoring). Depending on the supervisor’s decision the actor is resumed (as if nothing happened),
restarted (wiping out its internal state and starting from scratch) or terminated.

3.1.14 Initialization patterns

The rich lifecycle hooks of Actors provide a useful toolkit to implement various initialization patterns. During the
lifetime of an ActorRef, an actor can potentially go through several restarts, where the old instance is replaced
by a fresh one, invisibly to the outside observer who only sees the ActorRef.

One may think about the new instances as “incarnations”. Initialization might be necessary for every incarnation
of an actor, but sometimes one needs initialization to happen only at the birth of the first instance when the
ActorRef is created. The following sections provide patterns for different initialization needs.

Initialization via constructor

Using the constructor for initialization has various benefits. First of all, it makes it possible to use val fields to
store any state that does not change during the life of the actor instance, making the implementation of the actor
more robust. The constructor is invoked for every incarnation of the actor, therefore the internals of the actor can
always assume that proper initialization happened. This is also the drawback of this approach, as there are cases
when one would like to avoid reinitializing internals on restart. For example, it is often useful to preserve child
actors across restarts. The following section provides a pattern for this case.

Initialization via preStart

The method preStart() of an actor is only called once directly during the initialization of the first instance,
that is, at creation of its ActorRef. In the case of restarts, preStart() is called from postRestart(),
therefore if not overridden, preStart() is called on every incarnation. However, overriding postRestart()
one can disable this behavior, and ensure that there is only one call to preStart().

One useful usage of this pattern is to disable creation of new ActorRefs for children during restarts. This can
be achieved by overriding preRestart():

@Override
public void preStart() {

// Initialize children here
}

// Overriding postRestart to disable the call to preStart()
// after restarts
@Override
public void postRestart(Throwable reason) {
}

// The default implementation of preRestart() stops all the children
// of the actor. To opt-out from stopping the children, we
// have to override preRestart()
@Override
public void preRestart(Throwable reason, Option<Object> message)

throws Exception {
// Keep the call to postStop(), but no stopping of children
postStop();

}

Please note, that the child actors are still restarted, but no new ActorRef is created. One can recursively apply
the same principles for the children, ensuring that their preStart() method is called only at the creation of
their refs.

3.1. Actors 88

Akka Java Documentation, Release 2.3.16

For more information see What Restarting Means.

Initialization via message passing

There are cases when it is impossible to pass all the information needed for actor initialization in the constructor,
for example in the presence of circular dependencies. In this case the actor should listen for an initialization
message, and use become() or a finite state-machine state transition to encode the initialized and uninitialized
states of the actor.

private String initializeMe = null;

@Override
public void onReceive(Object message) throws Exception {

if (message.equals("init")) {
initializeMe = "Up and running";
getContext().become(new Procedure<Object>() {

@Override
public void apply(Object message) throws Exception {

if (message.equals("U OK?"))
getSender().tell(initializeMe, getSelf());

}
});

}
}

If the actor may receive messages before it has been initialized, a useful tool can be the Stash to save messages
until the initialization finishes, and replaying them after the actor became initialized.

Warning: This pattern should be used with care, and applied only when none of the patterns above are
applicable. One of the potential issues is that messages might be lost when sent to remote actors. Also,
publishing an ActorRef in an uninitialized state might lead to the condition that it receives a user message
before the initialization has been done.

3.2 Typed Actors

Akka Typed Actors is an implementation of the Active Objects pattern. Essentially turning method invocations
into asynchronous dispatch instead of synchronous that has been the default way since Smalltalk came out.

Typed Actors consist of 2 “parts”, a public interface and an implementation, and if you’ve done any work in
“enterprise” Java, this will be very familiar to you. As with normal Actors you have an external API (the public
interface instance) that will delegate methodcalls asynchronously to a private instance of the implementation.

The advantage of Typed Actors vs. Actors is that with TypedActors you have a static contract, and don’t need to
define your own messages, the downside is that it places some limitations on what you can do and what you can’t,
i.e. you can’t use become/unbecome.

Typed Actors are implemented using JDK Proxies which provide a pretty easy-worked API to intercept method
calls.

Note: Just as with regular Akka Untyped Actors, Typed Actors process one call at a time.

3.2.1 When to use Typed Actors

Typed actors are nice for bridging between actor systems (the “inside”) and non-actor code (the “outside”), because
they allow you to write normal OO-looking code on the outside. Think of them like doors: their practicality lies

3.2. Typed Actors 89

http://en.wikipedia.org/wiki/Active_object
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Proxy.html

Akka Java Documentation, Release 2.3.16

in interfacing between private sphere and the public, but you don’t want that many doors inside your house, do
you? For a longer discussion see this blog post.

A bit more background: TypedActors can very easily be abused as RPC, and that is an abstraction which is well-
known to be leaky. Hence TypedActors are not what we think of first when we talk about making highly scalable
concurrent software easier to write correctly. They have their niche, use them sparingly.

3.2.2 The tools of the trade

Before we create our first Typed Actor we should first go through the tools that we have at our disposal, it’s located
in akka.actor.TypedActor.

//Returns the Typed Actor Extension
TypedActorExtension extension =

TypedActor.get(system); //system is an instance of ActorSystem

//Returns whether the reference is a Typed Actor Proxy or not
TypedActor.get(system).isTypedActor(someReference);

//Returns the backing Akka Actor behind an external Typed Actor Proxy
TypedActor.get(system).getActorRefFor(someReference);

//Returns the current ActorContext,
// method only valid within methods of a TypedActor implementation
ActorContext context = TypedActor.context();

//Returns the external proxy of the current Typed Actor,
// method only valid within methods of a TypedActor implementation
Squarer sq = TypedActor.<Squarer>self();

//Returns a contextual instance of the Typed Actor Extension
//this means that if you create other Typed Actors with this,
//they will become children to the current Typed Actor.
TypedActor.get(TypedActor.context());

Warning: Same as not exposing this of an Akka Actor, it’s important not to expose this of a Typed
Actor, instead you should pass the external proxy reference, which is obtained from within your Typed Actor
as TypedActor.self(), this is your external identity, as the ActorRef is the external identity of an
Akka Actor.

3.2.3 Creating Typed Actors

To create a Typed Actor you need to have one or more interfaces, and one implementation.

The following imports are assumed:

import akka.actor.TypedActor;
import akka.actor.*;
import akka.japi.*;
import akka.dispatch.Futures;

import scala.concurrent.Await;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import java.util.concurrent.TimeUnit;

import java.util.List;
import java.util.ArrayList;
import java.util.Random;
import akka.routing.RoundRobinGroup;

3.2. Typed Actors 90

http://letitcrash.com/post/19074284309/when-to-use-typedactors
http://doc.akka.io/docs/misc/smli_tr-94-29.pdf
http://doc.akka.io/docs/misc/smli_tr-94-29.pdf

Akka Java Documentation, Release 2.3.16

public class TypedActorDocTest {
Object someReference = null;
ActorSystem system = null;

static
public interface Squarer {

void squareDontCare(int i); //fire-forget

Future<Integer> square(int i); //non-blocking send-request-reply

Option<Integer> squareNowPlease(int i);//blocking send-request-reply

int squareNow(int i); //blocking send-request-reply
}

static
class SquarerImpl implements Squarer {

private String name;

public SquarerImpl() {
this.name = "default";

}

public SquarerImpl(String name) {
this.name = name;

}

public void squareDontCare(int i) {
int sq = i * i; //Nobody cares :(

}

public Future<Integer> square(int i) {
return Futures.successful(i * i);

}

public Option<Integer> squareNowPlease(int i) {
return Option.some(i * i);

}

public int squareNow(int i) {
return i * i;

}
}

@Test public void mustGetTheTypedActorExtension() {

try {

//Returns the Typed Actor Extension
TypedActorExtension extension =

TypedActor.get(system); //system is an instance of ActorSystem

//Returns whether the reference is a Typed Actor Proxy or not
TypedActor.get(system).isTypedActor(someReference);

//Returns the backing Akka Actor behind an external Typed Actor Proxy
TypedActor.get(system).getActorRefFor(someReference);

//Returns the current ActorContext,
// method only valid within methods of a TypedActor implementation
ActorContext context = TypedActor.context();

3.2. Typed Actors 91

Akka Java Documentation, Release 2.3.16

//Returns the external proxy of the current Typed Actor,
// method only valid within methods of a TypedActor implementation
Squarer sq = TypedActor.<Squarer>self();

//Returns a contextual instance of the Typed Actor Extension
//this means that if you create other Typed Actors with this,
//they will become children to the current Typed Actor.
TypedActor.get(TypedActor.context());

} catch (Exception e) {
//dun care

}
}
@Test public void createATypedActor() {
try {
Squarer mySquarer =

TypedActor.get(system).typedActorOf(
new TypedProps<SquarerImpl>(Squarer.class, SquarerImpl.class));

Squarer otherSquarer =
TypedActor.get(system).typedActorOf(

new TypedProps<SquarerImpl>(Squarer.class,
new Creator<SquarerImpl>() {
public SquarerImpl create() { return new SquarerImpl("foo"); }

}),
"name");

mySquarer.squareDontCare(10);

Future<Integer> fSquare = mySquarer.square(10); //A Future[Int]

Option<Integer> oSquare = mySquarer.squareNowPlease(10); //Option[Int]

int iSquare = mySquarer.squareNow(10); //Int

assertEquals(100, Await.result(fSquare,
Duration.create(3, TimeUnit.SECONDS)).intValue());

assertEquals(100, oSquare.get().intValue());

assertEquals(100, iSquare);

TypedActor.get(system).stop(mySquarer);

TypedActor.get(system).poisonPill(otherSquarer);
} catch(Exception e) {

//Ignore
}

}

@Test public void createHierarchies() {
try {
Squarer childSquarer =

TypedActor.get(TypedActor.context()).
typedActorOf(
new TypedProps<SquarerImpl>(Squarer.class, SquarerImpl.class)

);
//Use "childSquarer" as a Squarer
} catch (Exception e) {

//dun care
}

}

@Test public void proxyAnyActorRef() {

3.2. Typed Actors 92

Akka Java Documentation, Release 2.3.16

try {
final ActorRef actorRefToRemoteActor = system.deadLetters();
Squarer typedActor =

TypedActor.get(system).
typedActorOf(
new TypedProps<Squarer>(Squarer.class),
actorRefToRemoteActor

);
//Use "typedActor" as a FooBar
} catch (Exception e) {

//dun care
}

}

interface HasName {
String name();

}

class Named implements HasName {
private int id = new Random().nextInt(1024);

@Override public String name() { return "name-" + id; }
}

@Test public void typedRouterPattern() {
try {

// prepare routees
TypedActorExtension typed = TypedActor.get(system);

Named named1 =
typed.typedActorOf(new TypedProps<Named>(Named.class));

Named named2 =
typed.typedActorOf(new TypedProps<Named>(Named.class));

List<Named> routees = new ArrayList<Named>();
routees.add(named1);
routees.add(named2);

List<String> routeePaths = new ArrayList<String>();
routeePaths.add(typed.getActorRefFor(named1).path().toStringWithoutAddress());
routeePaths.add(typed.getActorRefFor(named2).path().toStringWithoutAddress());

// prepare untyped router
ActorRef router = system.actorOf(new RoundRobinGroup(routeePaths).props(), "router");

// prepare typed proxy, forwarding MethodCall messages to `router`
Named typedRouter = typed.typedActorOf(new TypedProps<Named>(Named.class), router);

System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614
System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614

typed.poisonPill(named1);
typed.poisonPill(named2);
typed.poisonPill(typedRouter);

} catch (Exception e) {
//dun care

}
}

3.2. Typed Actors 93

Akka Java Documentation, Release 2.3.16

}

Our example interface:

public interface Squarer {
// typed actor iface methods ...

}

Our example implementation of that interface:

class SquarerImpl implements Squarer {
private String name;

public SquarerImpl() {
this.name = "default";

}

public SquarerImpl(String name) {
this.name = name;

}

// typed actor impl methods ...
}

The most trivial way of creating a Typed Actor instance of our Squarer:

Squarer mySquarer =
TypedActor.get(system).typedActorOf(
new TypedProps<SquarerImpl>(Squarer.class, SquarerImpl.class));

First type is the type of the proxy, the second type is the type of the implementation. If you need to call a specific
constructor you do it like this:

Squarer otherSquarer =
TypedActor.get(system).typedActorOf(
new TypedProps<SquarerImpl>(Squarer.class,

new Creator<SquarerImpl>() {
public SquarerImpl create() { return new SquarerImpl("foo"); }

}),
"name");

Since you supply a Props, you can specify which dispatcher to use, what the default timeout should be used and
more. Now, our Squarer doesn’t have any methods, so we’d better add those.

public interface Squarer {
void squareDontCare(int i); //fire-forget

Future<Integer> square(int i); //non-blocking send-request-reply

Option<Integer> squareNowPlease(int i);//blocking send-request-reply

int squareNow(int i); //blocking send-request-reply
}

Alright, now we’ve got some methods we can call, but we need to implement those in SquarerImpl.

class SquarerImpl implements Squarer {
private String name;

public SquarerImpl() {
this.name = "default";

}

public SquarerImpl(String name) {
this.name = name;

3.2. Typed Actors 94

Akka Java Documentation, Release 2.3.16

}

public void squareDontCare(int i) {
int sq = i * i; //Nobody cares :(

}

public Future<Integer> square(int i) {
return Futures.successful(i * i);

}

public Option<Integer> squareNowPlease(int i) {
return Option.some(i * i);

}

public int squareNow(int i) {
return i * i;

}
}

Excellent, now we have an interface and an implementation of that interface, and we know how to create a Typed
Actor from that, so let’s look at calling these methods.

3.2.4 Method dispatch semantics

Methods returning:

• void will be dispatched with fire-and-forget semantics, exactly like ActorRef.tell

• scala.concurrent.Future<?> will use send-request-reply semantics, exactly like
ActorRef.ask

• akka.japi.Option<?> will use send-request-reply semantics, but will block to wait for an
answer, and return akka.japi.Option.None if no answer was produced within the timeout, or
akka.japi.Option.Some<?> containing the result otherwise. Any exception that was thrown dur-
ing this call will be rethrown.

• Any other type of value will use send-request-reply semantics, but will block to wait
for an answer, throwing java.util.concurrent.TimeoutException if there was a time-
out or rethrow any exception that was thrown during this call. Note that due to the
Java exception and reflection mechanisms, such a TimeoutException will be wrapped in a
java.lang.reflect.UndeclaredThrowableException unless the interface method explicitly
declares the TimeoutException as a thrown checked exception.

3.2.5 Messages and immutability

While Akka cannot enforce that the parameters to the methods of your Typed Actors are immutable, we strongly
recommend that parameters passed are immutable.

One-way message send

mySquarer.squareDontCare(10);

As simple as that! The method will be executed on another thread; asynchronously.

3.2. Typed Actors 95

Akka Java Documentation, Release 2.3.16

Request-reply message send

Option<Integer> oSquare = mySquarer.squareNowPlease(10); //Option[Int]

This will block for as long as the timeout that was set in the Props of the Typed Actor, if needed. It will return
None if a timeout occurs.

int iSquare = mySquarer.squareNow(10); //Int

This will block for as long as the timeout that was set in the Props of the Typed Ac-
tor, if needed. It will throw a java.util.concurrent.TimeoutException if a
timeout occurs. Note that here, such a TimeoutException will be wrapped in a
java.lang.reflect.UndeclaredThrowableException by the Java reflection mechanism, because
the interface method does not explicitly declare the TimeoutException as a thrown checked exception. To get
the TimeoutException directly, declare throws java.util.concurrent.TimeoutException at
the interface method.

Request-reply-with-future message send

Future<Integer> fSquare = mySquarer.square(10); //A Future[Int]

This call is asynchronous, and the Future returned can be used for asynchronous composition.

3.2.6 Stopping Typed Actors

Since Akka’s Typed Actors are backed by Akka Actors they must be stopped when they aren’t needed anymore.

TypedActor.get(system).stop(mySquarer);

This asynchronously stops the Typed Actor associated with the specified proxy ASAP.

TypedActor.get(system).poisonPill(otherSquarer);

This asynchronously stops the Typed Actor associated with the specified proxy after it’s done with all calls that
were made prior to this call.

3.2.7 Typed Actor Hierarchies

Since you can obtain a contextual Typed Actor Extension by passing in an ActorContext you can create child
Typed Actors by invoking typedActorOf(..) on that.

Squarer childSquarer =
TypedActor.get(TypedActor.context()).
typedActorOf(

new TypedProps<SquarerImpl>(Squarer.class, SquarerImpl.class)
);

//Use "childSquarer" as a Squarer

You can also create a child Typed Actor in regular Akka Actors by giving the UntypedActorContext as an
input parameter to TypedActor.get(. . .).

3.2.8 Supervisor Strategy

By having your Typed Actor implementation class implement TypedActor.Supervisor you can define the
strategy to use for supervising child actors, as described in Supervision and Monitoring and Fault Tolerance.

3.2. Typed Actors 96

Akka Java Documentation, Release 2.3.16

3.2.9 Receive arbitrary messages

If your implementation class of your TypedActor extends akka.actor.TypedActor.Receiver, all mes-
sages that are not MethodCall‘‘s will be passed into the ‘‘onReceive-method.

This allows you to react to DeathWatch Terminated-messages and other types of messages, e.g. when inter-
facing with untyped actors.

3.2.10 Lifecycle callbacks

By having your Typed Actor implementation class implement any and all of the following:

• TypedActor.PreStart

• TypedActor.PostStop

• TypedActor.PreRestart

• TypedActor.PostRestart

You can hook into the lifecycle of your Typed Actor.

3.2.11 Proxying

You can use the typedActorOf that takes a TypedProps and an ActorRef to proxy the given ActorRef as a
TypedActor. This is usable if you want to communicate remotely with TypedActors on other machines, just pass
the ActorRef to typedActorOf.

3.2.12 Lookup & Remoting

Since TypedActors are backed by Akka Actors, you can use typedActorOf to proxy ActorRefs
potentially residing on remote nodes.

Squarer typedActor =
TypedActor.get(system).
typedActorOf(

new TypedProps<Squarer>(Squarer.class),
actorRefToRemoteActor

);
//Use "typedActor" as a FooBar

3.2.13 Typed Router pattern

Sometimes you want to spread messages between multiple actors. The easiest way to achieve this in
Akka is to use a Router, which can implement a specific routing logic, such as smallest-mailbox or
consistent-hashing etc.

Routers are not provided directly for typed actors, but it is really easy to leverage an untyped router and use a
typed proxy in front of it. To showcase this let’s create typed actors that assign themselves some random id, so
we know that in fact, the router has sent the message to different actors:

@Test public void typedRouterPattern() {
try {

// prepare routees
TypedActorExtension typed = TypedActor.get(system);

Named named1 =
typed.typedActorOf(new TypedProps<Named>(Named.class));

Named named2 =

3.2. Typed Actors 97

Akka Java Documentation, Release 2.3.16

typed.typedActorOf(new TypedProps<Named>(Named.class));

List<Named> routees = new ArrayList<Named>();
routees.add(named1);
routees.add(named2);

List<String> routeePaths = new ArrayList<String>();
routeePaths.add(typed.getActorRefFor(named1).path().toStringWithoutAddress());
routeePaths.add(typed.getActorRefFor(named2).path().toStringWithoutAddress());

// prepare untyped router
ActorRef router = system.actorOf(new RoundRobinGroup(routeePaths).props(), "router");

// prepare typed proxy, forwarding MethodCall messages to `router`
Named typedRouter = typed.typedActorOf(new TypedProps<Named>(Named.class), router);

System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614
System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614

typed.poisonPill(named1);
typed.poisonPill(named2);
typed.poisonPill(typedRouter);

} catch (Exception e) {
//dun care

}
}

}

In order to round robin among a few instances of such actors, you can simply create a plain untyped router,
and then facade it with a TypedActor like shown in the example below. This works because typed actors of
course communicate using the same mechanisms as normal actors, and methods calls on them get transformed
into message sends of MethodCall messages.

// prepare routees
TypedActorExtension typed = TypedActor.get(system);

Named named1 =
typed.typedActorOf(new TypedProps<Named>(Named.class));

Named named2 =
typed.typedActorOf(new TypedProps<Named>(Named.class));

List<Named> routees = new ArrayList<Named>();
routees.add(named1);
routees.add(named2);

List<String> routeePaths = new ArrayList<String>();
routeePaths.add(typed.getActorRefFor(named1).path().toStringWithoutAddress());
routeePaths.add(typed.getActorRefFor(named2).path().toStringWithoutAddress());

// prepare untyped router
ActorRef router = system.actorOf(new RoundRobinGroup(routeePaths).props(), "router");

// prepare typed proxy, forwarding MethodCall messages to `router`
Named typedRouter = typed.typedActorOf(new TypedProps<Named>(Named.class), router);

System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614
System.out.println("actor was: " + typedRouter.name()); // name-243
System.out.println("actor was: " + typedRouter.name()); // name-614

3.2. Typed Actors 98

Akka Java Documentation, Release 2.3.16

3.3 Fault Tolerance

As explained in Actor Systems each actor is the supervisor of its children, and as such each actor defines fault
handling supervisor strategy. This strategy cannot be changed afterwards as it is an integral part of the actor
system’s structure.

3.3.1 Fault Handling in Practice

First, let us look at a sample that illustrates one way to handle data store errors, which is a typical source of failure
in real world applications. Of course it depends on the actual application what is possible to do when the data
store is unavailable, but in this sample we use a best effort re-connect approach.

Read the following source code. The inlined comments explain the different pieces of the fault handling and why
they are added. It is also highly recommended to run this sample as it is easy to follow the log output to understand
what is happening in runtime.

Diagrams of the Fault Tolerance Sample

3.3. Fault Tolerance 99

Akka Java Documentation, Release 2.3.16

The above diagram illustrates the normal message flow.

Normal flow:
Step Description
1 The progress Listener starts the work.
2 The Worker schedules work by sending Do messages periodically to itself
3,
4, 5

When receiving Do the Worker tells the CounterService to increment the counter, three times.
The Increment message is forwarded to the Counter, which updates its counter variable and sends
current value to the Storage.

6, 7 The Worker asks the CounterService of current value of the counter and pipes the result back to
the Listener.

3.3. Fault Tolerance 100

Akka Java Documentation, Release 2.3.16

The above diagram illustrates what happens in case of storage failure.

Failure flow:
Step Description
1 The Storage throws StorageException.
2 The CounterService is supervisor of the Storage and restarts the Storage when

StorageException is thrown.
3, 4,
5, 6

The Storage continues to fail and is restarted.

7 After 3 failures and restarts within 5 seconds the Storage is stopped by its supervisor, i.e. the
CounterService.

8 The CounterService is also watching the Storage for termination and receives the
Terminated message when the Storage has been stopped ...

9, 10,
11

and tells the Counter that there is no Storage.

12 The CounterService schedules a Reconnect message to itself.
13,
14

When it receives the Reconnect message it creates a new Storage ...

15,
16

and tells the Counter to use the new Storage

Full Source Code of the Fault Tolerance Sample

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import akka.actor.*;
import akka.dispatch.Mapper;
import akka.japi.Function;
import scala.concurrent.duration.Duration;
import akka.util.Timeout;
import akka.event.Logging;
import akka.event.LoggingAdapter;
import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;

import static akka.japi.Util.classTag;

import static akka.actor.SupervisorStrategy.resume;
import static akka.actor.SupervisorStrategy.restart;
import static akka.actor.SupervisorStrategy.stop;
import static akka.actor.SupervisorStrategy.escalate;
import akka.actor.SupervisorStrategy.Directive;
import static akka.pattern.Patterns.ask;
import static akka.pattern.Patterns.pipe;

import static docs.actor.japi.FaultHandlingDocSample.WorkerApi.*;
import static docs.actor.japi.FaultHandlingDocSample.CounterServiceApi.*;
import static docs.actor.japi.FaultHandlingDocSample.CounterApi.*;
import static docs.actor.japi.FaultHandlingDocSample.StorageApi.*;

public class FaultHandlingDocSample {

/**
* Runs the sample

*/
public static void main(String[] args) {

3.3. Fault Tolerance 101

Akka Java Documentation, Release 2.3.16

Config config = ConfigFactory.parseString("akka.loglevel = DEBUG \n" +
"akka.actor.debug.lifecycle = on");

ActorSystem system = ActorSystem.create("FaultToleranceSample", config);
ActorRef worker = system.actorOf(Props.create(Worker.class), "worker");
ActorRef listener = system.actorOf(Props.create(Listener.class), "listener");
// start the work and listen on progress
// note that the listener is used as sender of the tell,
// i.e. it will receive replies from the worker
worker.tell(Start, listener);

}

/**
* Listens on progress from the worker and shuts down the system when enough

* work has been done.

*/
public static class Listener extends UntypedActor {
final LoggingAdapter log = Logging.getLogger(getContext().system(), this);

@Override
public void preStart() {

// If we don't get any progress within 15 seconds then the service
// is unavailable
getContext().setReceiveTimeout(Duration.create("15 seconds"));

}

public void onReceive(Object msg) {
log.debug("received message {}", msg);
if (msg instanceof Progress) {

Progress progress = (Progress) msg;
log.info("Current progress: {} %", progress.percent);
if (progress.percent >= 100.0) {
log.info("That's all, shutting down");
getContext().system().shutdown();

}
} else if (msg == ReceiveTimeout.getInstance()) {

// No progress within 15 seconds, ServiceUnavailable
log.error("Shutting down due to unavailable service");
getContext().system().shutdown();

} else {
unhandled(msg);

}
}

}

public interface WorkerApi {
public static final Object Start = "Start";
public static final Object Do = "Do";

public static class Progress {
public final double percent;

public Progress(double percent) {
this.percent = percent;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), percent);

}
}

}

3.3. Fault Tolerance 102

Akka Java Documentation, Release 2.3.16

/**
* Worker performs some work when it receives the Start message. It will

* continuously notify the sender of the Start message of current Progress.

* The Worker supervise the CounterService.

*/
public static class Worker extends UntypedActor {
final LoggingAdapter log = Logging.getLogger(getContext().system(), this);
final Timeout askTimeout = new Timeout(Duration.create(5, "seconds"));

// The sender of the initial Start message will continuously be notified
// about progress
ActorRef progressListener;
final ActorRef counterService = getContext().actorOf(

Props.create(CounterService.class), "counter");
final int totalCount = 51;

// Stop the CounterService child if it throws ServiceUnavailable
private static SupervisorStrategy strategy = new OneForOneStrategy(-1,

Duration.Inf(), new Function<Throwable, Directive>() {
@Override
public Directive apply(Throwable t) {

if (t instanceof ServiceUnavailable) {
return stop();

} else {
return escalate();

}
}

});

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

public void onReceive(Object msg) {
log.debug("received message {}", msg);
if (msg.equals(Start) && progressListener == null) {

progressListener = getSender();
getContext().system().scheduler().schedule(

Duration.Zero(), Duration.create(1, "second"), getSelf(), Do,
getContext().dispatcher(), null

);
} else if (msg.equals(Do)) {

counterService.tell(new Increment(1), getSelf());
counterService.tell(new Increment(1), getSelf());
counterService.tell(new Increment(1), getSelf());

// Send current progress to the initial sender
pipe(ask(counterService, GetCurrentCount, askTimeout)

.mapTo(classTag(CurrentCount.class))

.map(new Mapper<CurrentCount, Progress>() {
public Progress apply(CurrentCount c) {

return new Progress(100.0 * c.count / totalCount);
}

}, getContext().dispatcher()), getContext().dispatcher())
.to(progressListener);

} else {
unhandled(msg);

}
}

}

public interface CounterServiceApi {

3.3. Fault Tolerance 103

Akka Java Documentation, Release 2.3.16

public static final Object GetCurrentCount = "GetCurrentCount";

public static class CurrentCount {
public final String key;
public final long count;

public CurrentCount(String key, long count) {
this.key = key;
this.count = count;

}

public String toString() {
return String.format("%s(%s, %s)", getClass().getSimpleName(), key, count);

}
}

public static class Increment {
public final long n;

public Increment(long n) {
this.n = n;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), n);

}
}

public static class ServiceUnavailable extends RuntimeException {
private static final long serialVersionUID = 1L;
public ServiceUnavailable(String msg) {

super(msg);
}

}

}

/**
* Adds the value received in Increment message to a persistent counter.

* Replies with CurrentCount when it is asked for CurrentCount. CounterService

* supervise Storage and Counter.

*/
public static class CounterService extends UntypedActor {

// Reconnect message
static final Object Reconnect = "Reconnect";

private static class SenderMsgPair {
final ActorRef sender;
final Object msg;

SenderMsgPair(ActorRef sender, Object msg) {
this.msg = msg;
this.sender = sender;

}
}

final LoggingAdapter log = Logging.getLogger(getContext().system(), this);
final String key = getSelf().path().name();
ActorRef storage;
ActorRef counter;

3.3. Fault Tolerance 104

Akka Java Documentation, Release 2.3.16

final List<SenderMsgPair> backlog = new ArrayList<SenderMsgPair>();
final int MAX_BACKLOG = 10000;

// Restart the storage child when StorageException is thrown.
// After 3 restarts within 5 seconds it will be stopped.
private static SupervisorStrategy strategy = new OneForOneStrategy(3,

Duration.create("5 seconds"), new Function<Throwable, Directive>() {
@Override
public Directive apply(Throwable t) {

if (t instanceof StorageException) {
return restart();

} else {
return escalate();

}
}

});

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

@Override
public void preStart() {

initStorage();
}

/**
* The child storage is restarted in case of failure, but after 3 restarts,

* and still failing it will be stopped. Better to back-off than

* continuously failing. When it has been stopped we will schedule a

* Reconnect after a delay. Watch the child so we receive Terminated message

* when it has been terminated.

*/
void initStorage() {

storage = getContext().watch(getContext().actorOf(
Props.create(Storage.class), "storage"));

// Tell the counter, if any, to use the new storage
if (counter != null)

counter.tell(new UseStorage(storage), getSelf());
// We need the initial value to be able to operate
storage.tell(new Get(key), getSelf());

}

@Override
public void onReceive(Object msg) {

log.debug("received message {}", msg);
if (msg instanceof Entry && ((Entry) msg).key.equals(key) &&

counter == null) {
// Reply from Storage of the initial value, now we can create the Counter
final long value = ((Entry) msg).value;
counter = getContext().actorOf(Props.create(Counter.class, key, value));
// Tell the counter to use current storage
counter.tell(new UseStorage(storage), getSelf());
// and send the buffered backlog to the counter
for (SenderMsgPair each : backlog) {
counter.tell(each.msg, each.sender);

}
backlog.clear();

} else if (msg instanceof Increment) {
forwardOrPlaceInBacklog(msg);

} else if (msg.equals(GetCurrentCount)) {
forwardOrPlaceInBacklog(msg);

3.3. Fault Tolerance 105

Akka Java Documentation, Release 2.3.16

} else if (msg instanceof Terminated) {
// After 3 restarts the storage child is stopped.
// We receive Terminated because we watch the child, see initStorage.
storage = null;
// Tell the counter that there is no storage for the moment
counter.tell(new UseStorage(null), getSelf());
// Try to re-establish storage after while
getContext().system().scheduler().scheduleOnce(

Duration.create(10, "seconds"), getSelf(), Reconnect,
getContext().dispatcher(), null);

} else if (msg.equals(Reconnect)) {
// Re-establish storage after the scheduled delay
initStorage();

} else {
unhandled(msg);

}
}

void forwardOrPlaceInBacklog(Object msg) {
// We need the initial value from storage before we can start delegate to
// the counter. Before that we place the messages in a backlog, to be sent
// to the counter when it is initialized.
if (counter == null) {

if (backlog.size() >= MAX_BACKLOG)
throw new ServiceUnavailable("CounterService not available," +
" lack of initial value");

backlog.add(new SenderMsgPair(getSender(), msg));
} else {

counter.forward(msg, getContext());
}

}
}

public interface CounterApi {
public static class UseStorage {

public final ActorRef storage;

public UseStorage(ActorRef storage) {
this.storage = storage;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), storage);

}
}

}

/**
* The in memory count variable that will send current value to the Storage,

* if there is any storage available at the moment.

*/
public static class Counter extends UntypedActor {
final LoggingAdapter log = Logging.getLogger(getContext().system(), this);
final String key;
long count;
ActorRef storage;

public Counter(String key, long initialValue) {
this.key = key;
this.count = initialValue;

}

3.3. Fault Tolerance 106

Akka Java Documentation, Release 2.3.16

@Override
public void onReceive(Object msg) {

log.debug("received message {}", msg);
if (msg instanceof UseStorage) {

storage = ((UseStorage) msg).storage;
storeCount();

} else if (msg instanceof Increment) {
count += ((Increment) msg).n;
storeCount();

} else if (msg.equals(GetCurrentCount)) {
getSender().tell(new CurrentCount(key, count), getSelf());

} else {
unhandled(msg);

}
}

void storeCount() {
// Delegate dangerous work, to protect our valuable state.
// We can continue without storage.
if (storage != null) {

storage.tell(new Store(new Entry(key, count)), getSelf());
}

}
}

public interface StorageApi {

public static class Store {
public final Entry entry;

public Store(Entry entry) {
this.entry = entry;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), entry);

}
}

public static class Entry {
public final String key;
public final long value;

public Entry(String key, long value) {
this.key = key;
this.value = value;

}

public String toString() {
return String.format("%s(%s, %s)", getClass().getSimpleName(), key, value);

}
}

public static class Get {
public final String key;

public Get(String key) {
this.key = key;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), key);

}

3.3. Fault Tolerance 107

Akka Java Documentation, Release 2.3.16

}

public static class StorageException extends RuntimeException {
private static final long serialVersionUID = 1L;
public StorageException(String msg) {

super(msg);
}

}
}

/**
* Saves key/value pairs to persistent storage when receiving Store message.

* Replies with current value when receiving Get message. Will throw

* StorageException if the underlying data store is out of order.

*/
public static class Storage extends UntypedActor {

final LoggingAdapter log = Logging.getLogger(getContext().system(), this);
final DummyDB db = DummyDB.instance;

@Override
public void onReceive(Object msg) {

log.debug("received message {}", msg);
if (msg instanceof Store) {

Store store = (Store) msg;
db.save(store.entry.key, store.entry.value);

} else if (msg instanceof Get) {
Get get = (Get) msg;
Long value = db.load(get.key);
getSender().tell(new Entry(get.key, value == null ?
Long.valueOf(0L) : value), getSelf());

} else {
unhandled(msg);

}
}

}

public static class DummyDB {
public static final DummyDB instance = new DummyDB();
private final Map<String, Long> db = new HashMap<String, Long>();

private DummyDB() {
}

public synchronized void save(String key, Long value) throws StorageException {
if (11 <= value && value <= 14)

throw new StorageException("Simulated store failure " + value);
db.put(key, value);

}

public synchronized Long load(String key) throws StorageException {
return db.get(key);

}
}

}

3.3.2 Creating a Supervisor Strategy

The following sections explain the fault handling mechanism and alternatives in more depth.

For the sake of demonstration let us consider the following strategy:

3.3. Fault Tolerance 108

Akka Java Documentation, Release 2.3.16

private static SupervisorStrategy strategy =
new OneForOneStrategy(10, Duration.create("1 minute"),
new Function<Throwable, Directive>() {

@Override
public Directive apply(Throwable t) {

if (t instanceof ArithmeticException) {
return resume();

} else if (t instanceof NullPointerException) {
return restart();

} else if (t instanceof IllegalArgumentException) {
return stop();

} else {
return escalate();

}
}

});

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

I have chosen a few well-known exception types in order to demonstrate the application of the fault handling
directives described in Supervision and Monitoring. First off, it is a one-for-one strategy, meaning that each child
is treated separately (an all-for-one strategy works very similarly, the only difference is that any decision is applied
to all children of the supervisor, not only the failing one). There are limits set on the restart frequency, namely
maximum 10 restarts per minute. -1 and Duration.Inf() means that the respective limit does not apply,
leaving the possibility to specify an absolute upper limit on the restarts or to make the restarts work infinitely. The
child actor is stopped if the limit is exceeded.

Note: If the strategy is declared inside the supervising actor (as opposed to a separate class) its decider has access
to all internal state of the actor in a thread-safe fashion, including obtaining a reference to the currently failed child
(available as the getSender of the failure message).

Default Supervisor Strategy

Escalate is used if the defined strategy doesn’t cover the exception that was thrown.

When the supervisor strategy is not defined for an actor the following exceptions are handled by default:

• ActorInitializationException will stop the failing child actor

• ActorKilledException will stop the failing child actor

• Exception will restart the failing child actor

• Other types of Throwable will be escalated to parent actor

If the exception escalate all the way up to the root guardian it will handle it in the same way as the default strategy
defined above.

Stopping Supervisor Strategy

Closer to the Erlang way is the strategy to just stop children when they fail and then take cor-
rective action in the supervisor when DeathWatch signals the loss of the child. This strategy is
also provided pre-packaged as SupervisorStrategy.stoppingStrategy with an accompanying
StoppingSupervisorStrategy configurator to be used when you want the "/user" guardian to apply it.

3.3. Fault Tolerance 109

Akka Java Documentation, Release 2.3.16

Logging of Actor Failures

By default the SupervisorStrategy logs failures unless they are escalated. Escalated failures are supposed
to be handled, and potentially logged, at a level higher in the hierarchy.

You can mute the default logging of a SupervisorStrategy by setting loggingEnabled to false when
instantiating it. Customized logging can be done inside the Decider. Note that the reference to the currently
failed child is available as the getSenderwhen the SupervisorStrategy is declared inside the supervising
actor.

You may also customize the logging in your own SupervisorStrategy implementation by overriding the
logFailure method.

3.3.3 Supervision of Top-Level Actors

Toplevel actors means those which are created using system.actorOf(), and they are children of the User
Guardian. There are no special rules applied in this case, the guardian simply applies the configured strategy.

3.3.4 Test Application

The following section shows the effects of the different directives in practice, wherefor a test setup is needed. First
off, we need a suitable supervisor:

public class Supervisor extends UntypedActor {

private static SupervisorStrategy strategy =
new OneForOneStrategy(10, Duration.create("1 minute"),

new Function<Throwable, Directive>() {
@Override
public Directive apply(Throwable t) {
if (t instanceof ArithmeticException) {

return resume();
} else if (t instanceof NullPointerException) {

return restart();
} else if (t instanceof IllegalArgumentException) {

return stop();
} else {

return escalate();
}

}
});

@Override
public SupervisorStrategy supervisorStrategy() {
return strategy;

}

public void onReceive(Object o) {
if (o instanceof Props) {

getSender().tell(getContext().actorOf((Props) o), getSelf());
} else {

unhandled(o);
}

}
}

This supervisor will be used to create a child, with which we can experiment:

public class Child extends UntypedActor {
int state = 0;

3.3. Fault Tolerance 110

Akka Java Documentation, Release 2.3.16

public void onReceive(Object o) throws Exception {
if (o instanceof Exception) {

throw (Exception) o;
} else if (o instanceof Integer) {

state = (Integer) o;
} else if (o.equals("get")) {

getSender().tell(state, getSelf());
} else {

unhandled(o);
}

}
}

The test is easier by using the utilities described in akka-testkit, where TestProbe provides an actor ref useful
for receiving and inspecting replies.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.SupervisorStrategy;
import static akka.actor.SupervisorStrategy.resume;
import static akka.actor.SupervisorStrategy.restart;
import static akka.actor.SupervisorStrategy.stop;
import static akka.actor.SupervisorStrategy.escalate;
import akka.actor.SupervisorStrategy.Directive;
import akka.actor.OneForOneStrategy;
import akka.actor.Props;
import akka.actor.Terminated;
import akka.actor.UntypedActor;
import scala.collection.immutable.Seq;
import scala.concurrent.Await;
import static akka.pattern.Patterns.ask;
import scala.concurrent.duration.Duration;
import akka.testkit.TestProbe;

public class FaultHandlingTest {
static ActorSystem system;
Duration timeout = Duration.create(5, SECONDS);

@BeforeClass
public static void start() {
system = ActorSystem.create("test");

}

@AfterClass
public static void cleanup() {
JavaTestKit.shutdownActorSystem(system);
system = null;

}

@Test
public void mustEmploySupervisorStrategy() throws Exception {
// code here

}

}

Let us create actors:

Props superprops = Props.create(Supervisor.class);
ActorRef supervisor = system.actorOf(superprops, "supervisor");
ActorRef child = (ActorRef) Await.result(ask(supervisor,

Props.create(Child.class), 5000), timeout);

3.3. Fault Tolerance 111

Akka Java Documentation, Release 2.3.16

The first test shall demonstrate the Resume directive, so we try it out by setting some non-initial state in the actor
and have it fail:

child.tell(42, ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(42);
child.tell(new ArithmeticException(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(42);

As you can see the value 42 survives the fault handling directive. Now, if we change the failure to a more serious
NullPointerException, that will no longer be the case:

child.tell(new NullPointerException(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(0);

And finally in case of the fatal IllegalArgumentException the child will be terminated by the supervisor:

final TestProbe probe = new TestProbe(system);
probe.watch(child);
child.tell(new IllegalArgumentException(), ActorRef.noSender());
probe.expectMsgClass(Terminated.class);

Up to now the supervisor was completely unaffected by the child’s failure, because the directives set did handle it.
In case of an Exception, this is not true anymore and the supervisor escalates the failure.

child = (ActorRef) Await.result(ask(supervisor,
Props.create(Child.class), 5000), timeout);

probe.watch(child);
assert Await.result(ask(child, "get", 5000), timeout).equals(0);
child.tell(new Exception(), ActorRef.noSender());
probe.expectMsgClass(Terminated.class);

The supervisor itself is supervised by the top-level actor provided by the ActorSystem, which
has the default policy to restart in case of all Exception cases (with the notable exceptions of
ActorInitializationException and ActorKilledException). Since the default directive in case
of a restart is to kill all children, we expected our poor child not to survive this failure.

In case this is not desired (which depends on the use case), we need to use a different supervisor which overrides
this behavior.

public class Supervisor2 extends UntypedActor {

private static SupervisorStrategy strategy = new OneForOneStrategy(10,
Duration.create("1 minute"),

new Function<Throwable, Directive>() {
@Override
public Directive apply(Throwable t) {
if (t instanceof ArithmeticException) {

return resume();
} else if (t instanceof NullPointerException) {

return restart();
} else if (t instanceof IllegalArgumentException) {

return stop();
} else {

return escalate();
}

}
});

@Override
public SupervisorStrategy supervisorStrategy() {
return strategy;

}

3.3. Fault Tolerance 112

Akka Java Documentation, Release 2.3.16

public void onReceive(Object o) {
if (o instanceof Props) {

getSender().tell(getContext().actorOf((Props) o), getSelf());
} else {

unhandled(o);
}

}

@Override
public void preRestart(Throwable cause, Option<Object> msg) {
// do not kill all children, which is the default here

}
}

With this parent, the child survives the escalated restart, as demonstrated in the last test:

superprops = Props.create(Supervisor2.class);
supervisor = system.actorOf(superprops);
child = (ActorRef) Await.result(ask(supervisor,

Props.create(Child.class), 5000), timeout);
child.tell(23, ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(23);
child.tell(new Exception(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(0);

3.4 Dispatchers

An Akka MessageDispatcher is what makes Akka Actors “tick”, it is the engine of the machine so to speak.
All MessageDispatcher implementations are also an ExecutionContext, which means that they can be
used to execute arbitrary code, for instance Futures.

3.4.1 Default dispatcher

Every ActorSystem will have a default dispatcher that will be used in case nothing else is config-
ured for an Actor. The default dispatcher can be configured, and is by default a Dispatcher
with the specified default-executor. If an ActorSystem is created with an ExecutionCon-
text passed in, this ExecutionContext will be used as the default executor for all dispatchers in
this ActorSystem. If no ExecutionContext is given, it will fallback to the executor specified in
akka.actor.default-dispatcher.default-executor.fallback. By default this is a “fork-
join-executor”, which gives excellent performance in most cases.

3.4.2 Looking up a Dispatcher

Dispatchers implement the ExecutionContext interface and can thus be used to run Future invocations etc.

// this is scala.concurrent.ExecutionContext
// for use with Futures, Scheduler, etc.
final ExecutionContext ex = system.dispatchers().lookup("my-dispatcher");

3.4.3 Setting the dispatcher for an Actor

So in case you want to give your Actor a different dispatcher than the default, you need to do two things, of
which the first is is to configure the dispatcher:

3.4. Dispatchers 113

Akka Java Documentation, Release 2.3.16

my-dispatcher {
Dispatcher is the name of the event-based dispatcher
type = Dispatcher
What kind of ExecutionService to use
executor = "fork-join-executor"
Configuration for the fork join pool
fork-join-executor {
Min number of threads to cap factor-based parallelism number to
parallelism-min = 2
Parallelism (threads) ... ceil(available processors * factor)
parallelism-factor = 2.0
Max number of threads to cap factor-based parallelism number to
parallelism-max = 10

}
Throughput defines the maximum number of messages to be
processed per actor before the thread jumps to the next actor.
Set to 1 for as fair as possible.
throughput = 100

}

And here’s another example that uses the “thread-pool-executor”:

my-thread-pool-dispatcher {
Dispatcher is the name of the event-based dispatcher
type = Dispatcher
What kind of ExecutionService to use
executor = "thread-pool-executor"
Configuration for the thread pool
thread-pool-executor {
minimum number of threads to cap factor-based core number to
core-pool-size-min = 2
No of core threads ... ceil(available processors * factor)
core-pool-size-factor = 2.0
maximum number of threads to cap factor-based number to
core-pool-size-max = 10

}
Throughput defines the maximum number of messages to be
processed per actor before the thread jumps to the next actor.
Set to 1 for as fair as possible.
throughput = 100

}

For more options, see the default-dispatcher section of the Configuration.

Then you create the actor as usual and define the dispatcher in the deployment configuration.

ActorRef myActor =
system.actorOf(Props.create(MyUntypedActor.class),
"myactor");

akka.actor.deployment {
/myactor {
dispatcher = my-dispatcher

}
}

An alternative to the deployment configuration is to define the dispatcher in code. If you define the dispatcher
in the deployment configuration then this value will be used instead of programmatically provided parameter.

ActorRef myActor =
system.actorOf(Props.create(MyUntypedActor.class).withDispatcher("my-dispatcher"),
"myactor3");

3.4. Dispatchers 114

Akka Java Documentation, Release 2.3.16

Note: The dispatcher you specify in withDispatcher and the dispatcher property in the deploy-
ment configuration is in fact a path into your configuration. So in this example it’s a top-level section, but
you could for instance put it as a sub-section, where you’d use periods to denote sub-sections, like this:
"foo.bar.my-dispatcher"

3.4.4 Types of dispatchers

There are 4 different types of message dispatchers:

• Dispatcher

– This is an event-based dispatcher that binds a set of Actors to a thread pool. It is the default dispatcher
used if one is not specified.

– Sharability: Unlimited

– Mailboxes: Any, creates one per Actor

– Use cases: Default dispatcher, Bulkheading

– Driven by: java.util.concurrent.ExecutorService specify using “ex-
ecutor” using “fork-join-executor”, “thread-pool-executor” or the FQCN of an
akka.dispatcher.ExecutorServiceConfigurator

• PinnedDispatcher

– This dispatcher dedicates a unique thread for each actor using it; i.e. each actor will have its own
thread pool with only one thread in the pool.

– Sharability: None

– Mailboxes: Any, creates one per Actor

– Use cases: Bulkheading

– Driven by: Any akka.dispatch.ThreadPoolExecutorConfigurator by default a
“thread-pool-executor”

• CallingThreadDispatcher

– This dispatcher runs invocations on the current thread only. This dispatcher does not create any new
threads, but it can be used from different threads concurrently for the same actor. See CallingThread-
Dispatcher for details and restrictions.

– Sharability: Unlimited

– Mailboxes: Any, creates one per Actor per Thread (on demand)

– Use cases: Testing

– Driven by: The calling thread (duh)

More dispatcher configuration examples

Configuring a PinnedDispatcher:

my-pinned-dispatcher {
executor = "thread-pool-executor"
type = PinnedDispatcher

}

And then using it:

ActorRef myActor = system.actorOf(Props.create(MyUntypedActor.class)
.withDispatcher("my-pinned-dispatcher"));

3.4. Dispatchers 115

Akka Java Documentation, Release 2.3.16

Note that thread-pool-executor configuration as per the above my-thread-pool-dispatcher
example is NOT applicable. This is because every actor will have its own thread pool when using
PinnedDispatcher, and that pool will have only one thread.

Note that it’s not guaranteed that the same thread is used over time, since the core pool timeout is used for
PinnedDispatcher to keep resource usage down in case of idle actors. To use the same thread all the
time you need to add thread-pool-executor.allow-core-timeout=off to the configuration of the
PinnedDispatcher.

3.5 Mailboxes

An Akka Mailbox holds the messages that are destined for an Actor. Normally each Actor has its own
mailbox, but with for example a BalancingPool all routees will share a single mailbox instance.

3.5.1 Mailbox Selection

Requiring a Message Queue Type for an Actor

It is possible to require a certain type of message queue for a certain type of actor by having that actor implement
the parameterized interface RequiresMessageQueue. Here is an example:

import akka.dispatch.BoundedMessageQueueSemantics;
import akka.dispatch.RequiresMessageQueue;

public class MyBoundedUntypedActor extends MyUntypedActor
implements RequiresMessageQueue<BoundedMessageQueueSemantics> {

}

The type parameter to the RequiresMessageQueue interface needs to be mapped to a mailbox in configura-
tion like this:

bounded-mailbox {
mailbox-type = "akka.dispatch.BoundedMailbox"
mailbox-capacity = 1000
mailbox-push-timeout-time = 10s

}

akka.actor.mailbox.requirements {
"akka.dispatch.BoundedMessageQueueSemantics" = bounded-mailbox

}

Now every time you create an actor of type MyBoundedUntypedActor it will try to get a bounded mailbox.
If the actor has a different mailbox configured in deployment, either directly or via a dispatcher with a specified
mailbox type, then that will override this mapping.

Note: The type of the queue in the mailbox created for an actor will be checked against the required type in the
interface and if the queue doesn’t implement the required type then actor creation will fail.

Requiring a Message Queue Type for a Dispatcher

A dispatcher may also have a requirement for the mailbox type used by the actors running on it. An example is
the BalancingDispatcher which requires a message queue that is thread-safe for multiple concurrent consumers.
Such a requirement is formulated within the dispatcher configuration section like this:

my-dispatcher {
mailbox-requirement = org.example.MyInterface

}

3.5. Mailboxes 116

Akka Java Documentation, Release 2.3.16

The given requirement names a class or interface which will then be ensured to be a supertype of the message
queue’s implementation. In case of a conflict—e.g. if the actor requires a mailbox type which does not satisfy this
requirement—then actor creation will fail.

How the Mailbox Type is Selected

When an actor is created, the ActorRefProvider first determines the dispatcher which will execute it. Then
the mailbox is determined as follows:

1. If the actor’s deployment configuration section contains a mailbox key then that names a configuration
section describing the mailbox type to be used.

2. If the actor’s Props contains a mailbox selection—i.e. withMailbox was called on it—then that names
a configuration section describing the mailbox type to be used.

3. If the dispatcher’s configuration section contains a mailbox-type key the same section will be used to
configure the mailbox type.

4. If the actor requires a mailbox type as described above then the mapping for that requirement will be used
to determine the mailbox type to be used; if that fails then the dispatcher’s requirement—if any—will be
tried instead.

5. If the dispatcher requires a mailbox type as described above then the mapping for that requirement will be
used to determine the mailbox type to be used.

6. The default mailbox akka.actor.default-mailbox will be used.

Default Mailbox

When the mailbox is not specified as described above the default mailbox is used. By default it is an unbounded
mailbox, which is backed by a java.util.concurrent.ConcurrentLinkedQueue.

SingleConsumerOnlyUnboundedMailbox is an even more efficient mailbox, and it can be used as the
default mailbox, but it cannot be used with a BalancingDispatcher.

Configuration of SingleConsumerOnlyUnboundedMailbox as default mailbox:

akka.actor.default-mailbox {
mailbox-type = "akka.dispatch.SingleConsumerOnlyUnboundedMailbox"

}

Which Configuration is passed to the Mailbox Type

Each mailbox type is implemented by a class which extends MailboxType and takes two constructor arguments:
a ActorSystem.Settings object and a Config section. The latter is computed by obtaining the named
configuration section from the actor system’s configuration, overriding its id key with the configuration path of
the mailbox type and adding a fall-back to the default mailbox configuration section.

3.5.2 Builtin Mailbox Implementations

Akka comes shipped with a number of mailbox implementations:

• UnboundedMailbox - The default mailbox

– Backed by a java.util.concurrent.ConcurrentLinkedQueue

– Blocking: No

– Bounded: No

– Configuration name: “unbounded” or “akka.dispatch.UnboundedMailbox”

3.5. Mailboxes 117

Akka Java Documentation, Release 2.3.16

• SingleConsumerOnlyUnboundedMailbox

This queue may or may not be faster than the default one depending on your use-case—be sure to benchmark
properly!

– Backed by a Multiple-Producer Single-Consumer queue, cannot be used with
BalancingDispatcher

– Blocking: No

– Bounded: No

– Configuration name: “akka.dispatch.SingleConsumerOnlyUnboundedMailbox”

• BoundedMailbox

– Backed by a java.util.concurrent.LinkedBlockingQueue

– Blocking: Yes

– Bounded: Yes

– Configuration name: “bounded” or “akka.dispatch.BoundedMailbox”

• UnboundedPriorityMailbox

– Backed by a java.util.concurrent.PriorityBlockingQueue

– Blocking: Yes

– Bounded: No

– Configuration name: “akka.dispatch.UnboundedPriorityMailbox”

• BoundedPriorityMailbox

– Backed by a java.util.PriorityBlockingQueue wrapped in an
akka.util.BoundedBlockingQueue

– Blocking: Yes

– Bounded: Yes

– Configuration name: “akka.dispatch.BoundedPriorityMailbox”

3.5.3 Mailbox configuration examples

How to create a PriorityMailbox:

public class MyPrioMailbox extends UnboundedPriorityMailbox {
// needed for reflective instantiation
public MyPrioMailbox(ActorSystem.Settings settings, Config config) {
// Create a new PriorityGenerator, lower prio means more important
super(new PriorityGenerator() {

@Override
public int gen(Object message) {

if (message.equals("highpriority"))
return 0; // 'highpriority messages should be treated first if possible

else if (message.equals("lowpriority"))
return 2; // 'lowpriority messages should be treated last if possible

else if (message.equals(PoisonPill.getInstance()))
return 3; // PoisonPill when no other left

else
return 1; // By default they go between high and low prio

}
});

}
}

3.5. Mailboxes 118

Akka Java Documentation, Release 2.3.16

And then add it to the configuration:

prio-dispatcher {
mailbox-type = "docs.dispatcher.DispatcherDocSpec$MyPrioMailbox"
//Other dispatcher configuration goes here

}

And then an example on how you would use it:

class Demo extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);
{
for (Object msg : new Object[] { "lowpriority", "lowpriority",

"highpriority", "pigdog", "pigdog2", "pigdog3", "highpriority",
PoisonPill.getInstance() }) {

getSelf().tell(msg, getSelf());
}

}

public void onReceive(Object message) {
log.info(message.toString());

}
}

// We create a new Actor that just prints out what it processes
ActorRef myActor = system.actorOf(Props.create(Demo.class, this)

.withDispatcher("prio-dispatcher"));

/*
Logs:

'highpriority
'highpriority
'pigdog
'pigdog2
'pigdog3
'lowpriority
'lowpriority

*/

It is also possible to configure a mailbox type directly like this:

prio-mailbox {
mailbox-type = "docs.dispatcher.DispatcherDocSpec$MyPrioMailbox"
//Other mailbox configuration goes here

}

akka.actor.deployment {
/priomailboxactor {
mailbox = prio-mailbox

}
}

And then use it either from deployment like this:

ActorRef myActor =
system.actorOf(Props.create(MyUntypedActor.class),
"priomailboxactor");

Or code like this:

ActorRef myActor =
system.actorOf(Props.create(MyUntypedActor.class)
.withMailbox("prio-mailbox"));

3.5. Mailboxes 119

Akka Java Documentation, Release 2.3.16

3.5.4 Creating your own Mailbox type

An example is worth a thousand quacks:

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.dispatch.Envelope;
import akka.dispatch.MailboxType;
import akka.dispatch.MessageQueue;
import akka.dispatch.ProducesMessageQueue;
import com.typesafe.config.Config;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.Queue;
import scala.Option;

public class MyUnboundedJMailbox implements MailboxType,
ProducesMessageQueue<MyUnboundedJMailbox.MyMessageQueue> {

// This is the MessageQueue implementation
public static class MyMessageQueue implements MessageQueue,
MyUnboundedJMessageQueueSemantics {
private final Queue<Envelope> queue =

new ConcurrentLinkedQueue<Envelope>();

// these must be implemented; queue used as example
public void enqueue(ActorRef receiver, Envelope handle) {

queue.offer(handle);
}
public Envelope dequeue() { return queue.poll(); }
public int numberOfMessages() { return queue.size(); }
public boolean hasMessages() { return !queue.isEmpty(); }
public void cleanUp(ActorRef owner, MessageQueue deadLetters) {

for (Envelope handle: queue) {
deadLetters.enqueue(owner, handle);

}
}

}

// This constructor signature must exist, it will be called by Akka
public MyUnboundedJMailbox(ActorSystem.Settings settings, Config config) {
// put your initialization code here

}

// The create method is called to create the MessageQueue
public MessageQueue create(Option<ActorRef> owner, Option<ActorSystem> system) {
return new MyMessageQueue();

}
}

// Marker interface used for mailbox requirements mapping
public interface MyUnboundedJMessageQueueSemantics {
}

And then you just specify the FQCN of your MailboxType as the value of the “mailbox-type” in the dispatcher
configuration, or the mailbox configuration.

Note: Make sure to include a constructor which takes akka.actor.ActorSystem.Settings and
com.typesafe.config.Config arguments, as this constructor is invoked reflectively to construct your
mailbox type. The config passed in as second argument is that section from the configuration which describes
the dispatcher or mailbox setting using this mailbox type; the mailbox type will be instantiated once for each
dispatcher or mailbox setting using it.

3.5. Mailboxes 120

Akka Java Documentation, Release 2.3.16

You can also use the mailbox as a requirement on the dispatcher like this:

custom-dispatcher {
mailbox-requirement =
"docs.dispatcher.MyUnboundedJMessageQueueSemantics"

}

akka.actor.mailbox.requirements {
"docs.dispatcher.MyUnboundedJMessageQueueSemantics" =
custom-dispatcher-mailbox

}

custom-dispatcher-mailbox {
mailbox-type = "docs.dispatcher.MyUnboundedJMailbox"

}

Or by defining the requirement on your actor class like this:

public class MySpecialActor extends UntypedActor implements
RequiresMessageQueue<MyUnboundedJMessageQueueSemantics> {
// ...

}

3.5.5 Special Semantics of system.actorOf

In order to make system.actorOf both synchronous and non-blocking while keeping the return type
ActorRef (and the semantics that the returned ref is fully functional), special handling takes place for this
case. Behind the scenes, a hollow kind of actor reference is constructed, which is sent to the system’s guardian
actor who actually creates the actor and its context and puts those inside the reference. Until that has happened,
messages sent to the ActorRef will be queued locally, and only upon swapping the real filling in will they be
transferred into the real mailbox. Thus,

final Props props = ...
// this actor uses MyCustomMailbox, which is assumed to be a singleton
system.actorOf(props.withDispatcher("myCustomMailbox").tell("bang", sender);
assert(MyCustomMailbox.getInstance().getLastEnqueued().equals("bang"));

will probably fail; you will have to allow for some time to pass and retry the check à la TestKit.awaitCond.

3.6 Routing

Messages can be sent via a router to efficiently route them to destination actors, known as its routees. A Router
can be used inside or outside of an actor, and you can manage the routees yourselves or use a self contained router
actor with configuration capabilities.

Different routing strategies can be used, according to your application’s needs. Akka comes with several useful
routing strategies right out of the box. But, as you will see in this chapter, it is also possible to create your own.

3.6.1 A Simple Router

The following example illustrates how to use a Router and manage the routees from within an actor.

public final class Work implements Serializable {
private static final long serialVersionUID = 1L;
public final String payload;
public Work(String payload) {
this.payload = payload;

}
}

3.6. Routing 121

Akka Java Documentation, Release 2.3.16

public class Master extends UntypedActor {

Router router;
{
List<Routee> routees = new ArrayList<Routee>();
for (int i = 0; i < 5; i++) {

ActorRef r = getContext().actorOf(Props.create(Worker.class));
getContext().watch(r);
routees.add(new ActorRefRoutee(r));

}
router = new Router(new RoundRobinRoutingLogic(), routees);

}

public void onReceive(Object msg) {
if (msg instanceof Work) {

router.route(msg, getSender());
} else if (msg instanceof Terminated) {

router = router.removeRoutee(((Terminated) msg).actor());
ActorRef r = getContext().actorOf(Props.create(Worker.class));
getContext().watch(r);
router = router.addRoutee(new ActorRefRoutee(r));

}
}

}

We create a Router and specify that it should use RoundRobinRoutingLogic when routing the messages
to the routees.

The routing logic shipped with Akka are:

• akka.routing.RoundRobinRoutingLogic

• akka.routing.RandomRoutingLogic

• akka.routing.SmallestMailboxRoutingLogic

• akka.routing.BroadcastRoutingLogic

• akka.routing.ScatterGatherFirstCompletedRoutingLogic

• akka.routing.TailChoppingRoutingLogic

• akka.routing.ConsistentHashingRoutingLogic

We create the routees as ordinary child actors wrapped in ActorRefRoutee. We watch the routees to be able
to replace them if they are terminated.

Sending messages via the router is done with the routemethod, as is done for the Workmessages in the example
above.

The Router is immutable and the RoutingLogic is thread safe; meaning that they can also be used outside
of actors.

Note: In general, any message sent to a router will be sent onwards to its routees, but there is one exception. The
special Broadcast Messages will send to all of a router’s routees

3.6.2 A Router Actor

A router can also be created as a self contained actor that manages the routees itself and loads routing logic and
other settings from configuration.

This type of router actor comes in two distinct flavors:

• Pool - The router creates routees as child actors and removes them from the router if they terminate.

3.6. Routing 122

Akka Java Documentation, Release 2.3.16

• Group - The routee actors are created externally to the router and the router sends messages to the specified
path using actor selection, without watching for termination.

The settings for a router actor can be defined in configuration or programmatically. Although router actors can
be defined in the configuration file, they must still be created programmatically, i.e. you cannot make a router
through external configuration alone. If you define the router actor in the configuration file then these settings will
be used instead of any programmatically provided parameters.

You send messages to the routees via the router actor in the same way as for ordinary actors, i.e. via its ActorRef.
The router actor forwards messages onto its routees without changing the original sender. When a routee replies
to a routed message, the reply will be sent to the original sender, not to the router actor.

Note: In general, any message sent to a router will be sent onwards to its routees, but there are a few exceptions.
These are documented in the Specially Handled Messages section below.

Pool

The following code and configuration snippets show how to create a round-robin router that forwards messages to
five Worker routees. The routees will be created as the router’s children.

akka.actor.deployment {
/parent/router1 {
router = round-robin-pool
nr-of-instances = 5

}
}

ActorRef router1 =
getContext().actorOf(FromConfig.getInstance().props(Props.create(Worker.class)),
"router1");

Here is the same example, but with the router configuration provided programmatically instead of from configu-
ration.

ActorRef router2 =
getContext().actorOf(new RoundRobinPool(5).props(Props.create(Worker.class)),
"router2");

Remote Deployed Routees

In addition to being able to create local actors as routees, you can instruct the router to deploy its created children
on a set of remote hosts. Routees will be deployed in round-robin fashion. In order to deploy routees remotely,
wrap the router configuration in a RemoteRouterConfig, attaching the remote addresses of the nodes to
deploy to. Remote deployment requires the akka-remote module to be included in the classpath.

Address[] addresses = {
new Address("akka.tcp", "remotesys", "otherhost", 1234),
AddressFromURIString.parse("akka.tcp://othersys@anotherhost:1234")};

ActorRef routerRemote = system.actorOf(
new RemoteRouterConfig(new RoundRobinPool(5), addresses).props(
Props.create(Echo.class)));

Senders

When a routee sends a message, it can set itself as the sender.

3.6. Routing 123

Akka Java Documentation, Release 2.3.16

getSender().tell("reply", getSelf());

However, it is often useful for routees to set the router as a sender. For example, you might want to set the router
as the sender if you want to hide the details of the routees behind the router. The following code snippet shows
how to set the parent router as sender.

getSender().tell("reply", getContext().parent());

Supervision

Routees that are created by a pool router will be created as the router’s children. The router is therefore also the
children’s supervisor.

The supervision strategy of the router actor can be configured with the supervisorStrategy property of the
Pool. If no configuration is provided, routers default to a strategy of “always escalate”. This means that errors are
passed up to the router’s supervisor for handling. The router’s supervisor will decide what to do about any errors.

Note the router’s supervisor will treat the error as an error with the router itself. Therefore a directive to stop or
restart will cause the router itself to stop or restart. The router, in turn, will cause its children to stop and restart.

It should be mentioned that the router’s restart behavior has been overridden so that a restart, while still re-creating
the children, will still preserve the same number of actors in the pool.

This means that if you have not specified supervisorStrategy of the router or its parent a failure in a routee
will escalate to the parent of the router, which will by default restart the router, which will restart all routees (it
uses Escalate and does not stop routees during restart). The reason is to make the default behave such that adding
withRouter to a child’s definition does not change the supervision strategy applied to the child. This might be
an inefficiency that you can avoid by specifying the strategy when defining the router.

Setting the strategy is easily done:

final SupervisorStrategy strategy =
new OneForOneStrategy(5, Duration.create(1, TimeUnit.MINUTES),
Collections.<Class<? extends Throwable>>singletonList(Exception.class));

final ActorRef router = system.actorOf(new RoundRobinPool(5).
withSupervisorStrategy(strategy).props(Props.create(Echo.class)));

Note: If the child of a pool router terminates, the pool router will not automatically spawn a new child. In the
event that all children of a pool router have terminated the router will terminate itself unless it is a dynamic router,
e.g. using a resizer.

Group

Sometimes, rather than having the router actor create its routees, it is desirable to create routees separately and pro-
vide them to the router for its use. You can do this by passing an paths of the routees to the router’s configuration.
Messages will be sent with ActorSelection to these paths.

The example below shows how to create a router by providing it with the path strings of three routee actors.

akka.actor.deployment {
/parent/router3 {
router = round-robin-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]

}
}

ActorRef router3 =
getContext().actorOf(FromConfig.getInstance().props(), "router3");

3.6. Routing 124

Akka Java Documentation, Release 2.3.16

Here is the same example, but with the router configuration provided programmatically instead of from configu-
ration.

ActorRef router4 =
getContext().actorOf(new RoundRobinGroup(paths).props(), "router4");

The routee actors are created externally from the router:

system.actorOf(Props.create(Workers.class), "workers");

public class Workers extends UntypedActor {
@Override public void preStart() {
getContext().actorOf(Props.create(Worker.class), "w1");
getContext().actorOf(Props.create(Worker.class), "w2");
getContext().actorOf(Props.create(Worker.class), "w3");

}
// ...

The paths may contain protocol and address information for actors running on remote hosts. Remoting requires
the akka-remote module to be included in the classpath.

akka.actor.deployment {
/parent/remoteGroup {
router = round-robin-group
routees.paths = [

"akka.tcp://app@10.0.0.1:2552/user/workers/w1",
"akka.tcp://app@10.0.0.2:2552/user/workers/w1",
"akka.tcp://app@10.0.0.3:2552/user/workers/w1"]

}
}

3.6.3 Router usage

In this section we will describe how to create the different types of router actors.

The router actors in this section are created from within a top level actor named parent. Note that deployment
paths in the configuration starts with /parent/ followed by the name of the router actor.

system.actorOf(Props.create(Parent.class), "parent");

RoundRobinPool and RoundRobinGroup

Routes in a round-robin fashion to its routees.

RoundRobinPool defined in configuration:

akka.actor.deployment {
/parent/router1 {
router = round-robin-pool
nr-of-instances = 5

}
}

ActorRef router1 =
getContext().actorOf(FromConfig.getInstance().props(Props.create(Worker.class)),
"router1");

RoundRobinPool defined in code:

ActorRef router2 =
getContext().actorOf(new RoundRobinPool(5).props(Props.create(Worker.class)),
"router2");

3.6. Routing 125

http://en.wikipedia.org/wiki/Round-robin

Akka Java Documentation, Release 2.3.16

RoundRobinGroup defined in configuration:

akka.actor.deployment {
/parent/router3 {
router = round-robin-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]

}
}

ActorRef router3 =
getContext().actorOf(FromConfig.getInstance().props(), "router3");

RoundRobinGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

ActorRef router4 =
getContext().actorOf(new RoundRobinGroup(paths).props(), "router4");

RandomPool and RandomGroup

This router type selects one of its routees randomly for each message.

RandomPool defined in configuration:

akka.actor.deployment {
/parent/router5 {
router = random-pool
nr-of-instances = 5

}
}

ActorRef router5 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router5");

RandomPool defined in code:

ActorRef router6 =
getContext().actorOf(new RandomPool(5).props(Props.create(Worker.class)),
"router6");

RandomGroup defined in configuration:

akka.actor.deployment {
/parent/router7 {
router = random-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]

}
}

ActorRef router7 =
getContext().actorOf(FromConfig.getInstance().props(), "router7");

RandomGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

ActorRef router8 =
getContext().actorOf(new RandomGroup(paths).props(), "router8");

3.6. Routing 126

Akka Java Documentation, Release 2.3.16

BalancingPool

A Router that will try to redistribute work from busy routees to idle routees. All routees share the same mailbox.

BalancingPool defined in configuration:

akka.actor.deployment {
/parent/router9 {
router = balancing-pool
nr-of-instances = 5

}
}

ActorRef router9 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router9");

BalancingPool defined in code:

ActorRef router10 =
getContext().actorOf(new BalancingPool(5).props(
Props.create(Worker.class)), "router10");

Addition configuration for the balancing dispatcher, which is used by the pool, can be configured in the
pool-dispatcher section of the router deployment configuration.

akka.actor.deployment {
/parent/router9b {
router = balancing-pool
nr-of-instances = 5
pool-dispatcher {

attempt-teamwork = off
}

}
}

There is no Group variant of the BalancingPool.

SmallestMailboxPool

A Router that tries to send to the non-suspended child routee with fewest messages in mailbox. The selection is
done in this order:

• pick any idle routee (not processing message) with empty mailbox

• pick any routee with empty mailbox

• pick routee with fewest pending messages in mailbox

• pick any remote routee, remote actors are consider lowest priority, since their mailbox size is unknown

SmallestMailboxPool defined in configuration:

akka.actor.deployment {
/parent/router11 {
router = smallest-mailbox-pool
nr-of-instances = 5

}
}

ActorRef router11 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router11");

SmallestMailboxPool defined in code:

3.6. Routing 127

Akka Java Documentation, Release 2.3.16

ActorRef router12 =
getContext().actorOf(new SmallestMailboxPool(5).props(
Props.create(Worker.class)), "router12");

There is no Group variant of the SmallestMailboxPool because the size of the mailbox and the internal dispatching
state of the actor is not practically available from the paths of the routees.

BroadcastPool and BroadcastGroup

A broadcast router forwards the message it receives to all its routees.

BroadcastPool defined in configuration:

akka.actor.deployment {
/parent/router13 {
router = broadcast-pool
nr-of-instances = 5

}
}

ActorRef router13 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router13");

BroadcastPool defined in code:

ActorRef router14 =
getContext().actorOf(new BroadcastPool(5).props(Props.create(Worker.class)),
"router14");

BroadcastGroup defined in configuration:

akka.actor.deployment {
/parent/router15 {
router = broadcast-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]

}
}

ActorRef router15 =
getContext().actorOf(FromConfig.getInstance().props(), "router15");

BroadcastGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

ActorRef router16 =
getContext().actorOf(new BroadcastGroup(paths).props(), "router16");

Note: Broadcast routers always broadcast every message to their routees. If you do not want to broadcast every
message, then you can use a non-broadcasting router and use Broadcast Messages as needed.

ScatterGatherFirstCompletedPool and ScatterGatherFirstCompletedGroup

The ScatterGatherFirstCompletedRouter will send the message on to all its routees. It then waits for first reply it
gets back. This result will be sent back to original sender. Other replies are discarded.

It is expecting at least one reply within a configured duration, otherwise it will reply with
akka.pattern.AskTimeoutException in a akka.actor.Status.Failure.

ScatterGatherFirstCompletedPool defined in configuration:

3.6. Routing 128

Akka Java Documentation, Release 2.3.16

akka.actor.deployment {
/parent/router17 {
router = scatter-gather-pool
nr-of-instances = 5
within = 10 seconds

}
}

ActorRef router17 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router17");

ScatterGatherFirstCompletedPool defined in code:

FiniteDuration within = FiniteDuration.create(10, TimeUnit.SECONDS);
ActorRef router18 =

getContext().actorOf(new ScatterGatherFirstCompletedPool(5, within).props(
Props.create(Worker.class)), "router18");

ScatterGatherFirstCompletedGroup defined in configuration:

akka.actor.deployment {
/parent/router19 {
router = scatter-gather-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]
within = 10 seconds

}
}

ActorRef router19 =
getContext().actorOf(FromConfig.getInstance().props(), "router19");

ScatterGatherFirstCompletedGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

FiniteDuration within2 = FiniteDuration.create(10, TimeUnit.SECONDS);
ActorRef router20 =

getContext().actorOf(new ScatterGatherFirstCompletedGroup(paths, within2).props(),
"router20");

TailChoppingPool and TailChoppingGroup

The TailChoppingRouter will first send the message to one, randomly picked, routee and then after a small delay
to to a second routee (picked randomly from the remaining routees) and so on. It waits for first reply it gets back
and forwards it back to original sender. Other replies are discarded.

The goal of this router is to decrease latency by performing redundant queries to multiple routees, assuming that
one of the other actors may still be faster to respond than the initial one.

This optimisation was described nicely in a blog post by Peter Bailis: Doing redundant work to speed up dis-
tributed queries.

TailChoppingPool defined in configuration:

akka.actor.deployment {
/parent/router21 {
router = tail-chopping-pool
nr-of-instances = 5
within = 10 seconds
tail-chopping-router.interval = 20 milliseconds

}
}

3.6. Routing 129

http://www.bailis.org/blog/doing-redundant-work-to-speed-up-distributed-queries/
http://www.bailis.org/blog/doing-redundant-work-to-speed-up-distributed-queries/

Akka Java Documentation, Release 2.3.16

ActorRef router21 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router21");

TailChoppingPool defined in code:

FiniteDuration within3 = FiniteDuration.create(10, TimeUnit.SECONDS);
FiniteDuration interval = FiniteDuration.create(20, TimeUnit.MILLISECONDS);
ActorRef router22 =

getContext().actorOf(new TailChoppingPool(5, within3, interval).props(
Props.create(Worker.class)), "router22");

TailChoppingGroup defined in configuration:

akka.actor.deployment {
/parent/router23 {
router = tail-chopping-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]
within = 10 seconds
tail-chopping-router.interval = 20 milliseconds

}
}

ActorRef router23 =
getContext().actorOf(FromConfig.getInstance().props(), "router23");

TailChoppingGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

FiniteDuration within4 = FiniteDuration.create(10, TimeUnit.SECONDS);
FiniteDuration interval2 = FiniteDuration.create(20, TimeUnit.MILLISECONDS);
ActorRef router24 =

getContext().actorOf(new TailChoppingGroup(paths, within4, interval2).props(),
"router24");

ConsistentHashingPool and ConsistentHashingGroup

The ConsistentHashingPool uses consistent hashing to select a routee based on the sent message. This article
gives good insight into how consistent hashing is implemented.

There is 3 ways to define what data to use for the consistent hash key.

• You can define withHashMapper of the router to map incoming messages to their consistent hash key.
This makes the decision transparent for the sender.

• The messages may implement akka.routing.ConsistentHashingRouter.ConsistentHashable.
The key is part of the message and it’s convenient to define it together with the message definition.

• The messages can be be wrapped in a akka.routing.ConsistentHashingRouter.ConsistentHashableEnvelope
to define what data to use for the consistent hash key. The sender knows the key to use.

These ways to define the consistent hash key can be use together and at the same time for one router. The
withHashMapper is tried first.

Code example:

public class Cache extends UntypedActor {
Map<String, String> cache = new HashMap<String, String>();

public void onReceive(Object msg) {
if (msg instanceof Entry) {

Entry entry = (Entry) msg;
cache.put(entry.key, entry.value);

3.6. Routing 130

http://en.wikipedia.org/wiki/Consistent_hashing
http://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.html

Akka Java Documentation, Release 2.3.16

} else if (msg instanceof Get) {
Get get = (Get) msg;
Object value = cache.get(get.key);
getSender().tell(value == null ? NOT_FOUND : value,

getContext().self());
} else if (msg instanceof Evict) {

Evict evict = (Evict) msg;
cache.remove(evict.key);

} else {
unhandled(msg);

}
}

}

public final class Evict implements Serializable {
private static final long serialVersionUID = 1L;
public final String key;
public Evict(String key) {
this.key = key;

}
}

public final class Get implements Serializable, ConsistentHashable {
private static final long serialVersionUID = 1L;
public final String key;
public Get(String key) {
this.key = key;

}
public Object consistentHashKey() {
return key;

}
}

public final class Entry implements Serializable {
private static final long serialVersionUID = 1L;
public final String key;
public final String value;
public Entry(String key, String value) {
this.key = key;
this.value = value;

}
}

public final String NOT_FOUND = "NOT_FOUND";

final ConsistentHashMapper hashMapper = new ConsistentHashMapper() {
@Override
public Object hashKey(Object message) {
if (message instanceof Evict) {

return ((Evict) message).key;
} else {

return null;
}

}
};

ActorRef cache = system.actorOf(
new ConsistentHashingPool(10).withHashMapper(hashMapper).props(

Props.create(Cache.class)),
"cache");

cache.tell(new ConsistentHashableEnvelope(
new Entry("hello", "HELLO"), "hello"), getRef());

3.6. Routing 131

Akka Java Documentation, Release 2.3.16

cache.tell(new ConsistentHashableEnvelope(
new Entry("hi", "HI"), "hi"), getRef());

cache.tell(new Get("hello"), getRef());
expectMsgEquals("HELLO");

cache.tell(new Get("hi"), getRef());
expectMsgEquals("HI");

cache.tell(new Evict("hi"), getRef());
cache.tell(new Get("hi"), getRef());
expectMsgEquals(NOT_FOUND);

In the above example you see that the Get message implements ConsistentHashable itself, while the
Entry message is wrapped in a ConsistentHashableEnvelope. The Evict message is handled by
the hashMapping partial function.

ConsistentHashingPool defined in configuration:

akka.actor.deployment {
/parent/router25 {
router = consistent-hashing-pool
nr-of-instances = 5
virtual-nodes-factor = 10

}
}

ActorRef router25 =
getContext().actorOf(FromConfig.getInstance().props(Props.create(Worker.class)),
"router25");

ConsistentHashingPool defined in code:

ActorRef router26 =
getContext().actorOf(new ConsistentHashingPool(5).props(
Props.create(Worker.class)), "router26");

ConsistentHashingGroup defined in configuration:

akka.actor.deployment {
/parent/router27 {
router = consistent-hashing-group
routees.paths = ["/user/workers/w1", "/user/workers/w2", "/user/workers/w3"]
virtual-nodes-factor = 10

}
}

ActorRef router27 =
getContext().actorOf(FromConfig.getInstance().props(), "router27");

ConsistentHashingGroup defined in code:

List<String> paths = Arrays.asList("/user/workers/w1", "/user/workers/w2",
"/user/workers/w3");

ActorRef router28 =
getContext().actorOf(new ConsistentHashingGroup(paths).props(), "router28");

virtual-nodes-factor is the number of virtual nodes per routee that is used in the consistent hash node
ring to make the distribution more uniform.

3.6. Routing 132

Akka Java Documentation, Release 2.3.16

3.6.4 Specially Handled Messages

Most messages sent to router actors will be forwarded according to the routers’ routing logic. However there are
a few types of messages that have special behavior.

Note that these special messages, except for the Broadcast message, are only handled by self contained router
actors and not by the akka.routing.Router component described in A Simple Router.

Broadcast Messages

A Broadcast message can be used to send a message to all of a router’s routees. When a router receives a
Broadcast message, it will broadcast that message’s payload to all routees, no matter how that router would
normally route its messages.

The example below shows how you would use a Broadcast message to send a very important message to every
routee of a router.

router.tell(new Broadcast("Watch out for Davy Jones' locker"), getTestActor());

In this example the router receives the Broadcast message, extracts its payload
("Watch out for Davy Jones’ locker"), and then sends the payload on to all of the router’s
routees. It is up to each each routee actor to handle the received payload message.

PoisonPill Messages

A PoisonPill message has special handling for all actors, including for routers. When any actor receives a
PoisonPill message, that actor will be stopped. See the PoisonPill documentation for details.

router.tell(PoisonPill.getInstance(), getTestActor());

For a router, which normally passes on messages to routees, it is important to realise that PoisonPill messages
are processed by the router only. PoisonPill messages sent to a router will not be sent on to routees.

However, a PoisonPill message sent to a router may still affect its routees, because it will stop the router and
when the router stops it also stops its children. Stopping children is normal actor behavior. The router will stop
routees that it has created as children. Each child will process its current message and then stop. This may lead to
some messages being unprocessed. See the documentation on Stopping actors for more information.

If you wish to stop a router and its routees, but you would like the routees to first process all the messages
currently in their mailboxes, then you should not send a PoisonPill message to the router. Instead you should
wrap a PoisonPill message inside a Broadcast message so that each routee will receive the PoisonPill
message. Note that this will stop all routees, even if the routees aren’t children of the router, i.e. even routees
programmatically provided to the router.

router.tell(new Broadcast(PoisonPill.getInstance()), getTestActor());

With the code shown above, each routee will receive a PoisonPill message. Each routee will continue to
process its messages as normal, eventually processing the PoisonPill. This will cause the routee to stop. After
all routees have stopped the router will itself be stopped automatically unless it is a dynamic router, e.g. using a
resizer.

Note: Brendan W McAdams’ excellent blog post Distributing Akka Workloads - And Shutting Down Afterwards
discusses in more detail how PoisonPill messages can be used to shut down routers and routees.

Kill Messages

Kill messages are another type of message that has special handling. See Killing an Actor for general informa-
tion about how actors handle Kill messages.

3.6. Routing 133

http://blog.evilmonkeylabs.com/2013/01/17/Distributing_Akka_Workloads_And_Shutting_Down_After/

Akka Java Documentation, Release 2.3.16

When a Kill message is sent to a router the router processes the message internally, and does not send it on to its
routees. The router will throw an ActorKilledException and fail. It will then be either resumed, restarted
or terminated, depending how it is supervised.

Routees that are children of the router will also be suspended, and will be affected by the supervision directive
that is applied to the router. Routees that are not the routers children, i.e. those that were created externally to the
router, will not be affected.

router.tell(Kill.getInstance(), getTestActor());

As with the PoisonPill message, there is a distinction between killing a router, which indirectly kills its
children (who happen to be routees), and killing routees directly (some of whom may not be children.) To kill
routees directly the router should be sent a Kill message wrapped in a Broadcast message.

router.tell(new Broadcast(Kill.getInstance()), getTestActor());

Managagement Messages

• Sending akka.routing.GetRoutees to a router actor will make it send back its currently used routees
in a akka.routing.Routees message.

• Sending akka.routing.AddRoutee to a router actor will add that routee to its collection of routees.

• Sending akka.routing.RemoveRoutee to a router actor will remove that routee to its collection of
routees.

• Sending akka.routing.AdjustPoolSize to a pool router actor will add or remove that number of
routees to its collection of routees.

These management messages may be handled after other messages, so if you send AddRoutee immediately
followed an ordinary message you are not guaranteed that the routees have been changed when the ordinary
message is routed. If you need to know when the change has been applied you can send AddRoutee followed by
GetRoutees and when you receive the Routees reply you know that the preceding change has been applied.

3.6.5 Dynamically Resizable Pool

All pools can be used with a fixed number of routees or with a resize strategy to adjust the number of routees
dynamically.

Pool with resizer defined in configuration:

akka.actor.deployment {
/parent/router29 {
router = round-robin-pool
resizer {

lower-bound = 2
upper-bound = 15
messages-per-resize = 100

}
}

}

ActorRef router29 =
getContext().actorOf(FromConfig.getInstance().props(
Props.create(Worker.class)), "router29");

Several more configuration options are available and described in akka.actor.deployment.default.resizer
section of the reference Configuration.

Pool with resizer defined in code:

3.6. Routing 134

Akka Java Documentation, Release 2.3.16

DefaultResizer resizer = new DefaultResizer(2, 15);
ActorRef router30 =

getContext().actorOf(new RoundRobinPool(5).withResizer(resizer).props(
Props.create(Worker.class)), "router30");

It is also worth pointing out that if you define the ‘‘router‘‘ in the configuration file then this value will be used
instead of any programmatically sent parameters.

Note: Resizing is triggered by sending messages to the actor pool, but it is not completed synchronously; instead
a message is sent to the “head” RouterActor to perform the size change. Thus you cannot rely on resizing
to instantaneously create new workers when all others are busy, because the message just sent will be queued to
the mailbox of a busy actor. To remedy this, configure the pool to use a balancing dispatcher, see Configuring
Dispatchers for more information.

3.6.6 How Routing is Designed within Akka

On the surface routers look like normal actors, but they are actually implemented differently. Routers are designed
to be extremely efficient at receiving messages and passing them quickly on to routees.

A normal actor can be used for routing messages, but an actor’s single-threaded processing can become a bottle-
neck. Routers can achieve much higher throughput with an optimization to the usual message-processing pipeline
that allows concurrent routing. This is achieved by embedding routers’ routing logic directly in their ActorRef
rather than in the router actor. Messages sent to a router’s ActorRef can be immediately routed to the routee,
bypassing the single-threaded router actor entirely.

The cost to this is, of course, that the internals of routing code are more complicated than if routers were im-
plemented with normal actors. Fortunately all of this complexity is invisible to consumers of the routing API.
However, it is something to be aware of when implementing your own routers.

3.6.7 Custom Router

You can create your own router should you not find any of the ones provided by Akka sufficient for your needs.
In order to roll your own router you have to fulfill certain criteria which are explained in this section.

Before creating your own router you should consider whether a normal actor with router-like behavior might do
the job just as well as a full-blown router. As explained above, the primary benefit of routers over normal actors
is their higher performance. But they are somewhat more complicated to write than normal actors. Therefore if
lower maximum throughput is acceptable in your application you may wish to stick with traditional actors. This
section, however, assumes that you wish to get maximum performance and so demonstrates how you can create
your own router.

The router created in this example is replicating each message to a few destinations.

Start with the routing logic:

public class RedundancyRoutingLogic implements RoutingLogic {
private final int nbrCopies;

public RedundancyRoutingLogic(int nbrCopies) {
this.nbrCopies = nbrCopies;

}
RoundRobinRoutingLogic roundRobin = new RoundRobinRoutingLogic();

@Override
public Routee select(Object message, IndexedSeq<Routee> routees) {
List<Routee> targets = new ArrayList<Routee>();
for (int i = 0; i < nbrCopies; i++) {

targets.add(roundRobin.select(message, routees));
}

3.6. Routing 135

Akka Java Documentation, Release 2.3.16

return new SeveralRoutees(targets);
}

}

select will be called for each message and in this example pick a few destinations by round-robin, by
reusing the existing RoundRobinRoutingLogic and wrap the result in a SeveralRoutees instance.
SeveralRoutees will send the message to all of the supplied routues.

The implementation of the routing logic must be thread safe, since it might be used outside of actors.

A unit test of the routing logic:

public final class TestRoutee implements Routee {
public final int n;

public TestRoutee(int n) {
this.n = n;

}

@Override
public void send(Object message, ActorRef sender) {
}

@Override
public int hashCode() {
return n;

}

@Override
public boolean equals(Object obj) {
return (obj instanceof TestRoutee) &&

n == ((TestRoutee) obj).n;
}

}

RedundancyRoutingLogic logic = new RedundancyRoutingLogic(3);

List<Routee> routeeList = new ArrayList<Routee>();
for (int n = 1; n <= 7; n++) {
routeeList.add(new TestRoutee(n));

}
IndexedSeq<Routee> routees = immutableIndexedSeq(routeeList);

SeveralRoutees r1 = (SeveralRoutees) logic.select("msg", routees);
assertEquals(r1.getRoutees().get(0), routeeList.get(0));
assertEquals(r1.getRoutees().get(1), routeeList.get(1));
assertEquals(r1.getRoutees().get(2), routeeList.get(2));

SeveralRoutees r2 = (SeveralRoutees) logic.select("msg", routees);
assertEquals(r2.getRoutees().get(0), routeeList.get(3));
assertEquals(r2.getRoutees().get(1), routeeList.get(4));
assertEquals(r2.getRoutees().get(2), routeeList.get(5));

SeveralRoutees r3 = (SeveralRoutees) logic.select("msg", routees);
assertEquals(r3.getRoutees().get(0), routeeList.get(6));
assertEquals(r3.getRoutees().get(1), routeeList.get(0));
assertEquals(r3.getRoutees().get(2), routeeList.get(1));

You could stop here and use the RedundancyRoutingLogic with a akka.routing.Router as described
in A Simple Router.

Let us continue and make this into a self contained, configurable, router actor.

Create a class that extends PoolBase, GroupBase or CustomRouterConfig. That class is a factory for

3.6. Routing 136

Akka Java Documentation, Release 2.3.16

the routing logic and holds the configuration for the router. Here we make it a Group.

import java.util.List;

import scala.Option;
import scala.collection.immutable.Iterable;
import akka.actor.ActorContext;
import akka.actor.ActorPath;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.dispatch.Dispatchers;
import akka.routing.Group;
import akka.routing.Routee;
import akka.routing.Router;
import akka.routing.RouterActor;
import akka.routing.RouterConfig;
import akka.routing.RoutingLogic;

import com.typesafe.config.Config;

import akka.routing.GroupBase;
import static docs.jrouting.CustomRouterDocTest.RedundancyRoutingLogic;

public class RedundancyGroup extends GroupBase {
private final List<String> paths;
private final int nbrCopies;

public RedundancyGroup(List<String> paths, int nbrCopies) {
this.paths = paths;
this.nbrCopies = nbrCopies;

}

public RedundancyGroup(Config config) {
this(config.getStringList("routees.paths"),

config.getInt("nbr-copies"));
}

@Override
public java.lang.Iterable<String> getPaths() {
return paths;

}

@Override
public Router createRouter(ActorSystem system) {
return new Router(new RedundancyRoutingLogic(nbrCopies));

}

@Override
public String routerDispatcher() {
return Dispatchers.DefaultDispatcherId();

}

}

This can be used exactly as the router actors provided by Akka.

for (int n = 1; n <= 10; n++) {
system.actorOf(Props.create(Storage.class), "s" + n);

}

List<String> paths = new ArrayList<String>();
for (int n = 1; n <= 10; n++) {

paths.add("/user/s" + n);
}

3.6. Routing 137

Akka Java Documentation, Release 2.3.16

ActorRef redundancy1 =
system.actorOf(new RedundancyGroup(paths, 3).props(),
"redundancy1");

redundancy1.tell("important", getTestActor());

Note that we added a constructor in RedundancyGroup that takes a Config parameter. That makes it possible
to define it in configuration.

akka.actor.deployment {
/redundancy2 {
router = "docs.jrouting.RedundancyGroup"
routees.paths = ["/user/s1", "/user/s2", "/user/s3"]
nbr-copies = 5

}
}

Note the fully qualified class name in the router property. The router class must extend
akka.routing.RouterConfig (Pool, Group or CustomRouterConfig) and have constructor with
one com.typesafe.config.Config parameter. The deployment section of the configuration is passed to
the constructor.

ActorRef redundancy2 = system.actorOf(FromConfig.getInstance().props(),
"redundancy2");

redundancy2.tell("very important", getTestActor());

3.6.8 Configuring Dispatchers

The dispatcher for created children of the pool will be taken from Props as described in dispatchers-scala.

To make it easy to define the dispatcher of the routees of the pool you can define the dispatcher inline in the
deployment section of the config.

akka.actor.deployment {
/poolWithDispatcher {
router = random-pool
nr-of-instances = 5
pool-dispatcher {

fork-join-executor.parallelism-min = 5
fork-join-executor.parallelism-max = 5

}
}

}

That is the only thing you need to do enable a dedicated dispatcher for a pool.

Note: If you use a group of actors and route to their paths, then they will still use the same dispatcher that was
configured for them in their Props, it is not possible to change an actors dispatcher after it has been created.

The “head” router cannot always run on the same dispatcher, because it does not process the same type
of messages, hence this special actor does not use the dispatcher configured in Props, but takes the
routerDispatcher from the RouterConfig instead, which defaults to the actor system’s default dis-
patcher. All standard routers allow setting this property in their constructor or factory method, custom routers
have to implement the method in a suitable way.

Props props =
// “head” router actor will run on "router-dispatcher" dispatcher
// Worker routees will run on "pool-dispatcher" dispatcher
new RandomPool(5).withDispatcher("router-dispatcher").props(
Props.create(Worker.class));

ActorRef router = system.actorOf(props, "poolWithDispatcher");

3.6. Routing 138

Akka Java Documentation, Release 2.3.16

Note: It is not allowed to configure the routerDispatcher to be a
akka.dispatch.BalancingDispatcherConfigurator since the messages meant for the spe-
cial router actor cannot be processed by any other actor.

3.7 Building Finite State Machine Actors

3.7.1 Overview

The FSM (Finite State Machine) pattern is best described in the Erlang design principles. In short, it can be seen
as a set of relations of the form:

State(S) x Event(E) -> Actions (A), State(S’)

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a transition to
the state S’.

While the Scala programming language enables the formulation of a nice internal DSL (domain specific lan-
guage) for formulating finite state machines (see fsm-scala), Java’s verbosity does not lend itself well to the
same approach. This chapter describes ways to effectively achieve the same separation of concerns through self-
discipline.

3.7.2 How State should be Handled

All mutable fields (or transitively mutable data structures) referenced by the FSM actor’s implementation should
be collected in one place and only mutated using a small well-defined set of methods. One way to achieve this is
to assemble all mutable state in a superclass which keeps it private and offers protected methods for mutating it.

import java.util.ArrayList;
import java.util.List;
import akka.actor.ActorRef;

public abstract class MyFSMBase extends UntypedActor {

/*
* This is the mutable state of this state machine.

*/
protected enum State {
IDLE, ACTIVE;

}

private State state = State.IDLE;
private ActorRef target;
private List<Object> queue;

/*
* Then come all the mutator methods:

*/
protected void init(ActorRef target) {
this.target = target;
queue = new ArrayList<Object>();

}

protected void setState(State s) {
if (state != s) {

transition(state, s);
state = s;

3.7. Building Finite State Machine Actors 139

http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html

Akka Java Documentation, Release 2.3.16

}
}

protected void enqueue(Object o) {
if (queue != null)

queue.add(o);
}

protected List<Object> drainQueue() {
final List<Object> q = queue;
if (q == null)

throw new IllegalStateException("drainQueue(): not yet initialized");
queue = new ArrayList<Object>();
return q;

}

/*
* Here are the interrogation methods:

*/
protected boolean isInitialized() {
return target != null;

}

protected State getState() {
return state;

}

protected ActorRef getTarget() {
if (target == null)

throw new IllegalStateException("getTarget(): not yet initialized");
return target;

}

/*
* And finally the callbacks (only one in this example: react to state change)

*/
abstract protected void transition(State old, State next);

}

The benefit of this approach is that state changes can be acted upon in one central place, which makes it impossible
to forget inserting code for reacting to state transitions when adding to the FSM’s machinery.

3.7.3 Message Buncher Example

The base class shown above is designed to support a similar example as for the Scala FSM documentation: an
actor which receives and queues messages, to be delivered in batches to a configurable target actor. The messages
involved are:

public final class SetTarget {
final ActorRef ref;

public SetTarget(ActorRef ref) {
this.ref = ref;

}
}

public final class Queue {
final Object o;

public Queue(Object o) {
this.o = o;

}

3.7. Building Finite State Machine Actors 140

Akka Java Documentation, Release 2.3.16

}

public final Object flush = new Object();

public final class Batch {
final List<Object> objects;

public Batch(List<Object> objects) {
this.objects = objects;

}
}

This actor has only the two states IDLE and ACTIVE, making their handling quite straight-forward in the concrete
actor derived from the base class:

import akka.event.LoggingAdapter;
import akka.event.Logging;
import akka.actor.UntypedActor;

public class MyFSM extends MyFSMBase {

private final LoggingAdapter log =
Logging.getLogger(getContext().system(), this);

@Override
public void onReceive(Object o) {

if (getState() == State.IDLE) {

if (o instanceof SetTarget)
init(((SetTarget) o).ref);

else
whenUnhandled(o);

} else if (getState() == State.ACTIVE) {

if (o == flush)
setState(State.IDLE);

else
whenUnhandled(o);

}
}

@Override
public void transition(State old, State next) {
if (old == State.ACTIVE) {

getTarget().tell(new Batch(drainQueue()), getSelf());
}

}

private void whenUnhandled(Object o) {
if (o instanceof Queue && isInitialized()) {

enqueue(((Queue) o).o);
setState(State.ACTIVE);

} else {
log.warning("received unknown message {} in state {}", o, getState());

}
}

}

3.7. Building Finite State Machine Actors 141

Akka Java Documentation, Release 2.3.16

The trick here is to factor out common functionality like whenUnhandled and transition in order to obtain
a few well-defined points for reacting to change or insert logging.

3.7.4 State-Centric vs. Event-Centric

In the example above, the subjective complexity of state and events was roughly equal, making it a matter of taste
whether to choose primary dispatch on either; in the example a state-based dispatch was chosen. Depending on
how evenly the matrix of possible states and events is populated, it may be more practical to handle different events
first and distinguish the states in the second tier. An example would be a state machine which has a multitude of
internal states but handles only very few distinct events.

3.8 Persistence

Akka persistence enables stateful actors to persist their internal state so that it can be recovered when an actor is
started, restarted after a JVM crash or by a supervisor, or migrated in a cluster. The key concept behind Akka
persistence is that only changes to an actor’s internal state are persisted but never its current state directly (except
for optional snapshots). These changes are only ever appended to storage, nothing is ever mutated, which allows
for very high transaction rates and efficient replication. Stateful actors are recovered by replaying stored changes
to these actors from which they can rebuild internal state. This can be either the full history of changes or starting
from a snapshot which can dramatically reduce recovery times. Akka persistence also provides point-to-point
communication with at-least-once message delivery semantics.

Note: Java 8 lambda expressions are also supported. (See section Persistence (Java with Lambda Support))

Warning: This module is marked as “experimental” as of its introduction in Akka 2.3.0. We will continue to
improve this API based on our users’ feedback, which implies that while we try to keep incompatible changes
to a minimum the binary compatibility guarantee for maintenance releases does not apply to the contents of
the akka.persistence package.

Akka persistence is inspired by and the official replacement of the eventsourced library. It follows the same
concepts and architecture of eventsourced but significantly differs on API and implementation level. See also
Migration Guide Eventsourced to Akka Persistence 2.3.x

3.8.1 Changes in Akka 2.3.4

In Akka 2.3.4 several of the concepts of the earlier versions were collapsed and simplified. In
essence; Processor and EventsourcedProcessor are replaced by PersistentActor. Channel
and PersistentChannel are replaced by AtLeastOnceDelivery. View is replaced by
PersistentView.

See full details of the changes in the Migration Guide Akka Persistence (experimental) 2.3.3 to 2.3.4 (and 2.4.x).
The old classes are still included, and deprecated, for a while to make the transition smooth. In case you need the
old documentation it is located here.

3.8.2 Dependencies

Akka persistence is a separate jar file. Make sure that you have the following dependency in your project:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-persistence-experimental_2.10</artifactId>
<version>2.3.16</version>

</dependency>

3.8. Persistence 142

https://github.com/eligosource/eventsourced
https://github.com/eligosource/eventsourced
http://doc.akka.io/docs/akka/2.3.3/java/persistence.html

Akka Java Documentation, Release 2.3.16

3.8.3 Architecture

• UntypedPersistentActor: Is a persistent, stateful actor. It is able to persist events to a journal and can react
to them in a thread-safe manner. It can be used to implement both command as well as event sourced actors.
When a persistent actor is started or restarted, journaled messages are replayed to that actor, so that it can
recover internal state from these messages.

• UntypedPersistentView: A view is a persistent, stateful actor that receives journaled messages that have been
written by another persistent actor. A view itself does not journal new messages, instead, it updates internal
state only from a persistent actor’s replicated message stream.

• UntypedPersistentActorAtLeastOnceDelivery: To send messages with at-least-once delivery semantics to
destinations, also in case of sender and receiver JVM crashes.

• Journal: A journal stores the sequence of messages sent to a persistent actor. An application can control
which messages are journaled and which are received by the persistent actor without being journaled. The
storage backend of a journal is pluggable. The default journal storage plugin writes to the local filesystem,
replicated journals are available as Community plugins.

• Snapshot store: A snapshot store persists snapshots of a persistent actor’s or a view’s internal state. Snap-
shots are used for optimizing recovery times. The storage backend of a snapshot store is pluggable. The
default snapshot storage plugin writes to the local filesystem.

3.8.4 Event sourcing

The basic idea behind Event Sourcing is quite simple. A persistent actor receives a (non-persistent) command
which is first validated if it can be applied to the current state. Here, validation can mean anything, from simple
inspection of a command message’s fields up to a conversation with several external services, for example. If
validation succeeds, events are generated from the command, representing the effect of the command. These
events are then persisted and, after successful persistence, used to change the actor’s state. When the persistent
actor needs to be recovered, only the persisted events are replayed of which we know that they can be successfully
applied. In other words, events cannot fail when being replayed to a persistent actor, in contrast to commands.
Event sourced actors may of course also process commands that do not change application state, such as query
commands, for example.

Akka persistence supports event sourcing with the UntypedPersistentActor abstract class. An ac-
tor that extends this class uses the persist method to persist and handle events. The behavior of an
UntypedPersistentActor is defined by implementing receiveRecover and receiveCommand. This
is demonstrated in the following example.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.japi.Procedure;
import akka.persistence.SnapshotOffer;
import akka.persistence.UntypedPersistentActor;

import java.io.Serializable;
import java.util.ArrayList;
import static java.util.Arrays.asList;

class Cmd implements Serializable {
private final String data;

public Cmd(String data) {
this.data = data;

}

public String getData() {
return data;

}
}

3.8. Persistence 143

http://akka.io/community/
http://martinfowler.com/eaaDev/EventSourcing.html

Akka Java Documentation, Release 2.3.16

class Evt implements Serializable {
private final String data;

public Evt(String data) {
this.data = data;

}

public String getData() {
return data;

}
}

class ExampleState implements Serializable {
private final ArrayList<String> events;

public ExampleState() {
this(new ArrayList<String>());

}

public ExampleState(ArrayList<String> events) {
this.events = events;

}

public ExampleState copy() {
return new ExampleState(new ArrayList<String>(events));

}

public void update(Evt evt) {
events.add(evt.getData());

}

public int size() {
return events.size();

}

@Override
public String toString() {

return events.toString();
}

}

class ExamplePersistentActor extends UntypedPersistentActor {
@Override
public String persistenceId() { return "sample-id-1"; }

private ExampleState state = new ExampleState();

public int getNumEvents() {
return state.size();

}

@Override
public void onReceiveRecover(Object msg) {

if (msg instanceof Evt) {
state.update((Evt) msg);

} else if (msg instanceof SnapshotOffer) {
state = (ExampleState)((SnapshotOffer)msg).snapshot();

} else {
unhandled(msg);

}
}

3.8. Persistence 144

Akka Java Documentation, Release 2.3.16

@Override
public void onReceiveCommand(Object msg) {

if (msg instanceof Cmd) {
final String data = ((Cmd)msg).getData();
final Evt evt1 = new Evt(data + "-" + getNumEvents());
final Evt evt2 = new Evt(data + "-" + (getNumEvents() + 1));
persist(asList(evt1, evt2), new Procedure<Evt>() {

public void apply(Evt evt) throws Exception {
state.update(evt);
if (evt.equals(evt2)) {

getContext().system().eventStream().publish(evt);
}

}
});

} else if (msg.equals("snap")) {
// IMPORTANT: create a copy of snapshot
// because ExampleState is mutable !!!
saveSnapshot(state.copy());

} else if (msg.equals("print")) {
System.out.println(state);

} else {
unhandled(msg);

}
}

}

The example defines two data types, Cmd and Evt to represent commands and events, respectively. The state
of the ExamplePersistentActor is a list of persisted event data contained in ExampleState.

The persistent actor’s onReceiveRecovermethod defines how state is updated during recovery by handling
Evt and SnapshotOffer messages. The persistent actor’s onReceiveCommand method is a command
handler. In this example, a command is handled by generating two events which are then persisted and handled.
Events are persisted by calling persist with an event (or a sequence of events) as first argument and an event
handler as second argument.

The persist method persists events asynchronously and the event handler is executed for successfully persisted
events. Successfully persisted events are internally sent back to the persistent actor as individual messages that
trigger event handler executions. An event handler may close over persistent actor state and mutate it. The sender
of a persisted event is the sender of the corresponding command. This allows event handlers to reply to the sender
of a command (not shown).

The main responsibility of an event handler is changing persistent actor state using event data and notifying others
about successful state changes by publishing events.

When persisting events with persist it is guaranteed that the persistent actor will not receive further commands
between the persist call and the execution(s) of the associated event handler. This also holds for multiple
persist calls in context of a single command.

The easiest way to run this example yourself is to download Typesafe Activator and open the tutorial named Akka
Persistence Samples with Java. It contains instructions on how to run the PersistentActorExample.

Note: It’s also possible to switch between different command handlers during normal processing and recovery
with getContext().become() and getContext().unbecome(). To get the actor into the same state
after recovery you need to take special care to perform the same state transitions with become and unbecome
in the receiveRecover method as you would have done in the command handler.

Identifiers

A persistent actor must have an identifier that doesn’t change across different actor incarnations. The identifier
must be defined with the persistenceId method.

3.8. Persistence 145

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-persistence-java
http://www.typesafe.com/activator/template/akka-sample-persistence-java

Akka Java Documentation, Release 2.3.16

@Override
public String persistenceId() {

return "my-stable-persistence-id";
}

Recovery

By default, a persistent actor is automatically recovered on start and on restart by replaying journaled messages.
New messages sent to a persistent actor during recovery do not interfere with replayed messages. New messages
will only be received by a persistent actor after recovery completes.

Recovery customization

Automated recovery on start can be disabled by overriding preStart with an empty implementation.

@Override
public void preStart() {}

In this case, a persistent actor must be recovered explicitly by sending it a Recover message.

processor.tell(Recover.create(), null);

If not overridden, preStart sends a Recover message to getSelf(). Applications may also override
preStart to define further Recover parameters such as an upper sequence number bound, for example.

@Override
public void preStart() {

getSelf().tell(Recover.create(457L), null);
}

Upper sequence number bounds can be used to recover a persistent actor to past state instead of current state.
Automated recovery on restart can be disabled by overriding preRestart with an empty implementation.

@Override
public void preRestart(Throwable reason, Option<Object> message) {}

Recovery status

A persistent actor can query its own recovery status via the methods

public boolean recoveryRunning();
public boolean recoveryFinished();

Sometimes there is a need for performing additional initialization when the recovery has completed, be-
fore processing any other message sent to the persistent actor. The persistent actor will receive a special
RecoveryCompleted message right after recovery and before any other received messages.

If there is a problem with recovering the state of the actor from the journal, the actor will be sent a
RecoveryFailure message that it can choose to handle in receiveRecover. If the actor doesn’t han-
dle the RecoveryFailure message it will be stopped.

@Override
public void onReceiveRecover(Object message) {
if (message instanceof RecoveryCompleted) {

recoveryCompleted();
}
// ...

}

3.8. Persistence 146

Akka Java Documentation, Release 2.3.16

@Override
public void onReceiveCommand(Object message) throws Exception {

if (message instanceof String) {
// ...

} else {
unhandled(message);

}
}

private void recoveryCompleted() {
// perform init after recovery, before any other messages
// ...

}

Relaxed local consistency requirements and high throughput use-cases

If faced with relaxed local consistency requirements and high throughput demands sometimes
PersistentActor and it’s persist may not be enough in terms of consuming incoming Commands
at a high rate, because it has to wait until all Events related to a given Command are processed in order to start
processing the next Command. While this abstraction is very useful for most cases, sometimes you may be faced
with relaxed requirements about consistency – for example you may want to process commands as fast as you
can, assuming that Event will eventually be persisted and handled properly in the background and retroactively
reacting to persistence failures if needed.

The persistAsyncmethod provides a tool for implementing high-throughput persistent actors. It will not stash
incoming Commands while the Journal is still working on persisting and/or user code is executing event callbacks.

In the below example, the event callbacks may be called “at any time”, even after the next Command has been
processed. The ordering between events is still guaranteed (“evt-b-1” will be sent after “evt-a-2”, which will be
sent after “evt-a-1” etc.).

class MyPersistentActor extends UntypedPersistentActor {
@Override
public String persistenceId() { return "some-persistence-id"; }

@Override
public void onReceiveRecover(Object msg) {

// handle recovery here
}

@Override
public void onReceiveCommand(Object msg) {

sender().tell(msg, getSelf());

persistAsync(String.format("evt-%s-1", msg), new Procedure<String>(){
@Override
public void apply(String event) throws Exception {

sender().tell(event, self());
}

});
persistAsync(String.format("evt-%s-2", msg), new Procedure<String>(){

@Override
public void apply(String event) throws Exception {

sender().tell(event, self());
}

});
}

}

Note: In order to implement the pattern known as “command sourcing” simply persistAsync all incoming

3.8. Persistence 147

Akka Java Documentation, Release 2.3.16

events right away, and handle them in the callback.

Warning: The callback will not be invoked if the actor is restarted (or stopped) in between the call to
persistAsync and the journal has confirmed the write.

Deferring actions until preceding persist handlers have executed

Sometimes when working with persistAsync you may find that it would be nice to define some actions in
terms of ‘’happens-after the previous persistAsync handlers have been invoked’‘. PersistentActor
provides an utility method called defer, which works similarily to persistAsync yet does not persist the
passed in event. It is recommended to use it for read operations, and actions which do not have corresponding
events in your domain model.

Using this method is very similar to the persist family of methods, yet it does not persist the passed in event. It
will be kept in memory and used when invoking the handler.

class MyPersistentActor extends UntypedPersistentActor {
@Override
public String persistenceId() { return "some-persistence-id"; }

@Override
public void onReceiveRecover(Object msg) {

// handle recovery here
}

@Override
public void onReceiveCommand(Object msg) {

final Procedure<String> replyToSender = new Procedure<String>() {
@Override
public void apply(String event) throws Exception {

sender().tell(event, self());
}

};

persistAsync(String.format("evt-%s-1", msg), replyToSender);
persistAsync(String.format("evt-%s-2", msg), replyToSender);
defer(String.format("evt-%s-3", msg), replyToSender);

}
}

Notice that the sender() is safe to access in the handler callback, and will be pointing to the original sender of
the command for which this defer handler was called.

final ActorRef processor = system.actorOf(Props.create(MyPersistentActor.class));
processor.tell("a", null);
processor.tell("b", null);

// order of received messages:
// a
// b
// evt-a-1
// evt-a-2
// evt-a-3
// evt-b-1
// evt-b-2
// evt-b-3

Warning: The callback will not be invoked if the actor is restarted (or stopped) in between the call to defer
and the journal has processed and confirmed all preceding writes.

3.8. Persistence 148

Akka Java Documentation, Release 2.3.16

Batch writes

To optimize throughput, a persistent actor internally batches events to be stored under high load before writing
them to the journal (as a single batch). The batch size dynamically grows from 1 under low and moderate loads to
a configurable maximum size (default is 200) under high load. When using persistAsync this increases the
maximum throughput dramatically.

akka.persistence.journal.max-message-batch-size = 200

A new batch write is triggered by a persistent actor as soon as a batch reaches the maximum size or if the journal
completed writing the previous batch. Batch writes are never timer-based which keeps latencies at a minimum.

The batches are also used internally to ensure atomic writes of events. All events that are persisted in context
of a single command are written as a single batch to the journal (even if persist is called multiple times per
command). The recovery of an UntypedPersistentActor will therefore never be done partially (with only
a subset of events persisted by a single command).

Message deletion

To delete all messages (journaled by a single persistent actor) up to a specified sequence number, persistent actors
may call the deleteMessages method.

An optional permanent parameter specifies whether the message shall be permanently deleted from the journal
or only marked as deleted. In both cases, the message won’t be replayed. Later extensions to Akka persistence
will allow to replay messages that have been marked as deleted which can be useful for debugging purposes, for
example.

3.8.5 Persistent Views

Persistent views can be implemented by extending the UntypedPersistentView trait and implementing the
onReceive and the persistenceId methods.

class MyView extends UntypedPersistentView {
@Override
public String persistenceId() { return "some-persistence-id"; }

@Override
public String viewId() { return "my-stable-persistence-view-id"; }

@Override
public void onReceive(Object message) throws Exception {

if (isPersistent()) {
// handle message from Journal...

} else if (message instanceof String) {
// handle message from user...

} else {
unhandled(message);

}
}

}

The persistenceId identifies the persistent actor from which the view receives journaled messages. It is
not necessary the referenced persistent actor is actually running. Views read messages from a persistent actor’s
journal directly. When a persistent actor is started later and begins to write new messages, the corresponding view
is updated automatically, by default.

It is possible to determine if a message was sent from the Journal or from another actor in user-land by calling
the isPersistent method. Having that said, very often you don’t need this information at all and can simply
apply the same logic to both cases (skip the if isPersistent check).

3.8. Persistence 149

Akka Java Documentation, Release 2.3.16

Updates

The default update interval of all persistent views of an actor system is configurable:

akka.persistence.view.auto-update-interval = 5s

UntypedPersistentView implementation classes may also override the autoUpdateInterval method
to return a custom update interval for a specific view class or view instance. Applications may also trigger addi-
tional updates at any time by sending a view an Update message.

final ActorRef view = system.actorOf(Props.create(MyView.class));
view.tell(Update.create(true), null);

If the await parameter is set to true, messages that follow the Update request are processed when the incre-
mental message replay, triggered by that update request, completed. If set to false (default), messages following
the update request may interleave with the replayed message stream. Automated updates always run with await
= false.

Automated updates of all persistent views of an actor system can be turned off by configuration:

akka.persistence.view.auto-update = off

Implementation classes may override the configured default value by overriding the autoUpdate
method. To limit the number of replayed messages per update request, applications can con-
figure a custom akka.persistence.view.auto-update-replay-max value or override the
autoUpdateReplayMax method. The number of replayed messages for manual updates can be limited with
the replayMax parameter of the Update message.

Recovery

Initial recovery of persistent views works in the very same way as for a persistent actor (i.e. by sending a
Recover message to self). The maximum number of replayed messages during initial recovery is determined by
autoUpdateReplayMax. Further possibilities to customize initial recovery are explained in section Recovery.

Identifiers

A persistent view must have an identifier that doesn’t change across different actor incarnations. The identifier
must be defined with the viewId method.

The viewId must differ from the referenced persistenceId, unless Snapshots of a view and its persistent
actor shall be shared (which is what applications usually do not want).

3.8.6 Snapshots

Snapshots can dramatically reduce recovery times of persistent actor and views. The following discusses snapshots
in context of persistent actor but this is also applicable to persistent views.

Persistent actor can save snapshots of internal state by calling the saveSnapshot method. If saving
of a snapshot succeeds, the persistent actor receives a SaveSnapshotSuccess message, otherwise a
SaveSnapshotFailure message

class MyProcessor extends UntypedProcessor {
private Object state;

@Override
public void onReceive(Object message) throws Exception {

if (message.equals("snap")) {
saveSnapshot(state);

} else if (message instanceof SaveSnapshotSuccess) {
SnapshotMetadata metadata = ((SaveSnapshotSuccess)message).metadata();

3.8. Persistence 150

Akka Java Documentation, Release 2.3.16

// ...
} else if (message instanceof SaveSnapshotFailure) {

SnapshotMetadata metadata = ((SaveSnapshotFailure)message).metadata();
// ...

}
}

}

During recovery, the persistent actor is offered a previously saved snapshot via a SnapshotOffer message
from which it can initialize internal state.

class MyProcessor extends UntypedProcessor {
private Object state;

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof SnapshotOffer) {
state = ((SnapshotOffer)message).snapshot();
// ...

} else if (message instanceof Persistent) {
// ...

}
}

}

The replayed messages that follow the SnapshotOffer message, if any, are younger than the offered snapshot.
They finally recover the persistent actor to its current (i.e. latest) state.

In general, a persistent actor is only offered a snapshot if that persistent actor has previously saved one or more
snapshots and at least one of these snapshots matches the SnapshotSelectionCriteria that can be speci-
fied for recovery.

processor.tell(Recover.create(SnapshotSelectionCriteria.create(457L, System.currentTimeMillis())), null);

If not specified, they default to SnapshotSelectionCriteria.latest() which selects
the latest (= youngest) snapshot. To disable snapshot-based recovery, applications should use
SnapshotSelectionCriteria.none(). A recovery where no saved snapshot matches the speci-
fied SnapshotSelectionCriteria will replay all journaled messages.

Snapshot deletion

A persistent actor can delete individual snapshots by calling the deleteSnapshot method with the
sequence number and the timestamp of a snapshot as argument. To bulk-delete snapshots matching
SnapshotSelectionCriteria, persistent actors should use the deleteSnapshots method.

3.8.7 At-Least-Once Delivery

To send messages with at-least-once delivery semantics to destinations you can ex-
tend the UntypedPersistentActorWithAtLeastOnceDelivery class instead of
UntypedPersistentActor on the sending side. It takes care of re-sending messages when they have
not been confirmed within a configurable timeout.

Note: At-least-once delivery implies that original message send order is not always preserved and the destination
may receive duplicate messages. That means that the semantics do not match those of a normal ActorRef send
operation:

• it is not at-most-once delivery

• message order for the same sender–receiver pair is not preserved due to possible resends

• after a crash and restart of the destination messages are still delivered—to the new actor incarnation

3.8. Persistence 151

Akka Java Documentation, Release 2.3.16

These semantics is similar to what an ActorPath represents (see actor-lifecycle-scala), therefore you need to
supply a path and not a reference when delivering messages. The messages are sent to the path with an actor
selection.

Use the deliver method to send a message to a destination. Call the confirmDelivery method when the
destination has replied with a confirmation message.

class Msg implements Serializable {
public final long deliveryId;
public final String s;

public Msg(long deliveryId, String s) {
this.deliveryId = deliveryId;
this.s = s;

}
}

class Confirm implements Serializable {
public final long deliveryId;

public Confirm(long deliveryId) {
this.deliveryId = deliveryId;

}
}

class MsgSent implements Serializable {
public final String s;

public MsgSent(String s) {
this.s = s;

}
}
class MsgConfirmed implements Serializable {

public final long deliveryId;

public MsgConfirmed(long deliveryId) {
this.deliveryId = deliveryId;

}
}

class MyPersistentActor extends UntypedPersistentActorWithAtLeastOnceDelivery {
private final ActorPath destination;

public MyPersistentActor(ActorPath destination) {
this.destination = destination;

}

public void onReceiveCommand(Object message) {
if (message instanceof String) {

String s = (String) message;
persist(new MsgSent(s), new Procedure<MsgSent>() {

public void apply(MsgSent evt) {
updateState(evt);

}
});

} else if (message instanceof Confirm) {
Confirm confirm = (Confirm) message;
persist(new MsgConfirmed(confirm.deliveryId), new Procedure<MsgConfirmed>() {

public void apply(MsgConfirmed evt) {
updateState(evt);

}

3.8. Persistence 152

Akka Java Documentation, Release 2.3.16

});
} else {

unhandled(message);
}

}

public void onReceiveRecover(Object event) {
updateState(event);

}

void updateState(Object event) {
if (event instanceof MsgSent) {

final MsgSent evt = (MsgSent) event;
deliver(destination, new Function<Long, Object>() {

public Object apply(Long deliveryId) {
return new Msg(deliveryId, evt.s);

}
});

} else if (event instanceof MsgConfirmed) {
final MsgConfirmed evt = (MsgConfirmed) event;
confirmDelivery(evt.deliveryId);

}
}

}

class MyDestination extends UntypedActor {
public void onReceive(Object message) throws Exception {
if (message instanceof Msg) {

Msg msg = (Msg) message;
// ...
getSender().tell(new Confirm(msg.deliveryId), getSelf());

} else {
unhandled(message);

}
}

}

Correlation between deliver and confirmDelivery is performed with the deliveryId that is provided
as parameter to the deliveryIdToMessage function. The deliveryId is typically passed in the message
to the destination, which replies with a message containing the same deliveryId.

The deliveryId is a strictly monotonically increasing sequence number without gaps. The same sequence is
used for all destinations of the actor, i.e. when sending to multiple destinations the destinations will see gaps in
the sequence if no translation is performed.

The UntypedPersistentActorWithAtLeastOnceDelivery class has a state consisting of uncon-
firmed messages and a sequence number. It does not store this state itself. You must persist events correspond-
ing to the deliver and confirmDelivery invocations from your PersistentActor so that the state
can be restored by calling the same methods during the recovery phase of the PersistentActor. Some-
times these events can be derived from other business level events, and sometimes you must create separate
events. During recovery calls to deliver will not send out the message, but it will be sent later if no matching
confirmDelivery was performed.

Support for snapshots is provided by getDeliverySnapshot and setDeliverySnapshot. The
AtLeastOnceDeliverySnapshot contains the full delivery state, including unconfirmed messages.
If you need a custom snapshot for other parts of the actor state you must also include the
AtLeastOnceDeliverySnapshot. It is serialized using protobuf with the ordinary Akka serialization mech-
anism. It is easiest to include the bytes of the AtLeastOnceDeliverySnapshot as a blob in your custom
snapshot.

The interval between redelivery attempts is defined by the redeliverIntervalmethod. The default value can
be configured with the akka.persistence.at-least-once-delivery.redeliver-interval
configuration key. The method can be overridden by implementation classes to return non-default values.

3.8. Persistence 153

Akka Java Documentation, Release 2.3.16

After a number of delivery attempts a AtLeastOnceDelivery.UnconfirmedWarning message will
be sent to self. The re-sending will still continue, but you can choose to call confirmDelivery
to cancel the re-sending. The number of delivery attempts before emitting the warning is defined by the
warnAfterNumberOfUnconfirmedAttempts method. The default value can be configured with the
akka.persistence.at-least-once-delivery.warn-after-number-of-unconfirmed-attempts
configuration key. The method can be overridden by implementation classes to return non-default values.

The UntypedPersistentActorWithAtLeastOnceDelivery class holds messages in memory
until their successful delivery has been confirmed. The limit of maximum number of unconfirmed mes-
sages that the actor is allowed to hold in memory is defined by the maxUnconfirmedMessages
method. If this limit is exceed the deliver method will not accept more messages and it will throw
AtLeastOnceDelivery.MaxUnconfirmedMessagesExceededException. The default value can
be configured with the akka.persistence.at-least-once-delivery.max-unconfirmed-messages
configuration key. The method can be overridden by implementation classes to return non-default values.

3.8.8 Storage plugins

Storage backends for journals and snapshot stores are pluggable in Akka persistence. The default journal plugin
writes messages to LevelDB (see Local LevelDB journal). The default snapshot store plugin writes snapshots
as individual files to the local filesystem (see Local snapshot store). Applications can provide their own plugins
by implementing a plugin API and activate them by configuration. Plugin development requires the following
imports:

import akka.actor.*;
import akka.japi.Option;
import akka.japi.Procedure;
import akka.persistence.*;
import akka.persistence.japi.journal.JavaJournalSpec;
import akka.persistence.japi.snapshot.JavaSnapshotStoreSpec;
import akka.persistence.journal.japi.AsyncWriteJournal;
import akka.persistence.journal.leveldb.SharedLeveldbJournal;
import akka.persistence.journal.leveldb.SharedLeveldbStore;
import akka.persistence.snapshot.japi.SnapshotStore;
import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;
import org.iq80.leveldb.util.FileUtils;
import scala.concurrent.Future;

import java.io.File;
import java.util.ArrayList;
import java.util.List;

Journal plugin API

A journal plugin either extends SyncWriteJournal or AsyncWriteJournal. SyncWriteJournal is
an actor that should be extended when the storage backend API only supports synchronous, blocking writes. In
this case, the methods to be implemented are:

/**
* Java API, Plugin API: synchronously writes a batch of persistent messages to the

* journal. The batch write must be atomic i.e. either all persistent messages in the

* batch are written or none.

*/
void doWriteMessages(Iterable<PersistentRepr> messages);

/**
* Java API, Plugin API: synchronously writes a batch of delivery confirmations to

* the journal.

*
* @deprecated doWriteConfirmations will be removed, since Channels will be removed (since 2.3.4)

3.8. Persistence 154

Akka Java Documentation, Release 2.3.16

*/
@Deprecated void doWriteConfirmations(Iterable<PersistentConfirmation> confirmations);

/**
* Java API, Plugin API: synchronously deletes messages identified by `messageIds`

* from the journal. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @deprecated doDeleteMessages will be removed (since 2.3.4)

*/
@Deprecated void doDeleteMessages(Iterable<PersistentId> messageIds, boolean permanent);

/**
* Java API, Plugin API: synchronously deletes all persistent messages up to

* `toSequenceNr`. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @see AsyncRecoveryPlugin

*/
void doDeleteMessagesTo(String persistenceId, long toSequenceNr, boolean permanent);

AsyncWriteJournal is an actor that should be extended if the storage backend API supports asynchronous,
non-blocking writes. In this case, the methods to be implemented are:

/**
* Java API, Plugin API: synchronously writes a batch of persistent messages to the

* journal. The batch write must be atomic i.e. either all persistent messages in the

* batch are written or none.

*/
Future<Void> doAsyncWriteMessages(Iterable<PersistentRepr> messages);

/**
* Java API, Plugin API: synchronously writes a batch of delivery confirmations to

* the journal.

*
* @deprecated doAsyncWriteConfirmations will be removed, since Channels will be removed (since 2.3.4)

*/
@Deprecated Future<Void> doAsyncWriteConfirmations(Iterable<PersistentConfirmation> confirmations);

/**
* Java API, Plugin API: synchronously deletes messages identified by `messageIds`

* from the journal. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @deprecated doAsyncDeleteMessages will be removed (since 2.3.4)

*/
@Deprecated Future<Void> doAsyncDeleteMessages(Iterable<PersistentId> messageIds, boolean permanent);

/**
* Java API, Plugin API: synchronously deletes all persistent messages up to

* `toSequenceNr`. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @see AsyncRecoveryPlugin

*/
Future<Void> doAsyncDeleteMessagesTo(String persistenceId, long toSequenceNr, boolean permanent);

Message replays and sequence number recovery are always asynchronous, therefore, any journal plugin must
implement:

/**
* Java API, Plugin API: asynchronously replays persistent messages.

* Implementations replay a message by calling `replayCallback`. The returned

3.8. Persistence 155

Akka Java Documentation, Release 2.3.16

* future must be completed when all messages (matching the sequence number

* bounds) have been replayed. The future must be completed with a failure if

* any of the persistent messages could not be replayed.

*
* The `replayCallback` must also be called with messages that have been marked

* as deleted. In this case a replayed message's `deleted` method must return

* `true`.

*
* The channel ids of delivery confirmations that are available for a replayed

* message must be contained in that message's `confirms` sequence.

*
* @param persistenceId processor id.

* @param fromSequenceNr sequence number where replay should start (inclusive).

* @param toSequenceNr sequence number where replay should end (inclusive).

* @param max maximum number of messages to be replayed.

* @param replayCallback called to replay a single message. Can be called from any

* thread.

*/
Future<Void> doAsyncReplayMessages(String persistenceId, long fromSequenceNr, long toSequenceNr, long max, Procedure<PersistentRepr> replayCallback);

/**
* Java API, Plugin API: asynchronously reads the highest stored sequence number

* for the given `persistenceId`.

*
* @param persistenceId processor id.

* @param fromSequenceNr hint where to start searching for the highest sequence

* number.

*/
Future<Long> doAsyncReadHighestSequenceNr(String persistenceId, long fromSequenceNr);

A journal plugin can be activated with the following minimal configuration:

Path to the journal plugin to be used
akka.persistence.journal.plugin = "my-journal"

My custom journal plugin
my-journal {

Class name of the plugin.
class = "docs.persistence.MyJournal"
Dispatcher for the plugin actor.
plugin-dispatcher = "akka.actor.default-dispatcher"

}

The specified plugin class must have a no-arg constructor. The plugin-dispatcher
is the dispatcher used for the plugin actor. If not specified, it defaults to
akka.persistence.dispatchers.default-plugin-dispatcher for SyncWriteJournal
plugins and akka.actor.default-dispatcher for AsyncWriteJournal plugins.

Snapshot store plugin API

A snapshot store plugin must extend the SnapshotStore actor and implement the following methods:

/**
* Java API, Plugin API: asynchronously loads a snapshot.

*
* @param persistenceId processor id.

* @param criteria selection criteria for loading.

*/
Future<Option<SelectedSnapshot>> doLoadAsync(String persistenceId, SnapshotSelectionCriteria criteria);

/**
* Java API, Plugin API: asynchronously saves a snapshot.

3.8. Persistence 156

Akka Java Documentation, Release 2.3.16

*
* @param metadata snapshot metadata.

* @param snapshot snapshot.

*/
Future<Void> doSaveAsync(SnapshotMetadata metadata, Object snapshot);

/**
* Java API, Plugin API: called after successful saving of a snapshot.

*
* @param metadata snapshot metadata.

*/
void onSaved(SnapshotMetadata metadata) throws Exception;

/**
* Java API, Plugin API: deletes the snapshot identified by `metadata`.

*
* @param metadata snapshot metadata.

*/
void doDelete(SnapshotMetadata metadata) throws Exception;

/**
* Java API, Plugin API: deletes all snapshots matching `criteria`.

*
* @param persistenceId processor id.

* @param criteria selection criteria for deleting.

*/
void doDelete(String persistenceId, SnapshotSelectionCriteria criteria) throws Exception;

A snapshot store plugin can be activated with the following minimal configuration:

Path to the snapshot store plugin to be used
akka.persistence.snapshot-store.plugin = "my-snapshot-store"

My custom snapshot store plugin
my-snapshot-store {

Class name of the plugin.
class = "docs.persistence.MySnapshotStore"
Dispatcher for the plugin actor.
plugin-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

}

The specified plugin class must have a no-arg constructor. The plugin-dispatcher
is the dispatcher used for the plugin actor. If not specified, it defaults to
akka.persistence.dispatchers.default-plugin-dispatcher.

Plugin TCK

In order to help developers build correct and high quality storage plugins, we provide an Technology Compatibility
Kit (TCK for short).

The TCK is usable from Java as well as Scala projects, for Java you need to include the akka-persistence-tck-
experimental dependency:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-persistence-tck-experimental_${scala.version}</artifactId>
<version>2.3.5</version>
<scope>test</scope>

</dependency>

To include the Journal TCK tests in your test suite simply extend the provided JavaJournalSpec:

3.8. Persistence 157

http://en.wikipedia.org/wiki/Technology_Compatibility_Kit

Akka Java Documentation, Release 2.3.16

class MyJournalSpecTest extends JavaJournalSpec {

public MyJournalSpecTest() {
super(ConfigFactory.parseString(

"persistence.journal.plugin = " +
"\"akka.persistence.journal.leveldb-shared\""));

}
}

We also provide a simple benchmarking class JavaJournalPerfSpec which includes all the tests that
JavaJournalSpec has, and also performs some longer operations on the Journal while printing it’s perfor-
mance stats. While it is NOT aimed to provide a proper benchmarking environment it can be used to get a rough
feel about your journals performance in the most typical scenarios.

In order to include the SnapshotStore TCK tests in your test suite simply extend the SnapshotStoreSpec:

class MySnapshotStoreTest extends JavaSnapshotStoreSpec {

public MySnapshotStoreTest() {
super(ConfigFactory.parseString(

"akka.persistence.snapshot-store.plugin = " +
"\"akka.persistence.snapshot-store.local\""));

}
}

In case your plugin requires some setting up (starting a mock database, removing temporary files etc.) you can
override the beforeAll and afterAll methods to hook into the tests lifecycle:

class MyJournalSpecTest extends JavaJournalSpec {

List<File> storageLocations = new ArrayList<File>();

public MyJournalSpecTest() {
super(ConfigFactory.parseString(

"persistence.journal.plugin = " +
"\"akka.persistence.journal.leveldb-shared\""));

Config config = system().settings().config();
storageLocations.add(new File(

config.getString("akka.persistence.journal.leveldb.dir")));
storageLocations.add(new File(

config.getString("akka.persistence.snapshot-store.local.dir")));
}

@Override
public void beforeAll() {

for (File storageLocation : storageLocations) {
FileUtils.deleteRecursively(storageLocation);

}
super.beforeAll();

}

@Override
public void afterAll() {

super.afterAll();
for (File storageLocation : storageLocations) {

FileUtils.deleteRecursively(storageLocation);
}

}
}

We highly recommend including these specifications in your test suite, as they cover a broad range of cases you
might have otherwise forgotten to test for when writing a plugin from scratch.

3.8. Persistence 158

Akka Java Documentation, Release 2.3.16

3.8.9 Pre-packaged plugins

Local LevelDB journal

The default journal plugin is akka.persistence.journal.leveldb which writes messages to a local
LevelDB instance. The default location of the LevelDB files is a directory named journal in the current working
directory. This location can be changed by configuration where the specified path can be relative or absolute:

akka.persistence.journal.leveldb.dir = "target/journal"

With this plugin, each actor system runs its own private LevelDB instance.

Shared LevelDB journal

A LevelDB instance can also be shared by multiple actor systems (on the same or on different nodes). This, for
example, allows persistent actors to failover to a backup node and continue using the shared journal instance from
the backup node.

Warning: A shared LevelDB instance is a single point of failure and should therefore only be used for testing
purposes. Highly-available, replicated journal are available as Community plugins.

A shared LevelDB instance is started by instantiating the SharedLeveldbStore actor.

final ActorRef store = system.actorOf(Props.create(SharedLeveldbStore.class), "store");

By default, the shared instance writes journaled messages to a local directory named journal in the current
working directory. The storage location can be changed by configuration:

akka.persistence.journal.leveldb-shared.store.dir = "target/shared"

Actor systems that use a shared LevelDB store must activate the akka.persistence.journal.leveldb-shared
plugin.

akka.persistence.journal.plugin = "akka.persistence.journal.leveldb-shared"

This plugin must be initialized by injecting the (remote) SharedLeveldbStore actor reference. Injection is
done by calling the SharedLeveldbJournal.setStore method with the actor reference as argument.

class SharedStorageUsage extends UntypedActor {
@Override
public void preStart() throws Exception {

String path = "akka.tcp://example@127.0.0.1:2552/user/store";
ActorSelection selection = getContext().actorSelection(path);
selection.tell(new Identify(1), getSelf());

}

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof ActorIdentity) {
ActorIdentity identity = (ActorIdentity) message;
if (identity.correlationId().equals(1)) {

ActorRef store = identity.getRef();
if (store != null) {

SharedLeveldbJournal.setStore(store, getContext().system());
}

}
}

}
}

Internal journal commands (sent by persistent actors) are buffered until injection completes. Injection is idempo-
tent i.e. only the first injection is used.

3.8. Persistence 159

http://akka.io/community/

Akka Java Documentation, Release 2.3.16

Local snapshot store

The default snapshot store plugin is akka.persistence.snapshot-store.local. It writes snapshot
files to the local filesystem. The default storage location is a directory named snapshots in the current working
directory. This can be changed by configuration where the specified path can be relative or absolute:

akka.persistence.snapshot-store.local.dir = "target/snapshots"

3.8.10 Custom serialization

Serialization of snapshots and payloads of Persistent messages is configurable with Akka’s Serialization
infrastructure. For example, if an application wants to serialize

• payloads of type MyPayload with a custom MyPayloadSerializer and

• snapshots of type MySnapshot with a custom MySnapshotSerializer

it must add

akka.actor {
serializers {
my-payload = "docs.persistence.MyPayloadSerializer"
my-snapshot = "docs.persistence.MySnapshotSerializer"

}
serialization-bindings {
"docs.persistence.MyPayload" = my-payload
"docs.persistence.MySnapshot" = my-snapshot

}
}

to the application configuration. If not specified, a default serializer is used.

3.8.11 Testing

When running tests with LevelDB default settings in sbt, make sure to set fork := true in your sbt project
otherwise, you’ll see an UnsatisfiedLinkError. Alternatively, you can switch to a LevelDB Java port by
setting

akka.persistence.journal.leveldb.native = off

or

akka.persistence.journal.leveldb-shared.store.native = off

in your Akka configuration. The LevelDB Java port is for testing purposes only.

3.8.12 Configuration

There are several configuration properties for the persistence module, please refer to the reference configuration.

3.9 Testing Actor Systems

As with any piece of software, automated tests are a very important part of the development cycle. The actor
model presents a different view on how units of code are delimited and how they interact, which has an influence
on how to perform tests.

Note: Due to the conciseness of test DSLs available for Scala (ScalaTest, Specs2, ScalaCheck), it may be a good
idea to write the test suite in that language even if the main project is written in Java. If that is not desirable, you

3.9. Testing Actor Systems 160

http://scalatest.org/
http://specs2.org/
http://code.google.com/p/scalacheck/

Akka Java Documentation, Release 2.3.16

can also use TestKit and friends from Java, albeit with more verbose syntax which is covered below. Munish
Gupta has published a nice post showing several patterns you may find useful.

Akka comes with a dedicated module akka-testkit for supporting tests at different levels, which fall into two
clearly distinct categories:

• Testing isolated pieces of code without involving the actor model, meaning without multiple threads; this
implies completely deterministic behavior concerning the ordering of events and no concurrency concerns
and will be called Unit Testing in the following.

• Testing (multiple) encapsulated actors including multi-threaded scheduling; this implies non-deterministic
order of events but shielding from concurrency concerns by the actor model and will be called Integration
Testing in the following.

There are of course variations on the granularity of tests in both categories, where unit testing reaches down to
white-box tests and integration testing can encompass functional tests of complete actor networks. The important
distinction lies in whether concurrency concerns are part of the test or not. The tools offered are described in detail
in the following sections.

Note: Be sure to add the module akka-testkit to your dependencies.

3.9.1 Synchronous Unit Testing with TestActorRef

Testing the business logic inside Actor classes can be divided into two parts: first, each atomic operation must
work in isolation, then sequences of incoming events must be processed correctly, even in the presence of some
possible variability in the ordering of events. The former is the primary use case for single-threaded unit testing,
while the latter can only be verified in integration tests.

Normally, the ActorRef shields the underlying Actor instance from the outside, the only communications
channel is the actor’s mailbox. This restriction is an impediment to unit testing, which led to the inception of the
TestActorRef. This special type of reference is designed specifically for test purposes and allows access to
the actor in two ways: either by obtaining a reference to the underlying actor instance, or by invoking or querying
the actor’s behaviour (receive). Each one warrants its own section below.

Note: It is highly recommended to stick to traditional behavioural testing (using messaging to ask the Actor to
reply with the state you want to run assertions against), instead of using TestActorRef whenever possible.

Due to the synchronous nature of TestActorRef it will not work with some support traits that Akka provides
as they require asynchronous behaviours to function properly. Examples of traits that do not mix well with test
actor refs are PersistentActor and AtLeastOnceDelivery provided by Akka Persistence.

Obtaining a Reference to an Actor

Having access to the actual Actor object allows application of all traditional unit testing techniques on the
contained methods. Obtaining a reference is done like this:

static class MyActor extends UntypedActor {
public void onReceive(Object o) throws Exception {
if (o.equals("say42")) {

getSender().tell(42, getSelf());
} else if (o instanceof Exception) {

throw (Exception) o;
}

}
public boolean testMe() { return true; }

}

3.9. Testing Actor Systems 161

http://www.akkaessentials.in/2012/05/using-testkit-with-java.html

Akka Java Documentation, Release 2.3.16

@Test
public void demonstrateTestActorRef() {

final Props props = Props.create(MyActor.class);
final TestActorRef<MyActor> ref = TestActorRef.create(system, props, "testA");
final MyActor actor = ref.underlyingActor();
assertTrue(actor.testMe());

}

Since TestActorRef is generic in the actor type it returns the underlying actor with its proper static type. From
this point on you may bring any unit testing tool to bear on your actor as usual.

Testing the Actor’s Behavior

When the dispatcher invokes the processing behavior of an actor on a message, it actually calls apply on the
current behavior registered for the actor. This starts out with the return value of the declared receive method,
but it may also be changed using become and unbecome in response to external messages. All of this con-
tributes to the overall actor behavior and it does not lend itself to easy testing on the Actor itself. Therefore the
TestActorRef offers a different mode of operation to complement the Actor testing: it supports all operations
also valid on normal ActorRef. Messages sent to the actor are processed synchronously on the current thread
and answers may be sent back as usual. This trick is made possible by the CallingThreadDispatcher
described below (see CallingThreadDispatcher); this dispatcher is set implicitly for any actor instantiated into a
TestActorRef.

final Props props = Props.create(MyActor.class);
final TestActorRef<MyActor> ref = TestActorRef.create(system, props, "testB");
final Future<Object> future = akka.pattern.Patterns.ask(ref, "say42", 3000);
assertTrue(future.isCompleted());
assertEquals(42, Await.result(future, Duration.Zero()));

As the TestActorRef is a subclass of LocalActorRef with a few special extras, also aspects like super-
vision and restarting work properly, but beware that execution is only strictly synchronous as long as all actors
involved use the CallingThreadDispatcher. As soon as you add elements which include more sophisti-
cated scheduling you leave the realm of unit testing as you then need to think about asynchronicity again (in most
cases the problem will be to wait until the desired effect had a chance to happen).

One more special aspect which is overridden for single-threaded tests is the receiveTimeout, as including
that would entail asynchronous queuing of ReceiveTimeout messages, violating the synchronous contract.

Note: To summarize: TestActorRef overwrites two fields: it sets the dispatcher to
CallingThreadDispatcher.global and it sets the receiveTimeout to None.

The Way In-Between: Expecting Exceptions

If you want to test the actor behavior, including hotswapping, but without involving a dispatcher and without
having the TestActorRef swallow any thrown exceptions, then there is another mode available for you: just
use the receive method on TestActorRef, which will be forwarded to the underlying actor:

final Props props = Props.create(MyActor.class);
final TestActorRef<MyActor> ref = TestActorRef.create(system, props, "myActor");
try {

ref.receive(new Exception("expected"));
fail("expected an exception to be thrown");

} catch (Exception e) {
assertEquals("expected", e.getMessage());

}

3.9. Testing Actor Systems 162

Akka Java Documentation, Release 2.3.16

Use Cases

You may of course mix and match both modi operandi of TestActorRef as suits your test needs:

• one common use case is setting up the actor into a specific internal state before sending the test message

• another is to verify correct internal state transitions after having sent the test message

Feel free to experiment with the possibilities, and if you find useful patterns, don’t hesitate to let the Akka forums
know about them! Who knows, common operations might even be worked into nice DSLs.

3.9.2 Asynchronous Integration Testing with JavaTestKit

When you are reasonably sure that your actor’s business logic is correct, the next step is verifying that it works
correctly within its intended environment. The definition of the environment depends of course very much on the
problem at hand and the level at which you intend to test, ranging for functional/integration tests to full system
tests. The minimal setup consists of the test procedure, which provides the desired stimuli, the actor under test,
and an actor receiving replies. Bigger systems replace the actor under test with a network of actors, apply stimuli
at varying injection points and arrange results to be sent from different emission points, but the basic principle
stays the same in that a single procedure drives the test.

The JavaTestKit class contains a collection of tools which makes this common task easy.

import org.junit.AfterClass;
import org.junit.Assert;
import org.junit.BeforeClass;
import org.junit.Test;

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.actor.UntypedActor;
import akka.testkit.JavaTestKit;
import scala.concurrent.duration.Duration;

public class TestKitSampleTest {

public static class SomeActor extends UntypedActor {
ActorRef target = null;

public void onReceive(Object msg) {

if (msg.equals("hello")) {
getSender().tell("world", getSelf());
if (target != null) target.forward(msg, getContext());

} else if (msg instanceof ActorRef) {
target = (ActorRef) msg;
getSender().tell("done", getSelf());

}
}

}

static ActorSystem system;

@BeforeClass
public static void setup() {
system = ActorSystem.create();

}

@AfterClass
public static void teardown() {
JavaTestKit.shutdownActorSystem(system);

3.9. Testing Actor Systems 163

Akka Java Documentation, Release 2.3.16

system = null;
}

@Test
public void testIt() {
/*
* Wrap the whole test procedure within a testkit constructor

* if you want to receive actor replies or use Within(), etc.

*/
new JavaTestKit(system) {{

final Props props = Props.create(SomeActor.class);
final ActorRef subject = system.actorOf(props);

// can also use JavaTestKit “from the outside”
final JavaTestKit probe = new JavaTestKit(system);
// “inject” the probe by passing it to the test subject
// like a real resource would be passed in production
subject.tell(probe.getRef(), getRef());
// await the correct response
expectMsgEquals(duration("1 second"), "done");

// the run() method needs to finish within 3 seconds
new Within(duration("3 seconds")) {

protected void run() {

subject.tell("hello", getRef());

// This is a demo: would normally use expectMsgEquals().
// Wait time is bounded by 3-second deadline above.
new AwaitCond() {

protected boolean cond() {
return probe.msgAvailable();

}
};

// response must have been enqueued to us before probe
expectMsgEquals(Duration.Zero(), "world");
// check that the probe we injected earlier got the msg
probe.expectMsgEquals(Duration.Zero(), "hello");
Assert.assertEquals(getRef(), probe.getLastSender());

// Will wait for the rest of the 3 seconds
expectNoMsg();

}
};

}};
}

}

The JavaTestKit contains an actor named testActor which is the entry point for messages to be examined
with the various expectMsg... assertions detailed below. The test actor’s reference is obtained using the
getRef method as demonstrated above. The testActor may also be passed to other actors as usual, usually
subscribing it as notification listener. There is a whole set of examination methods, e.g. receiving all consecutive
messages matching certain criteria, receiving a whole sequence of fixed messages or classes, receiving nothing for
some time, etc.

The ActorSystem passed in to the constructor of JavaTestKit is accessible via the getSystem method.

Note: Remember to shut down the actor system after the test is finished (also in case of failure) so that all
actors—including the test actor—are stopped.

3.9. Testing Actor Systems 164

Akka Java Documentation, Release 2.3.16

Built-In Assertions

The above mentioned expectMsgEquals is not the only method for formulating assertions concerning received
messages, the full set is this:

final String hello = expectMsgEquals("hello");
final Object any = expectMsgAnyOf("hello", "world");
final Object[] all = expectMsgAllOf("hello", "world");
final int i = expectMsgClass(Integer.class);
final Number j = expectMsgAnyClassOf(Integer.class, Long.class);
expectNoMsg();
final Object[] two = receiveN(2);

In these examples, the maximum durations you will find mentioned below are left out, in which case they use
the default value from configuration item akka.test.single-expect-default which itself defaults to 3
seconds (or they obey the innermost enclosing Within as detailed below). The full signatures are:

• public <T> T expectMsgEquals(Duration max, T msg)

The given message object must be received within the specified time; the object will be returned.

• public Object expectMsgAnyOf(Duration max, Object... msg)

An object must be received within the given time, and it must be equal (compared with equals()) to at
least one of the passed reference objects; the received object will be returned.

• public Object[] expectMsgAllOf(Duration max, Object... msg)

A number of objects matching the size of the supplied object array must be received within the given time,
and for each of the given objects there must exist at least one among the received ones which equals it
(compared with equals()). The full sequence of received objects is returned in the order received.

• public <T> T expectMsgClass(Duration max, Class<T> c)

An object which is an instance of the given Class must be received within the allotted time frame; the
object will be returned. Note that this does a conformance check, if you need the class to be equal you need
to verify that afterwards.

• public <T> T expectMsgAnyClassOf(Duration max, Class<? extends T>... c)

An object must be received within the given time, and it must be an instance of at least one of the supplied
Class objects; the received object will be returned. Note that this does a conformance check, if you need
the class to be equal you need to verify that afterwards.

Note: Because of a limitation in Java’s type system it may be necessary to add
@SuppressWarnings("unchecked") when using this method.

• public void expectNoMsg(Duration max)

No message must be received within the given time. This also fails if a message has been received before
calling this method which has not been removed from the queue using one of the other methods.

• Object[] receiveN(int n, Duration max)

n messages must be received within the given time; the received messages are returned.

For cases which require more refined conditions there are constructs which take code blocks:

• ExpectMsg<T>

new JavaTestKit(system) {{
getRef().tell(42, ActorRef.noSender());
final String out = new ExpectMsg<String>("match hint") {

// do not put code outside this method, will run afterwards
protected String match(Object in) {
if (in instanceof Integer) {

3.9. Testing Actor Systems 165

Akka Java Documentation, Release 2.3.16

return "match";
} else {
throw noMatch();

}
}

}.get(); // this extracts the received message
assertEquals("match", out);

}};

The match(Object in) method will be evaluated once a message has been received within the allotted
time (which may be given as constructor argument). If it throws noMatch() (where it is sufficient to call
that method; the throw keyword is only needed in cases where the compiler would otherwise complain
about wrong return types—Java is lacking Scala’s notion of a type which signifies “will not ever return
normally”), then the expectation fails with an AssertionError, otherwise the matched and possibly
transformed object is stored for retrieval using the get method.

• ReceiveWhile<T>

new JavaTestKit(system) {{
getRef().tell(42, ActorRef.noSender());
getRef().tell(43, ActorRef.noSender());
getRef().tell("hello", ActorRef.noSender());
final String[] out =

new ReceiveWhile<String>(String.class, duration("1 second")) {
// do not put code outside this method, will run afterwards
protected String match(Object in) {
if (in instanceof Integer) {
return in.toString();

} else {
throw noMatch();

}
}

}.get(); // this extracts the received messages
assertArrayEquals(new String[] {"42", "43"}, out);
expectMsgEquals("hello");

}};

This construct works like ExpectMsg, but it continually collects messages as long as they match the criteria,
and it does not fail when a non-matching one is encountered. Collecting messages also ends when the time
is up, when too much time passes between messages or when enough messages have been received.

new ReceiveWhile<String>(// type of array to be created must match ...
String.class, // ... this class which is needed to that end
duration("100 millis"), // maximum collect time
duration("50 millis"), // maximum time between messages
12 // maximum number of messages to collect
) {

// match elided ...
};

The need to specify the String result type twice results from the need to create a correctly typed array
and Java’s inability to infer the class’s type argument.

• AwaitCond

new JavaTestKit(system) {{
getRef().tell(42, ActorRef.noSender());
new AwaitCond(

duration("1 second"), // maximum wait time
duration("100 millis") // interval at which to check the condition
) {

// do not put code outside this method, will run afterwards
protected boolean cond() {
// typically used to wait for something to start up

3.9. Testing Actor Systems 166

Akka Java Documentation, Release 2.3.16

return msgAvailable();
}

};
}};

This general construct is not connected with the test kit’s message reception, the embedded condition can
compute the boolean result from anything in scope.

– AwaitAssert

new JavaTestKit(system) {{
getRef().tell(42, ActorRef.noSender());
new AwaitAssert(

duration("1 second"), // maximum wait time
duration("100 millis") // interval at which to check the condition
) {

// do not put code outside this method, will run afterwards
protected void check() {
assertEquals(msgAvailable(), true);

}
};

}};

This general construct is not connected with the test kit’s message reception, the embedded assert can check
anything in scope.

There are also cases where not all messages sent to the test kit are actually relevant to the test, but removing them
would mean altering the actors under test. For this purpose it is possible to ignore certain messages:

• IgnoreMsg

new JavaTestKit(system) {{
// ignore all Strings
new IgnoreMsg() {

protected boolean ignore(Object msg) {
return msg instanceof String;

}
};
getRef().tell("hello", ActorRef.noSender());
getRef().tell(42, ActorRef.noSender());
expectMsgEquals(42);
// remove message filter
ignoreNoMsg();
getRef().tell("hello", ActorRef.noSender());
expectMsgEquals("hello");

}};

Expecting Log Messages

Since an integration test does not allow to the internal processing of the participating actors, verifying expected
exceptions cannot be done directly. Instead, use the logging system for this purpose: replacing the normal event
handler with the TestEventListener and using an EventFilter allows assertions on log messages, in-
cluding those which are generated by exceptions:

new JavaTestKit(system) {{
assertEquals("TestKitDocTest", system.name());
final ActorRef victim = system.actorOf(Props.empty(), "victim");

final int result = new EventFilter<Integer>(ActorKilledException.class) {
protected Integer run() {

victim.tell(Kill.getInstance(), ActorRef.noSender());
return 42;

}

3.9. Testing Actor Systems 167

Akka Java Documentation, Release 2.3.16

}.from("akka://TestKitDocTest/user/victim").occurrences(1).exec();

assertEquals(42, result);
}};

If a number of occurrences is specific—as demonstrated above—then exec() will block until that number of
matching messages have been received or the timeout configured in akka.test.filter-leeway is used up
(time starts counting after the run() method returns). In case of a timeout the test fails.

Note: Be sure to exchange the default logger with the TestEventListener in your application.conf
to enable this function:

akka.loggers = [akka.testkit.TestEventListener]

Timing Assertions

Another important part of functional testing concerns timing: certain events must not happen immediately (like a
timer), others need to happen before a deadline. Therefore, all examination methods accept an upper time limit
within the positive or negative result must be obtained. Lower time limits need to be checked external to the
examination, which is facilitated by a new construct for managing time constraints:

new JavaTestKit(system) {{
getRef().tell(42, ActorRef.noSender());
new Within(Duration.Zero(), Duration.create(1, "second")) {
// do not put code outside this method, will run afterwards
public void run() {

assertEquals((Integer) 42, expectMsgClass(Integer.class));
}

};
}};

The block in Within.run must complete after a Duration which is between min and max, where the former
defaults to zero. The deadline calculated by adding the max parameter to the block’s start time is implicitly
available within the block to all examination methods, if you do not specify it, it is inherited from the innermost
enclosing within block.

It should be noted that if the last message-receiving assertion of the block is expectNoMsg or receiveWhile,
the final check of the within is skipped in order to avoid false positives due to wake-up latencies. This means
that while individual contained assertions still use the maximum time bound, the overall block may take arbitrarily
longer in this case.

Note: All times are measured using System.nanoTime, meaning that they describe wall time, not CPU time
or system time.

Accounting for Slow Test Systems

The tight timeouts you use during testing on your lightning-fast notebook will invariably lead to spurious test
failures on the heavily loaded Jenkins server (or similar). To account for this situation, all maximum durations are
internally scaled by a factor taken from the Configuration, akka.test.timefactor, which defaults to 1.

You can scale other durations with the same factor by using dilated method in JavaTestKit.

new JavaTestKit(system) {{
final Duration original = duration("1 second");
final Duration stretched = dilated(original);
assertTrue("dilated", stretched.gteq(original));

}};

3.9. Testing Actor Systems 168

Akka Java Documentation, Release 2.3.16

Using Multiple Probe Actors

When the actors under test are supposed to send various messages to different destinations, it may be difficult
distinguishing the message streams arriving at the testActor when using the JavaTestKit as shown until
now. Another approach is to use it for creation of simple probe actors to be inserted in the message flows. The
functionality is best explained using a small example:

new JavaTestKit(system) {{
// simple actor which just forwards messages
class Forwarder extends UntypedActor {
final ActorRef target;
@SuppressWarnings("unused")
public Forwarder(ActorRef target) {

this.target = target;
}
public void onReceive(Object msg) {

target.forward(msg, getContext());
}

}

// create a test probe
final JavaTestKit probe = new JavaTestKit(system);

// create a forwarder, injecting the probe’s testActor
final Props props = Props.create(Forwarder.class, this, probe.getRef());
final ActorRef forwarder = system.actorOf(props, "forwarder");

// verify correct forwarding
forwarder.tell(42, getRef());
probe.expectMsgEquals(42);
assertEquals(getRef(), probe.getLastSender());

}};

This simple test verifies an equally simple Forwarder actor by injecting a probe as the forwarder’s target. Another
example would be two actors A and B which collaborate by A sending messages to B. In order to verify this
message flow, a TestProbe could be inserted as target of A, using the forwarding capabilities or auto-pilot
described below to include a real B in the test setup.

Probes may also be equipped with custom assertions to make your test code even more concise and clear:

new JavaTestKit(system) {{
class MyProbe extends JavaTestKit {
public MyProbe() {

super(system);
}
public void assertHello() {

expectMsgEquals("hello");
}

}

final MyProbe probe = new MyProbe();
probe.getRef().tell("hello", ActorRef.noSender());
probe.assertHello();

}};

You have complete flexibility here in mixing and matching the JavaTestKit facilities with your own checks
and choosing an intuitive name for it. In real life your code will probably be a bit more complicated than the
example given above; just use the power!

Warning: Any message send from a TestProbe to another actor which runs on the CallingThreadDis-
patcher runs the risk of dead-lock, if that other actor might also send to this probe. The implementation of
TestProbe.watch and TestProbe.unwatch will also send a message to the watchee, which means
that it is dangerous to try watching e.g. TestActorRef from a TestProbe.

3.9. Testing Actor Systems 169

Akka Java Documentation, Release 2.3.16

Watching Other Actors from Probes

A JavaTestKit can register itself for DeathWatch of any other actor:

new JavaTestKit(system) {{
final JavaTestKit probe = new JavaTestKit(system);
probe.watch(target);
target.tell(PoisonPill.getInstance(), ActorRef.noSender());
final Terminated msg = probe.expectMsgClass(Terminated.class);
assertEquals(msg.getActor(), target);

}};

Replying to Messages Received by Probes

The probe stores the sender of the last dequeued message (i.e. after its expectMsg* reception), which may be
retrieved using the getLastSender method. This information can also implicitly be used for having the probe
reply to the last received message:

new JavaTestKit(system) {{
final JavaTestKit probe = new JavaTestKit(system);
probe.getRef().tell("hello", getRef());
probe.expectMsgEquals("hello");
probe.reply("world");
expectMsgEquals("world");
assertEquals(probe.getRef(), getLastSender());

}};

Forwarding Messages Received by Probes

The probe can also forward a received message (i.e. after its expectMsg* reception), retaining the original
sender:

new JavaTestKit(system) {{
final JavaTestKit probe = new JavaTestKit(system);
probe.getRef().tell("hello", getRef());
probe.expectMsgEquals("hello");
probe.forward(getRef());
expectMsgEquals("hello");
assertEquals(getRef(), getLastSender());

}};

Auto-Pilot

Receiving messages in a queue for later inspection is nice, but in order to keep a test running and verify traces later
you can also install an AutoPilot in the participating test probes (actually in any TestKit) which is invoked
before enqueueing to the inspection queue. This code can be used to forward messages, e.g. in a chain A -->
Probe --> B, as long as a certain protocol is obeyed.

new JavaTestKit(system) {{
final JavaTestKit probe = new JavaTestKit(system);
// install auto-pilot
probe.setAutoPilot(new TestActor.AutoPilot() {
public AutoPilot run(ActorRef sender, Object msg) {

sender.tell(msg, ActorRef.noSender());
return noAutoPilot();

3.9. Testing Actor Systems 170

Akka Java Documentation, Release 2.3.16

}
});
// first one is replied to directly ...
probe.getRef().tell("hello", getRef());
expectMsgEquals("hello");
// ... but then the auto-pilot switched itself off
probe.getRef().tell("world", getRef());
expectNoMsg();

}};

The run method must return the auto-pilot for the next message, wrapped in an Option; setting it to None
terminates the auto-pilot.

Caution about Timing Assertions

The behavior of within blocks when using test probes might be perceived as counter-intuitive: you need to
remember that the nicely scoped deadline as described above is local to each probe. Hence, probes do not react to
each other’s deadlines or to the deadline set in an enclosing JavaTestKit instance:

new JavaTestKit(system) {{
final JavaTestKit probe = new JavaTestKit(system);
new Within(duration("1 second")) {
public void run() {

probe.expectMsgEquals("hello");
}

};
}};

Here, the expectMsgEquals call will use the default timeout.

Testing parent-child relationships

The parent of an actor is always the actor that created it. At times this leads to a coupling between the two that
may not be straightforward to test. Broadly, there are three approaches to improve testability of parent-child
relationships:

1. when creating a child, pass an explicit reference to its parent

2. when creating a parent, tell the parent how to create its child

3. create a fabricated parent when testing

For example, the structure of the code you want to test may follow this pattern:

static class Parent extends UntypedActor {
final ActorRef child = context().actorOf(Props.create(Child.class), "child");
boolean ponged = false;

@Override public void onReceive(Object message) throws Exception {
if ("pingit".equals(message)) {

child.tell("ping", self());
} else if ("pong".equals(message)) {

ponged = true;
} else {

unhandled(message);
}

}
}

static class Child extends UntypedActor {
@Override public void onReceive(Object message) throws Exception {
if ("ping".equals(message)) {

3.9. Testing Actor Systems 171

Akka Java Documentation, Release 2.3.16

context().parent().tell("pong", self());
} else {

unhandled(message);
}

}
}

Using dependency-injection

The first option is to avoid use of the context.parent function and create a child with a custom parent by
passing an explicit reference to its parent instead.

class DependentChild extends UntypedActor {
private final ActorRef parent;

public DependentChild(ActorRef parent) {
this.parent = parent;

}

@Override public void onReceive(Object message) throws Exception {
if ("ping".equals(message)) {

parent.tell("pong", self());
} else {

unhandled(message);
}

}
}

Alternatively, you can tell the parent how to create its child. There are two ways to do this: by giving it a Props
object or by giving it a function which takes care of creating the child actor:

class DependentParent extends UntypedActor {
final ActorRef child;
boolean ponged = false;

public DependentParent(Props childProps) {
child = context().actorOf(childProps, "child");

}

@Override public void onReceive(Object message) throws Exception {
if ("pingit".equals(message)) {

child.tell("ping", self());
} else if ("pong".equals(message)) {

ponged = true;
} else {

unhandled(message);
}

}
}

class GenericDependentParent extends UntypedActor {
final ActorRef child;
boolean ponged = false;

public GenericDependentParent(Function<ActorRefFactory, ActorRef> childMaker)
throws Exception {
child = childMaker.apply(context());

}

@Override public void onReceive(Object message) throws Exception {
if ("pingit".equals(message)) {

child.tell("ping", self());

3.9. Testing Actor Systems 172

Akka Java Documentation, Release 2.3.16

} else if ("pong".equals(message)) {
ponged = true;

} else {
unhandled(message);

}
}

}

Creating the Actor is straightforward and the function may look like this in your test code:

Function<ActorRefFactory, ActorRef> maker = new Function<ActorRefFactory, ActorRef>() {
@Override public ActorRef apply(ActorRefFactory param) throws Exception {
return probe.ref();

}
};
ActorRef parent = system.actorOf(Props.create(GenericDependentParent.class, maker));

And like this in your application code:

Function<ActorRefFactory, ActorRef> maker = new Function<ActorRefFactory, ActorRef>() {
@Override public ActorRef apply(ActorRefFactory f) throws Exception {
return f.actorOf(Props.create(Child.class));

}
};
ActorRef parent = system.actorOf(Props.create(GenericDependentParent.class, maker));

Using a fabricated parent

If you prefer to avoid modifying the parent or child constructor you can create a fabricated parent in your test.
This, however, does not enable you to test the parent actor in isolation.

class FabricatedParentCreator implements Creator<Actor> {
private final TestProbe proxy;

public FabricatedParentCreator(TestProbe proxy) {
this.proxy = proxy;

}

@Override public Actor create() throws Exception {
return new UntypedActor() {

final ActorRef child = context().actorOf(Props.create(Child.class), "child");

@Override public void onReceive(Object x) throws Exception {
if (sender().equals(child)) {
proxy.ref().forward(x, context());

} else {
child.forward(x, context());

}
}

};
}

}

TestProbe proxy = new TestProbe(system);
ActorRef parent = system.actorOf(Props.create(new FabricatedParentCreator(proxy)));

proxy.send(parent, "ping");
proxy.expectMsg("pong");

Which of these methods is the best depends on what is most important to test. The most generic option is to create
the parent actor by passing it a function that is responsible for the Actor creation, but the fabricated parent is often
sufficient.

3.9. Testing Actor Systems 173

Akka Java Documentation, Release 2.3.16

3.9.3 CallingThreadDispatcher

The CallingThreadDispatcher serves good purposes in unit testing, as described above, but originally
it was conceived in order to allow contiguous stack traces to be generated in case of an error. As this special
dispatcher runs everything which would normally be queued directly on the current thread, the full history of a
message’s processing chain is recorded on the call stack, so long as all intervening actors run on this dispatcher.

How to use it

Just set the dispatcher as you normally would:

system.actorOf(
Props.create(MyActor.class)
.withDispatcher(CallingThreadDispatcher.Id()));

How it works

When receiving an invocation, the CallingThreadDispatcher checks whether the receiving actor is already
active on the current thread. The simplest example for this situation is an actor which sends a message to itself.
In this case, processing cannot continue immediately as that would violate the actor model, so the invocation
is queued and will be processed when the active invocation on that actor finishes its processing; thus, it will
be processed on the calling thread, but simply after the actor finishes its previous work. In the other case, the
invocation is simply processed immediately on the current thread. Futures scheduled via this dispatcher are also
executed immediately.

This scheme makes the CallingThreadDispatcher work like a general purpose dispatcher for any actors
which never block on external events.

In the presence of multiple threads it may happen that two invocations of an actor running on this dispatcher
happen on two different threads at the same time. In this case, both will be processed directly on their respective
threads, where both compete for the actor’s lock and the loser has to wait. Thus, the actor model is left intact, but
the price is loss of concurrency due to limited scheduling. In a sense this is equivalent to traditional mutex style
concurrency.

The other remaining difficulty is correct handling of suspend and resume: when an actor is suspended, subsequent
invocations will be queued in thread-local queues (the same ones used for queuing in the normal case). The call
to resume, however, is done by one specific thread, and all other threads in the system will probably not be
executing this specific actor, which leads to the problem that the thread-local queues cannot be emptied by their
native threads. Hence, the thread calling resume will collect all currently queued invocations from all threads
into its own queue and process them.

Limitations

Warning: In case the CallingThreadDispatcher is used for top-level actors, but without going through TestAc-
torRef, then there is a time window during which the actor is awaiting construction by the user guardian actor.
Sending messages to the actor during this time period will result in them being enqueued and then executed on
the guardian’s thread instead of the caller’s thread. To avoid this, use TestActorRef.

If an actor’s behavior blocks on a something which would normally be affected by the calling actor after having
sent the message, this will obviously dead-lock when using this dispatcher. This is a common scenario in actor
tests based on CountDownLatch for synchronization:

val latch = new CountDownLatch(1)
actor ! startWorkAfter(latch) // actor will call latch.await() before proceeding
doSomeSetupStuff()
latch.countDown()

3.9. Testing Actor Systems 174

Akka Java Documentation, Release 2.3.16

The example would hang indefinitely within the message processing initiated on the second line and never reach
the fourth line, which would unblock it on a normal dispatcher.

Thus, keep in mind that the CallingThreadDispatcher is not a general-purpose replacement for the normal
dispatchers. On the other hand it may be quite useful to run your actor network on it for testing, because if it runs
without dead-locking chances are very high that it will not dead-lock in production.

Warning: The above sentence is unfortunately not a strong guarantee, because your code might directly or
indirectly change its behavior when running on a different dispatcher. If you are looking for a tool to help
you debug dead-locks, the CallingThreadDispatcher may help with certain error scenarios, but keep
in mind that it has may give false negatives as well as false positives.

Thread Interruptions

If the CallingThreadDispatcher sees that the current thread has its isInterrupted() flag set when message
processing returns, it will throw an InterruptedException after finishing all its processing (i.e. all mes-
sages which need processing as described above are processed before this happens). As tell cannot throw
exceptions due to its contract, this exception will then be caught and logged, and the thread’s interrupted status
will be set again.

If during message processing an InterruptedException is thrown then it will be caught inside the Call-
ingThreadDispatcher’s message handling loop, the thread’s interrupted flag will be set and processing continues
normally.

Note: The summary of these two paragraphs is that if the current thread is interrupted while doing work under
the CallingThreadDispatcher, then that will result in the isInterrupted flag to be true when the message
send returns and no InterruptedException will be thrown.

Benefits

To summarize, these are the features with the CallingThreadDispatcher has to offer:

• Deterministic execution of single-threaded tests while retaining nearly full actor semantics

• Full message processing history leading up to the point of failure in exception stack traces

• Exclusion of certain classes of dead-lock scenarios

3.9.4 Tracing Actor Invocations

The testing facilities described up to this point were aiming at formulating assertions about a system’s behavior.
If a test fails, it is usually your job to find the cause, fix it and verify the test again. This process is supported by
debuggers as well as logging, where the Akka toolkit offers the following options:

• Logging of exceptions thrown within Actor instances

This is always on; in contrast to the other logging mechanisms, this logs at ERROR level.

• Logging of special messages

Actors handle certain special messages automatically, e.g. Kill, PoisonPill, etc. Tracing of these
message invocations is enabled by the setting akka.actor.debug.autoreceive, which enables this
on all actors.

• Logging of the actor lifecycle

Actor creation, start, restart, monitor start, monitor stop and stop may be traced by enabling the setting
akka.actor.debug.lifecycle; this, too, is enabled uniformly on all actors.

3.9. Testing Actor Systems 175

Akka Java Documentation, Release 2.3.16

All these messages are logged at DEBUG level. To summarize, you can enable full logging of actor activities using
this configuration fragment:

akka {
loglevel = "DEBUG"
actor {
debug {

autoreceive = on
lifecycle = on

}
}

}

3.9.5 Configuration

There are several configuration properties for the TestKit module, please refer to the reference configuration.

3.9. Testing Actor Systems 176

CHAPTER

FOUR

ACTORS (JAVA WITH LAMBDA SUPPORT)

4.1 Actors (Java with Lambda Support)

The Actor Model provides a higher level of abstraction for writing concurrent and distributed systems. It alleviates
the developer from having to deal with explicit locking and thread management, making it easier to write correct
concurrent and parallel systems. Actors were defined in the 1973 paper by Carl Hewitt but have been popularized
by the Erlang language, and used for example at Ericsson with great success to build highly concurrent and reliable
telecom systems.

The API of Akka’s Actors is similar to Scala Actors which has borrowed some of its syntax from Erlang.

Warning: The Java with lambda support part of Akka is marked as “experimental” as of its introduction
in Akka 2.3.0. We will continue to improve this API based on our users’ feedback, which implies that while
we try to keep incompatible changes to a minimum, but the binary compatibility guarantee for maintenance
releases does not apply to the akka.actor.AbstractActor, related classes and the akka.japi.pf
package.

4.1.1 Creating Actors

Note: Since Akka enforces parental supervision every actor is supervised and (potentially) the supervisor of its
children, it is advisable that you familiarize yourself with Actor Systems and Supervision and Monitoring and it
may also help to read Actor References, Paths and Addresses.

Defining an Actor class

Actor classes are implemented by extending the AbstractActor class and setting the “initial behavior” in the
constructor by calling the receive method in the AbstractActor.

The argument to the receive method is a PartialFunction<Object,BoxedUnit> that defines which
messages your Actor can handle, along with the implementation of how the messages should be processed.

Don’t let the type signature scare you. To allow you to easily build up a partial function there is a builder named
ReceiveBuilder that you can use.

Here is an example:

import akka.actor.AbstractActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;
import akka.japi.pf.ReceiveBuilder;

public class MyActor extends AbstractActor {
private final LoggingAdapter log = Logging.getLogger(context().system(), this);

177

http://en.wikipedia.org/wiki/Actor_model

Akka Java Documentation, Release 2.3.16

public MyActor() {
receive(ReceiveBuilder.

match(String.class, s -> {
log.info("Received String message: {}", s);

}).
matchAny(o -> log.info("received unknown message")).build()

);
}

}

Please note that the Akka Actor receive message loop is exhaustive, which is different compared to Erlang and
the late Scala Actors. This means that you need to provide a pattern match for all messages that it can accept
and if you want to be able to handle unknown messages then you need to have a default case as in the example
above. Otherwise an akka.actor.UnhandledMessage(message, sender, recipient) will be
published to the ActorSystem‘s EventStream.

Note further that the return type of the behavior defined above is Unit; if the actor shall reply to the received
message then this must be done explicitly as explained below.

The argument to the receive method is a partial function object, which is stored within the actor as its “initial
behavior”, see Become/Unbecome for further information on changing the behavior of an actor after its construc-
tion.

Props

Props is a configuration class to specify options for the creation of actors, think of it as an immutable and thus
freely shareable recipe for creating an actor including associated deployment information (e.g. which dispatcher
to use, see more below). Here are some examples of how to create a Props instance.

import akka.actor.Props;

Props props1 = Props.create(MyActor.class);
Props props2 = Props.create(ActorWithArgs.class,

() -> new ActorWithArgs("arg")); // careful, see below
Props props3 = Props.create(ActorWithArgs.class, "arg");

The second variant shows how to pass constructor arguments to the Actor being created, but it should only be
used outside of actors as explained below.

The last line shows a possibility to pass constructor arguments regardless of the context it is being used in.
The presence of a matching constructor is verified during construction of the Props object, resulting in an
IllegalArgumentEception if no or multiple matching constructors are found.

Dangerous Variants

// NOT RECOMMENDED within another actor:
// encourages to close over enclosing class
Props props7 = Props.create(ActorWithArgs.class,

() -> new ActorWithArgs("arg"));

This method is not recommended to be used within another actor because it encourages to close over the enclos-
ing scope, resulting in non-serializable Props and possibly race conditions (breaking the actor encapsulation).
On the other hand using this variant in a Props factory in the actor’s companion object as documented under
“Recommended Practices” below is completely fine.

There were two use-cases for these methods: passing constructor arguments to the actor—which is solved by the
newly introduced Props.create(clazz, args) method above or the recommended practice below—and
creating actors “on the spot” as anonymous classes. The latter should be solved by making these actors named
classes instead (if they are not declared within a top-level object then the enclosing instance’s this reference
needs to be passed as the first argument).

4.1. Actors (Java with Lambda Support) 178

Akka Java Documentation, Release 2.3.16

Warning: Declaring one actor within another is very dangerous and breaks actor encapsulation. Never pass
an actor’s this reference into Props!

Recommended Practices

It is a good idea to provide factory methods on the companion object of each Actor which help keeping the
creation of suitable Props as close to the actor definition as possible. This also avoids the pitfalls associated with
using the Props.create(...) method which takes a by-name argument, since within a companion object
the given code block will not retain a reference to its enclosing scope:

public class DemoActor extends AbstractActor {
/**
* Create Props for an actor of this type.

* @param magicNumber The magic number to be passed to this actor’s constructor.

* @return a Props for creating this actor, which can then be further configured

* (e.g. calling `.withDispatcher()` on it)

*/
static Props props(Integer magicNumber) {
// You need to specify the actual type of the returned actor
// since Java 8 lambdas have some runtime type information erased
return Props.create(DemoActor.class, () -> new DemoActor(magicNumber));

}

private final Integer magicNumber;

DemoActor(Integer magicNumber) {
this.magicNumber = magicNumber;
receive(ReceiveBuilder.

match(Integer.class, i -> {
sender().tell(i + magicNumber, self());

}).build()
);

}
}

public class SomeOtherActor extends AbstractActor {
// Props(new DemoActor(42)) would not be safe
ActorRef demoActor = context().actorOf(DemoActor.props(42), "demo");
// ...

}

Creating Actors with Props

Actors are created by passing a Props instance into the actorOf factory method which is available on
ActorSystem and ActorContext.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;

// ActorSystem is a heavy object: create only one per application
final ActorSystem system = ActorSystem.create("MySystem", config);
final ActorRef myActor = system.actorOf(Props.create(MyActor.class), "myactor");

Using the ActorSystem will create top-level actors, supervised by the actor system’s provided guardian actor,
while using an actor’s context will create a child actor.

public class FirstActor extends AbstractActor {
final ActorRef child = context().actorOf(Props.create(MyActor.class), "myChild");
// plus some behavior ...

}

4.1. Actors (Java with Lambda Support) 179

Akka Java Documentation, Release 2.3.16

It is recommended to create a hierarchy of children, grand-children and so on such that it fits the logical failure-
handling structure of the application, see Actor Systems.

The call to actorOf returns an instance of ActorRef. This is a handle to the actor instance and the only way to
interact with it. The ActorRef is immutable and has a one to one relationship with the Actor it represents. The
ActorRef is also serializable and network-aware. This means that you can serialize it, send it over the wire and
use it on a remote host and it will still be representing the same Actor on the original node, across the network.

The name parameter is optional, but you should preferably name your actors, since that is used in log messages
and for identifying actors. The name must not be empty or start with $, but it may contain URL encoded char-
acters (eg. %20 for a blank space). If the given name is already in use by another child to the same parent an
InvalidActorNameException is thrown.

Actors are automatically started asynchronously when created.

Dependency Injection

If your UntypedActor has a constructor that takes parameters then those need to be part of the Props as well, as
described above. But there are cases when a factory method must be used, for example when the actual constructor
arguments are determined by a dependency injection framework.

import akka.actor.Actor;
import akka.actor.IndirectActorProducer;

class DependencyInjector implements IndirectActorProducer {
final Object applicationContext;
final String beanName;

public DependencyInjector(Object applicationContext, String beanName) {
this.applicationContext = applicationContext;
this.beanName = beanName;

}

@Override
public Class<? extends Actor> actorClass() {
return MyActor.class;

}

@Override
public MyActor produce() {
MyActor result;
// obtain fresh Actor instance from DI framework ...
return result;

}
}

final ActorRef myActor = getContext().actorOf(
Props.create(DependencyInjector.class, applicationContext, "MyActor"),

"myactor3");

Warning: You might be tempted at times to offer an IndirectActorProducer which always returns
the same instance, e.g. by using a static field. This is not supported, as it goes against the meaning of an actor
restart, which is described here: What Restarting Means.
When using a dependency injection framework, actor beans MUST NOT have singleton scope.

Techniques for dependency injection and integration with dependency injection frameworks are described in more
depth in the Using Akka with Dependency Injection guideline and the Akka Java Spring tutorial in Typesafe
Activator.

4.1. Actors (Java with Lambda Support) 180

http://letitcrash.com/post/55958814293/akka-dependency-injection
http://www.typesafe.com/activator/template/akka-java-spring

Akka Java Documentation, Release 2.3.16

The Inbox

When writing code outside of actors which shall communicate with actors, the ask pattern can be a solution (see
below), but there are two thing it cannot do: receiving multiple replies (e.g. by subscribing an ActorRef to a
notification service) and watching other actors’ lifecycle. For these purposes there is the Inbox class:

final Inbox inbox = Inbox.create(system);
inbox.send(target, "hello");
assert inbox.receive(Duration.create(1, TimeUnit.SECONDS)).equals("world");

The send method wraps a normal tell and supplies the internal actor’s reference as the sender. This allows the
reply to be received on the last line. Watching an actor is quite simple as well:

final Inbox inbox = Inbox.create(system);
inbox.watch(target);
target.tell(PoisonPill.getInstance(), ActorRef.noSender());
assert inbox.receive(Duration.create(1, TimeUnit.SECONDS)) instanceof Terminated;

4.1.2 Actor API

The AbstractActor class defines a method called receive, that is used to set the “initial behavior” of the
actor.

If the current actor behavior does not match a received message, unhandled is called, which by default publishes
an akka.actor.UnhandledMessage(message, sender, recipient) on the actor system’s event
stream (set configuration item akka.actor.debug.unhandled to on to have them converted into actual
Debug messages).

In addition, it offers:

• self reference to the ActorRef of the actor

• sender reference sender Actor of the last received message, typically used as described in Reply to mes-
sages

• supervisorStrategy user overridable definition the strategy to use for supervising child actors

This strategy is typically declared inside the actor in order to have access to the actor’s internal state within
the decider function: since failure is communicated as a message sent to the supervisor and processed like
other messages (albeit outside of the normal behavior), all values and variables within the actor are available,
as is the sender reference (which will be the immediate child reporting the failure; if the original failure
occurred within a distant descendant it is still reported one level up at a time).

• context exposes contextual information for the actor and the current message, such as:

– factory methods to create child actors (actorOf)

– system that the actor belongs to

– parent supervisor

– supervised children

– lifecycle monitoring

– hotswap behavior stack as described in Become/Unbecome

The remaining visible methods are user-overridable life-cycle hooks which are described in the following:

public void preStart() {
}

public void preRestart(Throwable reason, scala.Option<Object> message) {
for (ActorRef each : getContext().getChildren()) {
getContext().unwatch(each);
getContext().stop(each);

4.1. Actors (Java with Lambda Support) 181

Akka Java Documentation, Release 2.3.16

}
postStop();

}

public void postRestart(Throwable reason) {
preStart();

}

public void postStop() {
}

The implementations shown above are the defaults provided by the AbstractActor class.

Actor Lifecycle

A path in an actor system represents a “place” which might be occupied by a living actor. Initially (apart from
system initialized actors) a path is empty. When actorOf() is called it assigns an incarnation of the actor
described by the passed Props to the given path. An actor incarnation is identified by the path and a UID. A
restart only swaps the Actor instance defined by the Props but the incarnation and hence the UID remains the
same.

The lifecycle of an incarnation ends when the actor is stopped. At that point the appropriate lifecycle events are
called and watching actors are notified of the termination. After the incarnation is stopped, the path can be reused
again by creating an actor with actorOf(). In this case the name of the new incarnation will be the same as the
previous one but the UIDs will differ.

An ActorRef always represents an incarnation (path and UID) not just a given path. Therefore if an actor is
stopped and a new one with the same name is created an ActorRef of the old incarnation will not point to the
new one.

4.1. Actors (Java with Lambda Support) 182

Akka Java Documentation, Release 2.3.16

ActorSelection on the other hand points to the path (or multiple paths if wildcards are used) and is completely
oblivious to which incarnation is currently occupying it. ActorSelection cannot be watched for this reason.
It is possible to resolve the current incarnation’s ActorRef living under the path by sending an Identify
message to the ActorSelection which will be replied to with an ActorIdentity containing the correct
reference (see Identifying Actors via Actor Selection). This can also be done with the resolveOne method of
the ActorSelection, which returns a Future of the matching ActorRef.

Lifecycle Monitoring aka DeathWatch

In order to be notified when another actor terminates (i.e. stops permanently, not temporary failure and restart), an
actor may register itself for reception of the Terminatedmessage dispatched by the other actor upon termination
(see Stopping Actors). This service is provided by the DeathWatch component of the actor system.

Registering a monitor is easy:

public class WatchActor extends AbstractActor {
private final ActorRef child = context().actorOf(Props.empty(), "target");
private ActorRef lastSender = system.deadLetters();

public WatchActor() {
context().watch(child); // <-- this is the only call needed for registration

receive(ReceiveBuilder.
matchEquals("kill", s -> {

context().stop(child);
lastSender = sender();

}).
match(Terminated.class, t -> t.actor().equals(child), t -> {

lastSender.tell("finished", self());
}).build()

);
}

}

It should be noted that the Terminated message is generated independent of the order in which registration and
termination occur. In particular, the watching actor will receive a Terminated message even if the watched
actor has already been terminated at the time of registration.

Registering multiple times does not necessarily lead to multiple messages being generated, but there is no guaran-
tee that only exactly one such message is received: if termination of the watched actor has generated and queued
the message, and another registration is done before this message has been processed, then a second message will
be queued, because registering for monitoring of an already terminated actor leads to the immediate generation of
the Terminated message.

It is also possible to deregister from watching another actor’s liveliness using context.unwatch(target).
This works even if the Terminated message has already been enqueued in the mailbox; after calling unwatch
no Terminated message for that actor will be processed anymore.

Start Hook

Right after starting the actor, its preStart method is invoked.

@Override
public void preStart() {

target = context().actorOf(Props.create(MyActor.class, "target"));
}

This method is called when the actor is first created. During restarts it is called by the default implementation of
postRestart, which means that by overriding that method you can choose whether the initialization code in
this method is called only exactly once for this actor or for every restart. Initialization code which is part of the

4.1. Actors (Java with Lambda Support) 183

Akka Java Documentation, Release 2.3.16

actor’s constructor will always be called when an instance of the actor class is created, which happens at every
restart.

Restart Hooks

All actors are supervised, i.e. linked to another actor with a fault handling strategy. Actors may be restarted in
case an exception is thrown while processing a message (see Supervision and Monitoring). This restart involves
the hooks mentioned above:

1. The old actor is informed by calling preRestart with the exception which caused the restart and the
message which triggered that exception; the latter may be None if the restart was not caused by processing
a message, e.g. when a supervisor does not trap the exception and is restarted in turn by its supervisor, or if
an actor is restarted due to a sibling’s failure. If the message is available, then that message’s sender is also
accessible in the usual way (i.e. by calling sender).

This method is the best place for cleaning up, preparing hand-over to the fresh actor instance, etc. By default
it stops all children and calls postStop.

2. The initial factory from the actorOf call is used to produce the fresh instance.

3. The new actor’s postRestart method is invoked with the exception which caused the restart. By default
the preStart is called, just as in the normal start-up case.

An actor restart replaces only the actual actor object; the contents of the mailbox is unaffected by the restart,
so processing of messages will resume after the postRestart hook returns. The message that triggered the
exception will not be received again. Any message sent to an actor while it is being restarted will be queued to its
mailbox as usual.

Warning: Be aware that the ordering of failure notifications relative to user messages is not deterministic. In
particular, a parent might restart its child before it has processed the last messages sent by the child before the
failure. See Discussion: Message Ordering for details.

Stop Hook

After stopping an actor, its postStop hook is called, which may be used e.g. for deregistering this actor from
other services. This hook is guaranteed to run after message queuing has been disabled for this actor, i.e. messages
sent to a stopped actor will be redirected to the deadLetters of the ActorSystem.

4.1.3 Identifying Actors via Actor Selection

As described in Actor References, Paths and Addresses, each actor has a unique logical path, which is obtained
by following the chain of actors from child to parent until reaching the root of the actor system, and it has a
physical path, which may differ if the supervision chain includes any remote supervisors. These paths are used
by the system to look up actors, e.g. when a remote message is received and the recipient is searched, but they
are also useful more directly: actors may look up other actors by specifying absolute or relative paths—logical or
physical—and receive back an ActorSelection with the result:

// will look up this absolute path
context().actorSelection("/user/serviceA/actor");
// will look up sibling beneath same supervisor
context().actorSelection("../joe");

Note: It is always preferable to communicate with other Actors using their ActorRef instead of relying upon
ActorSelection. Exceptions are

• sending messages using the At-Least-Once Delivery facility

• initiating first contact with a remote system

4.1. Actors (Java with Lambda Support) 184

Akka Java Documentation, Release 2.3.16

In all other cases ActorRefs can be provided during Actor creation or initialization, passing them from parent to
child or introducing Actors by sending their ActorRefs to other Actors within messages.

The supplied path is parsed as a java.net.URI, which basically means that it is split on / into path elements.
If the path starts with /, it is absolute and the look-up starts at the root guardian (which is the parent of "/user");
otherwise it starts at the current actor. If a path element equals .., the look-up will take a step “up” towards the
supervisor of the currently traversed actor, otherwise it will step “down” to the named child. It should be noted
that the .. in actor paths here always means the logical structure, i.e. the supervisor.

The path elements of an actor selection may contain wildcard patterns allowing for broadcasting of messages to
that section:

// will look all children to serviceB with names starting with worker
context().actorSelection("/user/serviceB/worker*");
// will look up all siblings beneath same supervisor
context().actorSelection("../*");

Messages can be sent via the ActorSelection and the path of the ActorSelection is looked up when
delivering each message. If the selection does not match any actors the message will be dropped.

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
sender() reference of the reply from the actor. There is a built-in Identify message that all Actors will
understand and automatically reply to with a ActorIdentity message containing the ActorRef. This mes-
sage is handled specially by the actors which are traversed in the sense that if a concrete name lookup fails (i.e.
a non-wildcard path element does not correspond to a live actor) then a negative result is generated. Please note
that this does not mean that delivery of that reply is guaranteed, it still is a normal message.

import akka.actor.ActorIdentity;
import akka.actor.ActorSelection;
import akka.actor.Identify;

public class Follower extends AbstractActor {
final Integer identifyId = 1;

public Follower(){
ActorSelection selection = context().actorSelection("/user/another");
selection.tell(new Identify(identifyId), self());

receive(ReceiveBuilder.
match(ActorIdentity.class, id -> id.getRef() != null, id -> {

ActorRef ref = id.getRef();
context().watch(ref);
context().become(active(ref));

}).
match(ActorIdentity.class, id -> id.getRef() == null, id -> {

context().stop(self());
}).build()

);
}

final PartialFunction<Object, BoxedUnit> active(final ActorRef another) {
return ReceiveBuilder.

match(Terminated.class, t -> t.actor().equals(another), t -> {
context().stop(self());

}).build();
}

}

You can also acquire an ActorRef for an ActorSelection with the resolveOne method of the
ActorSelection. It returns a Future of the matching ActorRef if such an actor exists. It is completed
with failure [[akka.actor.ActorNotFound]] if no such actor exists or the identification didn’t complete within the
supplied timeout.

4.1. Actors (Java with Lambda Support) 185

Akka Java Documentation, Release 2.3.16

Remote actor addresses may also be looked up, if remoting is enabled:

context().actorSelection("akka.tcp://app@otherhost:1234/user/serviceB");

An example demonstrating actor look-up is given in Remoting Sample.

Note: actorFor is deprecated in favor of actorSelection because actor references acquired with
actorFor behaves different for local and remote actors. In the case of a local actor reference, the named
actor needs to exist before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This
will be true even if an actor with that exact path is created after acquiring the actor reference. For remote actor
references acquired with actorFor the behaviour is different and sending messages to such a reference will under
the hood look up the actor by path on the remote system for every message send.

4.1.4 Messages and immutability

IMPORTANT: Messages can be any kind of object but have to be immutable. Akka can’t enforce immutability
(yet) so this has to be by convention.

Here is an example of an immutable message:

public class ImmutableMessage {
private final int sequenceNumber;
private final List<String> values;

public ImmutableMessage(int sequenceNumber, List<String> values) {
this.sequenceNumber = sequenceNumber;
this.values = Collections.unmodifiableList(new ArrayList<String>(values));

}

public int getSequenceNumber() {
return sequenceNumber;

}

public List<String> getValues() {
return values;

}
}

4.1.5 Send messages

Messages are sent to an Actor through one of the following methods.

• tell means “fire-and-forget”, e.g. send a message asynchronously and return immediately.

• ask sends a message asynchronously and returns a Future representing a possible reply.

Message ordering is guaranteed on a per-sender basis.

Note: There are performance implications of using ask since something needs to keep track of when it times
out, there needs to be something that bridges a Promise into an ActorRef and it also needs to be reachable
through remoting. So always prefer tell for performance, and only ask if you must.

In all these methods you have the option of passing along your own ActorRef. Make it a practice of doing so
because it will allow the receiver actors to be able to respond to your message, since the sender reference is sent
along with the message.

4.1. Actors (Java with Lambda Support) 186

Akka Java Documentation, Release 2.3.16

Tell: Fire-forget

This is the preferred way of sending messages. No blocking waiting for a message. This gives the best concurrency
and scalability characteristics.

// don’t forget to think about who is the sender (2nd argument)
target.tell(message, self());

The sender reference is passed along with the message and available within the receiving actor via its sender
method while processing this message. Inside of an actor it is usually self who shall be the sender, but there
can be cases where replies shall be routed to some other actor—e.g. the parent—in which the second argument to
tell would be a different one. Outside of an actor and if no reply is needed the second argument can be null;
if a reply is needed outside of an actor you can use the ask-pattern described next..

Ask: Send-And-Receive-Future

The ask pattern involves actors as well as futures, hence it is offered as a use pattern rather than a method on
ActorRef:

import static akka.pattern.Patterns.ask;
import static akka.pattern.Patterns.pipe;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import akka.dispatch.Futures;
import akka.dispatch.Mapper;
import akka.util.Timeout;

final Timeout t = new Timeout(Duration.create(5, TimeUnit.SECONDS));

final ArrayList<Future<Object>> futures = new ArrayList<Future<Object>>();
futures.add(ask(actorA, "request", 1000)); // using 1000ms timeout
futures.add(ask(actorB, "another request", t)); // using timeout from

// above

final Future<Iterable<Object>> aggregate = Futures.sequence(futures,
system.dispatcher());

final Future<Result> transformed = aggregate.map(
new Mapper<Iterable<Object>, Result>() {

public Result apply(Iterable<Object> coll) {
final Iterator<Object> it = coll.iterator();
final String x = (String) it.next();
final String s = (String) it.next();
return new Result(x, s);

}
}, system.dispatcher());

pipe(transformed, system.dispatcher()).to(actorC);

This example demonstrates ask together with the pipe pattern on futures, because this is likely to be a common
combination. Please note that all of the above is completely non-blocking and asynchronous: ask produces a
Future, two of which are composed into a new future using the Futures.sequence and map methods and
then pipe installs an onComplete-handler on the future to effect the submission of the aggregated Result to
another actor.

Using ask will send a message to the receiving Actor as with tell, and the receiving actor must reply with
sender().tell(reply, self()) in order to complete the returned Future with a value. The ask
operation involves creating an internal actor for handling this reply, which needs to have a timeout after which it
is destroyed in order not to leak resources; see more below.

4.1. Actors (Java with Lambda Support) 187

Akka Java Documentation, Release 2.3.16

Warning: To complete the future with an exception you need send a Failure message to the sender. This is
not done automatically when an actor throws an exception while processing a message.

try {
String result = operation();
sender().tell(result, self());

} catch (Exception e) {
sender().tell(new akka.actor.Status.Failure(e), self());
throw e;

}

If the actor does not complete the future, it will expire after the timeout period, specified as parameter to the ask
method; this will complete the Future with an AskTimeoutException.

See Futures for more information on how to await or query a future.

The onComplete, onSuccess, or onFailure methods of the Future can be used to register a callback to
get a notification when the Future completes. Gives you a way to avoid blocking.

Warning: When using future callbacks, inside actors you need to carefully avoid closing over the containing
actor’s reference, i.e. do not call methods or access mutable state on the enclosing actor from within the call-
back. This would break the actor encapsulation and may introduce synchronization bugs and race conditions
because the callback will be scheduled concurrently to the enclosing actor. Unfortunately there is not yet a
way to detect these illegal accesses at compile time. See also: Actors and shared mutable state

Forward message

You can forward a message from one actor to another. This means that the original sender address/reference is
maintained even though the message is going through a ‘mediator’. This can be useful when writing actors that
work as routers, load-balancers, replicators etc.

target.forward(result, context());

4.1.6 Receive messages

An Actor either has to set its initial receive behavior in the constructor by calling the receive method in the
AbstractActor:

public SomeActor() {
receive(ReceiveBuilder.
// and some behavior ...

build());
}

or by implementing the receive method in the Actor interface:

public abstract PartialFunction<Object, BoxedUnit> receive();

Both the argument to the AbstractActor receive method and the return type of the Actor receive
method is a PartialFunction<Object, BoxedUnit> that defines which messages your Actor can han-
dle, along with the implementation of how the messages should be processed.

Don’t let the type signature scare you. To allow you to easily build up a partial function there is a builder named
ReceiveBuilder that you can use.

Here is an example:

import akka.actor.AbstractActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;

4.1. Actors (Java with Lambda Support) 188

Akka Java Documentation, Release 2.3.16

import akka.japi.pf.ReceiveBuilder;

public class MyActor extends AbstractActor {
private final LoggingAdapter log = Logging.getLogger(context().system(), this);

public MyActor() {
receive(ReceiveBuilder.

match(String.class, s -> {
log.info("Received String message: {}", s);

}).
matchAny(o -> log.info("received unknown message")).build()

);
}

}

4.1.7 Reply to messages

If you want to have a handle for replying to a message, you can use sender(), which gives you an ActorRef.
You can reply by sending to that ActorRef with sender().tell(replyMsg, self()). You can also store
the ActorRef for replying later, or passing on to other actors. If there is no sender (a message was sent without an
actor or future context) then the sender defaults to a ‘dead-letter’ actor ref.

sender().tell(s, self());

4.1.8 Receive timeout

The ActorContext setReceiveTimeout defines the inactivity timeout after which the sending of a Re-
ceiveTimeout message is triggered. When specified, the receive function should be able to handle an
akka.actor.ReceiveTimeout message. 1 millisecond is the minimum supported timeout.

Please note that the receive timeout might fire and enqueue the ReceiveTimeout message right after another mes-
sage was enqueued; hence it is not guaranteed that upon reception of the receive timeout there must have been
an idle period beforehand as configured via this method.

Once set, the receive timeout stays in effect (i.e. continues firing repeatedly after inactivity periods). Pass in
Duration.Undefined to switch off this feature.

public class ReceiveTimeoutActor extends AbstractActor {
public ReceiveTimeoutActor() {
// To set an initial delay
context().setReceiveTimeout(Duration.create("10 seconds"));

receive(ReceiveBuilder.
matchEquals("Hello", s -> {

// To set in a response to a message
context().setReceiveTimeout(Duration.create("1 second"));

}).
match(ReceiveTimeout.class, r -> {

// To turn it off
context().setReceiveTimeout(Duration.Undefined());

}).build()
);

}
}

4.1.9 Stopping actors

Actors are stopped by invoking the stop method of a ActorRefFactory, i.e. ActorContext or
ActorSystem. Typically the context is used for stopping child actors and the system for stopping top level

4.1. Actors (Java with Lambda Support) 189

Akka Java Documentation, Release 2.3.16

actors. The actual termination of the actor is performed asynchronously, i.e. stop may return before the actor is
stopped.

Processing of the current message, if any, will continue before the actor is stopped, but additional messages in the
mailbox will not be processed. By default these messages are sent to the deadLetters of the ActorSystem,
but that depends on the mailbox implementation.

Termination of an actor proceeds in two steps: first the actor suspends its mailbox processing and sends a stop
command to all its children, then it keeps processing the internal termination notifications from its children until
the last one is gone, finally terminating itself (invoking postStop, dumping mailbox, publishing Terminated
on the DeathWatch, telling its supervisor). This procedure ensures that actor system sub-trees terminate in an
orderly fashion, propagating the stop command to the leaves and collecting their confirmation back to the stopped
supervisor. If one of the actors does not respond (i.e. processing a message for extended periods of time and
therefore not receiving the stop command), this whole process will be stuck.

Upon ActorSystem.shutdown, the system guardian actors will be stopped, and the aforementioned process
will ensure proper termination of the whole system.

The postStop hook is invoked after an actor is fully stopped. This enables cleaning up of resources:

@Override
public void postStop() {

// clean up some resources ...
}

Note: Since stopping an actor is asynchronous, you cannot immediately reuse the name of the child you just
stopped; this will result in an InvalidActorNameException. Instead, watch the terminating actor and
create its replacement in response to the Terminated message which will eventually arrive.

PoisonPill

You can also send an actor the akka.actor.PoisonPill message, which will stop the actor when the mes-
sage is processed. PoisonPill is enqueued as ordinary messages and will be handled after messages that were
already queued in the mailbox.

Graceful Stop

gracefulStop is useful if you need to wait for termination or compose ordered termination of several actors:

import static akka.pattern.Patterns.gracefulStop;
import scala.concurrent.Await;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import akka.pattern.AskTimeoutException;

try {
Future<Boolean> stopped =
gracefulStop(actorRef, Duration.create(5, TimeUnit.SECONDS), Manager.SHUTDOWN);

Await.result(stopped, Duration.create(6, TimeUnit.SECONDS));
// the actor has been stopped

} catch (AskTimeoutException e) {
// the actor wasn't stopped within 5 seconds

}

public class Manager extends AbstractActor {
private static enum Shutdown {
Shutdown

}
public static final Shutdown SHUTDOWN = Shutdown.Shutdown;

4.1. Actors (Java with Lambda Support) 190

Akka Java Documentation, Release 2.3.16

private ActorRef worker =
context().watch(context().actorOf(Props.create(Cruncher.class), "worker"));

public Manager() {
receive(ReceiveBuilder.

matchEquals("job", s -> {
worker.tell("crunch", self());

}).
matchEquals(SHUTDOWN, x -> {

worker.tell(PoisonPill.getInstance(), self());
context().become(shuttingDown);

}).build()
);

}

public PartialFunction<Object, BoxedUnit> shuttingDown =
ReceiveBuilder.

matchEquals("job", s -> {
sender().tell("service unavailable, shutting down", self());

}).
match(Terminated.class, t -> t.actor().equals(worker), t -> {

context().stop(self());
}).build();

}

When gracefulStop() returns successfully, the actor’s postStop() hook will have been executed: there
exists a happens-before edge between the end of postStop() and the return of gracefulStop().

In the above example a custom Manager.Shutdown message is sent to the target actor to initiate the process
of stopping the actor. You can use PoisonPill for this, but then you have limited possibilities to perform
interactions with other actors before stopping the target actor. Simple cleanup tasks can be handled in postStop.

Warning: Keep in mind that an actor stopping and its name being deregistered are separate events which
happen asynchronously from each other. Therefore it may be that you will find the name still in use after
gracefulStop() returned. In order to guarantee proper deregistration, only reuse names from within a
supervisor you control and only in response to a Terminated message, i.e. not for top-level actors.

4.1.10 Become/Unbecome

Upgrade

Akka supports hotswapping the Actor’s message loop (e.g. its implementation) at runtime: invoke the
context.become method from within the Actor. become takes a PartialFunction<Object,
BoxedUnit> that implements the new message handler. The hotswapped code is kept in a Stack which can
be pushed and popped.

Warning: Please note that the actor will revert to its original behavior when restarted by its Supervisor.

To hotswap the Actor behavior using become:

public class HotSwapActor extends AbstractActor {
private PartialFunction<Object, BoxedUnit> angry;
private PartialFunction<Object, BoxedUnit> happy;

public HotSwapActor() {
angry =

ReceiveBuilder.
matchEquals("foo", s -> {
sender().tell("I am already angry?", self());

4.1. Actors (Java with Lambda Support) 191

Akka Java Documentation, Release 2.3.16

}).
matchEquals("bar", s -> {
context().become(happy);

}).build();

happy = ReceiveBuilder.
matchEquals("bar", s -> {

sender().tell("I am already happy :-)", self());
}).
matchEquals("foo", s -> {

context().become(angry);
}).build();

receive(ReceiveBuilder.
matchEquals("foo", s -> {

context().become(angry);
}).
matchEquals("bar", s -> {

context().become(happy);
}).build()

);
}

}

This variant of the become method is useful for many different things, such as to implement a Finite State
Machine (FSM, for an example see Dining Hakkers). It will replace the current behavior (i.e. the top of the
behavior stack), which means that you do not use unbecome, instead always the next behavior is explicitly
installed.

The other way of using become does not replace but add to the top of the behavior stack. In this case care must
be taken to ensure that the number of “pop” operations (i.e. unbecome) matches the number of “push” ones in
the long run, otherwise this amounts to a memory leak (which is why this behavior is not the default).

public class Swapper extends AbstractLoggingActor {
public Swapper() {
receive(ReceiveBuilder.

matchEquals(Swap, s -> {
log().info("Hi");
context().become(ReceiveBuilder.

matchEquals(Swap, x -> {
log().info("Ho");
context().unbecome(); // resets the latest 'become' (just for fun)

}).build(), false); // push on top instead of replace
}).build()

);
}

}

public class SwapperApp {
public static void main(String[] args) {
ActorSystem system = ActorSystem.create("SwapperSystem");
ActorRef swapper = system.actorOf(Props.create(Swapper.class), "swapper");
swapper.tell(Swap, ActorRef.noSender()); // logs Hi
swapper.tell(Swap, ActorRef.noSender()); // logs Ho
swapper.tell(Swap, ActorRef.noSender()); // logs Hi
swapper.tell(Swap, ActorRef.noSender()); // logs Ho
swapper.tell(Swap, ActorRef.noSender()); // logs Hi
swapper.tell(Swap, ActorRef.noSender()); // logs Ho
system.shutdown();

}
}

4.1. Actors (Java with Lambda Support) 192

http://www.typesafe.com/activator/template/akka-sample-fsm-java-lambda

Akka Java Documentation, Release 2.3.16

4.1.11 Stash

The AbstractActorWithStash class enables an actor to temporarily stash away messages that can not
or should not be handled using the actor’s current behavior. Upon changing the actor’s message handler, i.e.,
right before invoking context().become() or context().unbecome(), all stashed messages can be
“unstashed”, thereby prepending them to the actor’s mailbox. This way, the stashed messages can be processed in
the same order as they have been received originally. An actor that extends AbstractActorWithStash will
automatically get a deque-based mailbox.

Note: The abstract class AbstractActorWithStash implements the marker interface
RequiresMessageQueue<DequeBasedMessageQueueSemantics> which requests the system
to automatically choose a deque based mailbox implementation for the actor. If you want more control over the
mailbox, see the documentation on mailboxes: Mailboxes.

Here is an example of the AbstractActorWithStash class in action:

public class ActorWithProtocol extends AbstractActorWithStash {
public ActorWithProtocol() {
receive(ReceiveBuilder.

matchEquals("open", s -> {
context().become(ReceiveBuilder.
matchEquals("write", ws -> { /* do writing */ }).
matchEquals("close", cs -> {
unstashAll();
context().unbecome();

}).
matchAny(msg -> stash()).build(), false);

}).
matchAny(msg -> stash()).build()

);
}

}

Invoking stash() adds the current message (the message that the actor received last) to the actor’s stash.
It is typically invoked when handling the default case in the actor’s message handler to stash messages that
aren’t handled by the other cases. It is illegal to stash the same message twice; to do so results in an
IllegalStateException being thrown. The stash may also be bounded in which case invoking stash()
may lead to a capacity violation, which results in a StashOverflowException. The capacity of the stash
can be configured using the stash-capacity setting (an Int) of the mailbox’s configuration.

Invoking unstashAll() enqueues messages from the stash to the actor’s mailbox until the capacity of the mail-
box (if any) has been reached (note that messages from the stash are prepended to the mailbox). In case a bounded
mailbox overflows, a MessageQueueAppendFailedException is thrown. The stash is guaranteed to be
empty after calling unstashAll().

The stash is backed by a scala.collection.immutable.Vector. As a result, even a very large number
of messages may be stashed without a major impact on performance.

Note that the stash is part of the ephemeral actor state, unlike the mailbox. Therefore, it should be managed like
other parts of the actor’s state which have the same property. The AbstractActorWithStash implementa-
tion of preRestart will call unstashAll(), which is usually the desired behavior.

Note: If you want to enforce that your actor can only work with an unbounded stash, then you should use the
AbstractActorWithUnboundedStash class instead.

4.1. Actors (Java with Lambda Support) 193

Akka Java Documentation, Release 2.3.16

4.1.12 Killing an Actor

You can kill an actor by sending a Kill message. This will cause the actor to throw a
ActorKilledException, triggering a failure. The actor will suspend operation and its supervisor will be
asked how to handle the failure, which may mean resuming the actor, restarting it or terminating it completely.
See What Supervision Means for more information.

Use Kill like this:

victim.tell(akka.actor.Kill.getInstance(), ActorRef.noSender());

4.1.13 Actors and exceptions

It can happen that while a message is being processed by an actor, that some kind of exception is thrown, e.g. a
database exception.

What happens to the Message

If an exception is thrown while a message is being processed (i.e. taken out of its mailbox and handed over to the
current behavior), then this message will be lost. It is important to understand that it is not put back on the mailbox.
So if you want to retry processing of a message, you need to deal with it yourself by catching the exception and
retry your flow. Make sure that you put a bound on the number of retries since you don’t want a system to livelock
(so consuming a lot of cpu cycles without making progress). Another possibility would be to have a look at the
PeekMailbox pattern.

What happens to the mailbox

If an exception is thrown while a message is being processed, nothing happens to the mailbox. If the actor is
restarted, the same mailbox will be there. So all messages on that mailbox will be there as well.

What happens to the actor

If code within an actor throws an exception, that actor is suspended and the supervision process is started (see Su-
pervision and Monitoring). Depending on the supervisor’s decision the actor is resumed (as if nothing happened),
restarted (wiping out its internal state and starting from scratch) or terminated.

4.1.14 Initialization patterns

The rich lifecycle hooks of Actors provide a useful toolkit to implement various initialization patterns. During the
lifetime of an ActorRef, an actor can potentially go through several restarts, where the old instance is replaced
by a fresh one, invisibly to the outside observer who only sees the ActorRef.

One may think about the new instances as “incarnations”. Initialization might be necessary for every incarnation
of an actor, but sometimes one needs initialization to happen only at the birth of the first instance when the
ActorRef is created. The following sections provide patterns for different initialization needs.

Initialization via constructor

Using the constructor for initialization has various benefits. First of all, it makes it possible to use val fields to
store any state that does not change during the life of the actor instance, making the implementation of the actor
more robust. The constructor is invoked for every incarnation of the actor, therefore the internals of the actor can
always assume that proper initialization happened. This is also the drawback of this approach, as there are cases
when one would like to avoid reinitializing internals on restart. For example, it is often useful to preserve child
actors across restarts. The following section provides a pattern for this case.

4.1. Actors (Java with Lambda Support) 194

Akka Java Documentation, Release 2.3.16

Initialization via preStart

The method preStart() of an actor is only called once directly during the initialization of the first instance,
that is, at creation of its ActorRef. In the case of restarts, preStart() is called from postRestart(),
therefore if not overridden, preStart() is called on every incarnation. However, overriding postRestart()
one can disable this behavior, and ensure that there is only one call to preStart().

One useful usage of this pattern is to disable creation of new ActorRefs for children during restarts. This can
be achieved by overriding preRestart():

@Override
public void preStart() {

// Initialize children here
}

// Overriding postRestart to disable the call to preStart()
// after restarts
@Override
public void postRestart(Throwable reason) {
}

// The default implementation of preRestart() stops all the children
// of the actor. To opt-out from stopping the children, we
// have to override preRestart()
@Override
public void preRestart(Throwable reason, Option<Object> message)

throws Exception {
// Keep the call to postStop(), but no stopping of children
postStop();

}

Please note, that the child actors are still restarted, but no new ActorRef is created. One can recursively apply
the same principles for the children, ensuring that their preStart() method is called only at the creation of
their refs.

For more information see What Restarting Means.

Initialization via message passing

There are cases when it is impossible to pass all the information needed for actor initialization in the constructor,
for example in the presence of circular dependencies. In this case the actor should listen for an initialization
message, and use become() or a finite state-machine state transition to encode the initialized and uninitialized
states of the actor.

receive(ReceiveBuilder.
matchEquals("init", m1 -> {
initializeMe = "Up and running";
context().become(ReceiveBuilder.

matchEquals("U OK?", m2 -> {
sender().tell(initializeMe, self());

}).build());
}).build()

If the actor may receive messages before it has been initialized, a useful tool can be the Stash to save messages
until the initialization finishes, and replaying them after the actor became initialized.

Warning: This pattern should be used with care, and applied only when none of the patterns above are
applicable. One of the potential issues is that messages might be lost when sent to remote actors. Also,
publishing an ActorRef in an uninitialized state might lead to the condition that it receives a user message
before the initialization has been done.

4.1. Actors (Java with Lambda Support) 195

Akka Java Documentation, Release 2.3.16

4.1.15 Lambdas and Performance

There is one big difference between the optimized partial functions created by the Scala compiler and the ones
created by the ReceiveBuilder. The partial functions created by the ReceiveBuilder consist of multiple
lambda expressions for every match statement, where each lambda is an object referencing the code to be run.
This is something that the JVM can have problems optimizing and the resulting code might not be as performant
as the Scala equivalent or the corresponding untyped actor version.

4.2 Fault Tolerance (Java with Lambda Support)

As explained in Actor Systems each actor is the supervisor of its children, and as such each actor defines fault
handling supervisor strategy. This strategy cannot be changed afterwards as it is an integral part of the actor
system’s structure.

4.2.1 Fault Handling in Practice

First, let us look at a sample that illustrates one way to handle data store errors, which is a typical source of failure
in real world applications. Of course it depends on the actual application what is possible to do when the data
store is unavailable, but in this sample we use a best effort re-connect approach.

Read the following source code. The inlined comments explain the different pieces of the fault handling and why
they are added. It is also highly recommended to run this sample as it is easy to follow the log output to understand
what is happening in runtime.

4.2. Fault Tolerance (Java with Lambda Support) 196

Akka Java Documentation, Release 2.3.16

Diagrams of the Fault Tolerance Sample

The above diagram illustrates the normal message flow.

Normal flow:
Step Description
1 The progress Listener starts the work.
2 The Worker schedules work by sending Do messages periodically to itself
3,
4, 5

When receiving Do the Worker tells the CounterService to increment the counter, three times.
The Increment message is forwarded to the Counter, which updates its counter variable and sends
current value to the Storage.

6, 7 The Worker asks the CounterService of current value of the counter and pipes the result back to
the Listener.

4.2. Fault Tolerance (Java with Lambda Support) 197

Akka Java Documentation, Release 2.3.16

The above diagram illustrates what happens in case of storage failure.

Failure flow:

4.2. Fault Tolerance (Java with Lambda Support) 198

Akka Java Documentation, Release 2.3.16

Step Description
1 The Storage throws StorageException.
2 The CounterService is supervisor of the Storage and restarts the Storage when

StorageException is thrown.
3, 4,
5, 6

The Storage continues to fail and is restarted.

7 After 3 failures and restarts within 5 seconds the Storage is stopped by its supervisor, i.e. the
CounterService.

8 The CounterService is also watching the Storage for termination and receives the
Terminated message when the Storage has been stopped ...

9, 10,
11

and tells the Counter that there is no Storage.

12 The CounterService schedules a Reconnect message to itself.
13,
14

When it receives the Reconnect message it creates a new Storage ...

15,
16

and tells the Counter to use the new Storage

Full Source Code of the Fault Tolerance Sample

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import akka.actor.*;
import akka.dispatch.Mapper;
import akka.event.LoggingReceive;
import akka.japi.pf.DeciderBuilder;
import akka.japi.pf.ReceiveBuilder;
import akka.util.Timeout;
import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;
import scala.concurrent.duration.Duration;
import scala.PartialFunction;
import scala.runtime.BoxedUnit;

import static akka.japi.Util.classTag;
import static akka.actor.SupervisorStrategy.resume;
import static akka.actor.SupervisorStrategy.restart;
import static akka.actor.SupervisorStrategy.stop;
import static akka.actor.SupervisorStrategy.escalate;

import static akka.pattern.Patterns.ask;
import static akka.pattern.Patterns.pipe;

import static docs.actor.japi.FaultHandlingDocSample.WorkerApi.*;
import static docs.actor.japi.FaultHandlingDocSample.CounterServiceApi.*;
import static docs.actor.japi.FaultHandlingDocSample.CounterApi.*;
import static docs.actor.japi.FaultHandlingDocSample.StorageApi.*;

public class FaultHandlingDocSample {

/**
* Runs the sample

*/
public static void main(String[] args) {
Config config = ConfigFactory.parseString(

"akka.loglevel = \"DEBUG\"\n" +

4.2. Fault Tolerance (Java with Lambda Support) 199

Akka Java Documentation, Release 2.3.16

"akka.actor.debug {\n" +
" receive = on\n" +
" lifecycle = on\n" +
"}\n");

ActorSystem system = ActorSystem.create("FaultToleranceSample", config);
ActorRef worker = system.actorOf(Props.create(Worker.class), "worker");
ActorRef listener = system.actorOf(Props.create(Listener.class), "listener");
// start the work and listen on progress
// note that the listener is used as sender of the tell,
// i.e. it will receive replies from the worker
worker.tell(Start, listener);

}

/**
* Listens on progress from the worker and shuts down the system when enough

* work has been done.

*/
public static class Listener extends AbstractLoggingActor {

@Override
public void preStart() {

// If we don't get any progress within 15 seconds then the service
// is unavailable
context().setReceiveTimeout(Duration.create("15 seconds"));

}

public Listener() {
receive(LoggingReceive.create(ReceiveBuilder.

match(Progress.class, progress -> {
log().info("Current progress: {} %", progress.percent);
if (progress.percent >= 100.0) {

log().info("That's all, shutting down");
context().system().shutdown();

}
}).
matchEquals(ReceiveTimeout.getInstance(), x -> {
// No progress within 15 seconds, ServiceUnavailable
log().error("Shutting down due to unavailable service");
context().system().shutdown();

}).build(), context()
));

}
}

public interface WorkerApi {
public static final Object Start = "Start";
public static final Object Do = "Do";

public static class Progress {
public final double percent;

public Progress(double percent) {
this.percent = percent;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), percent);

}
}

}

4.2. Fault Tolerance (Java with Lambda Support) 200

Akka Java Documentation, Release 2.3.16

/**
* Worker performs some work when it receives the Start message. It will

* continuously notify the sender of the Start message of current Progress.

* The Worker supervise the CounterService.

*/
public static class Worker extends AbstractLoggingActor {
final Timeout askTimeout = new Timeout(Duration.create(5, "seconds"));

// The sender of the initial Start message will continuously be notified
// about progress
ActorRef progressListener;
final ActorRef counterService = context().actorOf(

Props.create(CounterService.class), "counter");
final int totalCount = 51;

// Stop the CounterService child if it throws ServiceUnavailable
private static final SupervisorStrategy strategy =

new OneForOneStrategy(DeciderBuilder.
match(ServiceUnavailable.class, e -> stop()).
matchAny(o -> escalate()).build());

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

public Worker() {
receive(LoggingReceive.create(ReceiveBuilder.

matchEquals(Start, x -> progressListener == null, x -> {
progressListener = sender();
context().system().scheduler().schedule(
Duration.Zero(), Duration.create(1, "second"), self(), Do,
context().dispatcher(), null

);
}).
matchEquals(Do, x -> {
counterService.tell(new Increment(1), self());
counterService.tell(new Increment(1), self());
counterService.tell(new Increment(1), self());
// Send current progress to the initial sender
pipe(ask(counterService, GetCurrentCount, askTimeout)

.mapTo(classTag(CurrentCount.class))

.map(new Mapper<CurrentCount, Progress>() {
public Progress apply(CurrentCount c) {
return new Progress(100.0 * c.count / totalCount);

}
}, context().dispatcher()), context().dispatcher())
.to(progressListener);

}).build(), context())
);

}
}

public interface CounterServiceApi {

public static final Object GetCurrentCount = "GetCurrentCount";

public static class CurrentCount {
public final String key;
public final long count;

public CurrentCount(String key, long count) {
this.key = key;

4.2. Fault Tolerance (Java with Lambda Support) 201

Akka Java Documentation, Release 2.3.16

this.count = count;
}

public String toString() {
return String.format("%s(%s, %s)", getClass().getSimpleName(), key, count);

}
}

public static class Increment {
public final long n;

public Increment(long n) {
this.n = n;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), n);

}
}

public static class ServiceUnavailable extends RuntimeException {
private static final long serialVersionUID = 1L;
public ServiceUnavailable(String msg) {

super(msg);
}

}

}

/**
* Adds the value received in Increment message to a persistent counter.

* Replies with CurrentCount when it is asked for CurrentCount. CounterService

* supervise Storage and Counter.

*/
public static class CounterService extends AbstractLoggingActor {

// Reconnect message
static final Object Reconnect = "Reconnect";

private static class SenderMsgPair {
final ActorRef sender;
final Object msg;

SenderMsgPair(ActorRef sender, Object msg) {
this.msg = msg;
this.sender = sender;

}
}

final String key = self().path().name();
ActorRef storage;
ActorRef counter;
final List<SenderMsgPair> backlog = new ArrayList<>();
final int MAX_BACKLOG = 10000;

// Restart the storage child when StorageException is thrown.
// After 3 restarts within 5 seconds it will be stopped.
private static final SupervisorStrategy strategy =

new OneForOneStrategy(3, Duration.create("5 seconds"), DeciderBuilder.
match(StorageException.class, e -> restart()).
matchAny(o -> escalate()).build());

4.2. Fault Tolerance (Java with Lambda Support) 202

Akka Java Documentation, Release 2.3.16

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

@Override
public void preStart() {

initStorage();
}

/**
* The child storage is restarted in case of failure, but after 3 restarts,

* and still failing it will be stopped. Better to back-off than

* continuously failing. When it has been stopped we will schedule a

* Reconnect after a delay. Watch the child so we receive Terminated message

* when it has been terminated.

*/
void initStorage() {

storage = context().watch(context().actorOf(
Props.create(Storage.class), "storage"));

// Tell the counter, if any, to use the new storage
if (counter != null)

counter.tell(new UseStorage(storage), self());
// We need the initial value to be able to operate
storage.tell(new Get(key), self());

}

public CounterService() {
receive(LoggingReceive.create(ReceiveBuilder.

match(Entry.class, entry -> entry.key.equals(key) && counter == null, entry -> {
// Reply from Storage of the initial value, now we can create the Counter
final long value = entry.value;
counter = context().actorOf(Props.create(Counter.class, key, value));
// Tell the counter to use current storage
counter.tell(new UseStorage(storage), self());
// and send the buffered backlog to the counter
for (SenderMsgPair each : backlog) {

counter.tell(each.msg, each.sender);
}
backlog.clear();

}).
match(Increment.class, increment -> {
forwardOrPlaceInBacklog(increment);

}).
matchEquals(GetCurrentCount, gcc -> {
forwardOrPlaceInBacklog(gcc);

}).
match(Terminated.class, o -> {
// After 3 restarts the storage child is stopped.
// We receive Terminated because we watch the child, see initStorage.
storage = null;
// Tell the counter that there is no storage for the moment
counter.tell(new UseStorage(null), self());
// Try to re-establish storage after while
context().system().scheduler().scheduleOnce(

Duration.create(10, "seconds"), self(), Reconnect,
context().dispatcher(), null);

}).
matchEquals(Reconnect, o -> {
// Re-establish storage after the scheduled delay
initStorage();

}).build(), context())
);

4.2. Fault Tolerance (Java with Lambda Support) 203

Akka Java Documentation, Release 2.3.16

}

void forwardOrPlaceInBacklog(Object msg) {
// We need the initial value from storage before we can start delegate to
// the counter. Before that we place the messages in a backlog, to be sent
// to the counter when it is initialized.
if (counter == null) {

if (backlog.size() >= MAX_BACKLOG)
throw new ServiceUnavailable("CounterService not available," +
" lack of initial value");

backlog.add(new SenderMsgPair(sender(), msg));
} else {

counter.forward(msg, context());
}

}
}

public interface CounterApi {
public static class UseStorage {

public final ActorRef storage;

public UseStorage(ActorRef storage) {
this.storage = storage;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), storage);

}
}

}

/**
* The in memory count variable that will send current value to the Storage,

* if there is any storage available at the moment.

*/
public static class Counter extends AbstractLoggingActor {
final String key;
long count;
ActorRef storage;

public Counter(String key, long initialValue) {
this.key = key;
this.count = initialValue;

receive(LoggingReceive.create(ReceiveBuilder.
match(UseStorage.class, useStorage -> {
storage = useStorage.storage;
storeCount();

}).
match(Increment.class, increment -> {
count += increment.n;
storeCount();

}).
matchEquals(GetCurrentCount, gcc -> {
sender().tell(new CurrentCount(key, count), self());

}).build(), context())
);

}

void storeCount() {
// Delegate dangerous work, to protect our valuable state.
// We can continue without storage.

4.2. Fault Tolerance (Java with Lambda Support) 204

Akka Java Documentation, Release 2.3.16

if (storage != null) {
storage.tell(new Store(new Entry(key, count)), self());

}
}

}

public interface StorageApi {

public static class Store {
public final Entry entry;

public Store(Entry entry) {
this.entry = entry;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), entry);

}
}

public static class Entry {
public final String key;
public final long value;

public Entry(String key, long value) {
this.key = key;
this.value = value;

}

public String toString() {
return String.format("%s(%s, %s)", getClass().getSimpleName(), key, value);

}
}

public static class Get {
public final String key;

public Get(String key) {
this.key = key;

}

public String toString() {
return String.format("%s(%s)", getClass().getSimpleName(), key);

}
}

public static class StorageException extends RuntimeException {
private static final long serialVersionUID = 1L;
public StorageException(String msg) {

super(msg);
}

}
}

/**
* Saves key/value pairs to persistent storage when receiving Store message.

* Replies with current value when receiving Get message. Will throw

* StorageException if the underlying data store is out of order.

*/
public static class Storage extends AbstractLoggingActor {

final DummyDB db = DummyDB.instance;

4.2. Fault Tolerance (Java with Lambda Support) 205

Akka Java Documentation, Release 2.3.16

public Storage() {
receive(LoggingReceive.create(ReceiveBuilder.

match(Store.class, store -> {
db.save(store.entry.key, store.entry.value);

}).
match(Get.class, get -> {
Long value = db.load(get.key);
sender().tell(new Entry(get.key, value == null ?
Long.valueOf(0L) : value), self());

}).build(), context())
);

}
}

public static class DummyDB {
public static final DummyDB instance = new DummyDB();
private final Map<String, Long> db = new HashMap<String, Long>();

private DummyDB() {
}

public synchronized void save(String key, Long value) throws StorageException {
if (11 <= value && value <= 14)

throw new StorageException("Simulated store failure " + value);
db.put(key, value);

}

public synchronized Long load(String key) throws StorageException {
return db.get(key);

}
}

}

4.2.2 Creating a Supervisor Strategy

The following sections explain the fault handling mechanism and alternatives in more depth.

For the sake of demonstration let us consider the following strategy:

private static SupervisorStrategy strategy =
new OneForOneStrategy(10, Duration.create("1 minute"), DeciderBuilder.
match(ArithmeticException.class, e -> resume()).
match(NullPointerException.class, e -> restart()).
match(IllegalArgumentException.class, e -> stop()).
matchAny(o -> escalate()).build());

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

I have chosen a few well-known exception types in order to demonstrate the application of the fault handling
directives described in Supervision and Monitoring. First off, it is a one-for-one strategy, meaning that each child
is treated separately (an all-for-one strategy works very similarly, the only difference is that any decision is applied
to all children of the supervisor, not only the failing one). There are limits set on the restart frequency, namely
maximum 10 restarts per minute. -1 and Duration.Inf() means that the respective limit does not apply,
leaving the possibility to specify an absolute upper limit on the restarts or to make the restarts work infinitely. The
child actor is stopped if the limit is exceeded.

Note: If the strategy is declared inside the supervising actor (as opposed to a separate class) its decider has access

4.2. Fault Tolerance (Java with Lambda Support) 206

Akka Java Documentation, Release 2.3.16

to all internal state of the actor in a thread-safe fashion, including obtaining a reference to the currently failed child
(available as the getSender of the failure message).

Default Supervisor Strategy

Escalate is used if the defined strategy doesn’t cover the exception that was thrown.

When the supervisor strategy is not defined for an actor the following exceptions are handled by default:

• ActorInitializationException will stop the failing child actor

• ActorKilledException will stop the failing child actor

• Exception will restart the failing child actor

• Other types of Throwable will be escalated to parent actor

If the exception escalate all the way up to the root guardian it will handle it in the same way as the default strategy
defined above.

Stopping Supervisor Strategy

Closer to the Erlang way is the strategy to just stop children when they fail and then take cor-
rective action in the supervisor when DeathWatch signals the loss of the child. This strategy is
also provided pre-packaged as SupervisorStrategy.stoppingStrategy with an accompanying
StoppingSupervisorStrategy configurator to be used when you want the "/user" guardian to apply it.

Logging of Actor Failures

By default the SupervisorStrategy logs failures unless they are escalated. Escalated failures are supposed
to be handled, and potentially logged, at a level higher in the hierarchy.

You can mute the default logging of a SupervisorStrategy by setting loggingEnabled to false when
instantiating it. Customized logging can be done inside the Decider. Note that the reference to the currently
failed child is available as the getSenderwhen the SupervisorStrategy is declared inside the supervising
actor.

You may also customize the logging in your own SupervisorStrategy implementation by overriding the
logFailure method.

4.2.3 Supervision of Top-Level Actors

Toplevel actors means those which are created using system.actorOf(), and they are children of the User
Guardian. There are no special rules applied in this case, the guardian simply applies the configured strategy.

4.2.4 Test Application

The following section shows the effects of the different directives in practice, wherefor a test setup is needed. First
off, we need a suitable supervisor:

public class Supervisor extends AbstractActor {

private static SupervisorStrategy strategy =
new OneForOneStrategy(10, Duration.create("1 minute"), DeciderBuilder.

match(ArithmeticException.class, e -> resume()).
match(NullPointerException.class, e -> restart()).
match(IllegalArgumentException.class, e -> stop()).
matchAny(o -> escalate()).build());

4.2. Fault Tolerance (Java with Lambda Support) 207

Akka Java Documentation, Release 2.3.16

@Override
public SupervisorStrategy supervisorStrategy() {
return strategy;

}

public Supervisor() {
receive(ReceiveBuilder.

match(Props.class, props -> {
sender().tell(context().actorOf(props), self());

}).build()
);

}
}

This supervisor will be used to create a child, with which we can experiment:

public class Child extends AbstractActor {
int state = 0;

public Child() {
receive(ReceiveBuilder.

match(Exception.class, exception -> { throw exception; }).
match(Integer.class, i -> state = i).
matchEquals("get", s -> sender().tell(state, self())).build()

);
}

}

The test is easier by using the utilities described in akka-testkit, where TestProbe provides an actor ref useful
for receiving and inspecting replies.

import akka.actor.*;

import static akka.actor.SupervisorStrategy.resume;
import static akka.actor.SupervisorStrategy.restart;
import static akka.actor.SupervisorStrategy.stop;
import static akka.actor.SupervisorStrategy.escalate;
import akka.japi.pf.DeciderBuilder;
import akka.japi.pf.ReceiveBuilder;
import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;
import scala.PartialFunction;
import scala.concurrent.Await;
import static akka.pattern.Patterns.ask;
import scala.concurrent.duration.Duration;
import akka.testkit.TestProbe;

public class FaultHandlingTest {
static ActorSystem system;
Duration timeout = Duration.create(5, SECONDS);

@BeforeClass
public static void start() {
system = ActorSystem.create("FaultHandlingTest", config);

}

@AfterClass
public static void cleanup() {
JavaTestKit.shutdownActorSystem(system);
system = null;

}

4.2. Fault Tolerance (Java with Lambda Support) 208

Akka Java Documentation, Release 2.3.16

@Test
public void mustEmploySupervisorStrategy() throws Exception {
// code here

}

}

Let us create actors:

Props superprops = Props.create(Supervisor.class);
ActorRef supervisor = system.actorOf(superprops, "supervisor");
ActorRef child = (ActorRef) Await.result(ask(supervisor,

Props.create(Child.class), 5000), timeout);

The first test shall demonstrate the Resume directive, so we try it out by setting some non-initial state in the actor
and have it fail:

child.tell(42, ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(42);
child.tell(new ArithmeticException(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(42);

As you can see the value 42 survives the fault handling directive. Now, if we change the failure to a more serious
NullPointerException, that will no longer be the case:

child.tell(new NullPointerException(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(0);

And finally in case of the fatal IllegalArgumentException the child will be terminated by the supervisor:

final TestProbe probe = new TestProbe(system);
probe.watch(child);
child.tell(new IllegalArgumentException(), ActorRef.noSender());
probe.expectMsgClass(Terminated.class);

Up to now the supervisor was completely unaffected by the child’s failure, because the directives set did handle it.
In case of an Exception, this is not true anymore and the supervisor escalates the failure.

child = (ActorRef) Await.result(ask(supervisor,
Props.create(Child.class), 5000), timeout);

probe.watch(child);
assert Await.result(ask(child, "get", 5000), timeout).equals(0);
child.tell(new Exception(), ActorRef.noSender());
probe.expectMsgClass(Terminated.class);

The supervisor itself is supervised by the top-level actor provided by the ActorSystem, which
has the default policy to restart in case of all Exception cases (with the notable exceptions of
ActorInitializationException and ActorKilledException). Since the default directive in case
of a restart is to kill all children, we expected our poor child not to survive this failure.

In case this is not desired (which depends on the use case), we need to use a different supervisor which overrides
this behavior.

public class Supervisor2 extends AbstractActor {

private static SupervisorStrategy strategy =
new OneForOneStrategy(10, Duration.create("1 minute"), DeciderBuilder.

match(ArithmeticException.class, e -> resume()).
match(NullPointerException.class, e -> restart()).
match(IllegalArgumentException.class, e -> stop()).
matchAny(o -> escalate()).build());

@Override
public SupervisorStrategy supervisorStrategy() {

4.2. Fault Tolerance (Java with Lambda Support) 209

Akka Java Documentation, Release 2.3.16

return strategy;
}

public Supervisor2() {
receive(ReceiveBuilder.

match(Props.class, props -> {
sender().tell(context().actorOf(props), self());

}).build()
);

}

@Override
public void preRestart(Throwable cause, Option<Object> msg) {
// do not kill all children, which is the default here

}
}

With this parent, the child survives the escalated restart, as demonstrated in the last test:

superprops = Props.create(Supervisor2.class);
supervisor = system.actorOf(superprops);
child = (ActorRef) Await.result(ask(supervisor,

Props.create(Child.class), 5000), timeout);
child.tell(23, ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(23);
child.tell(new Exception(), ActorRef.noSender());
assert Await.result(ask(child, "get", 5000), timeout).equals(0);

4.3 FSM (Java with Lambda Support)

4.3.1 Overview

The FSM (Finite State Machine) is available as an abstract base class that implements an akka Actor and is best
described in the Erlang design principles

A FSM can be described as a set of relations of the form:

State(S) x Event(E) -> Actions (A), State(S’)

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a transition to
the state S’.

Warning: The Java with lambda support part of Akka is marked as “experimental” as of its introduction in
Akka 2.3.0. We will continue to improve this API based on our users’ feedback, which implies that while we try
to keep incompatible changes to a minimum, but the binary compatibility guarantee for maintenance releases
does not apply to the akka.actor.AbstractFSM, related classes and the akka.japi.pf package.

4.3.2 A Simple Example

To demonstrate most of the features of the AbstractFSM class, consider an actor which shall receive and queue
messages while they arrive in a burst and send them on after the burst ended or a flush request is received.

First, consider all of the below to use these import statements:

import akka.actor.AbstractFSM;
import akka.actor.ActorRef;

4.3. FSM (Java with Lambda Support) 210

http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html

Akka Java Documentation, Release 2.3.16

import akka.japi.pf.UnitMatch;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import scala.concurrent.duration.Duration;

The contract of our “Buncher” actor is that it accepts or produces the following messages:

public final class SetTarget {
private final ActorRef ref;

public SetTarget(ActorRef ref) {
this.ref = ref;

}

public ActorRef getRef() {
return ref;

}
// boilerplate ...

}

public final class Queue {
private final Object obj;

public Queue(Object obj) {
this.obj = obj;

}

public Object getObj() {
return obj;

}
// boilerplate ...

}

public final class Batch {
private final List<Object> list;

public Batch(List<Object> list) {
this.list = list;

}

public List<Object> getList() {
return list;

}
// boilerplate ...

}

public enum Flush {
Flush

}

SetTarget is needed for starting it up, setting the destination for the Batches to be passed on; Queue will
add to the internal queue while Flush will mark the end of a burst.

The actor can be in two states: no message queued (aka Idle) or some message queued (aka Active). The
states and the state data is defined like this:

// states
enum State {

Idle, Active
}

// state data
interface Data {

4.3. FSM (Java with Lambda Support) 211

Akka Java Documentation, Release 2.3.16

}

enum Uninitialized implements Data {
Uninitialized

}

final class Todo implements Data {
private final ActorRef target;
private final List<Object> queue;

public Todo(ActorRef target, List<Object> queue) {
this.target = target;
this.queue = queue;

}

public ActorRef getTarget() {
return target;

}

public List<Object> getQueue() {
return queue;

}
// boilerplate ...

}

The actor starts out in the idle state. Once a message arrives it will go to the active state and stay there as long as
messages keep arriving and no flush is requested. The internal state data of the actor is made up of the target actor
reference to send the batches to and the actual queue of messages.

Now let’s take a look at the skeleton for our FSM actor:

public class Buncher extends AbstractFSM<State, Data> {
{
startWith(Idle, Uninitialized);

when(Idle,
matchEvent(SetTarget.class, Uninitialized.class,

(setTarget, uninitialized) ->
stay().using(new Todo(setTarget.getRef(), new LinkedList<>()))));

// transition elided ...

when(Active, Duration.create(1, "second"),
matchEvent(Arrays.asList(Flush.class, StateTimeout()), Todo.class,

(event, todo) -> goTo(Idle).using(todo.copy(new LinkedList<>()))));

// unhandled elided ...

initialize();
}

}

The basic strategy is to declare the actor, by inheriting the AbstractFSM class and specifying the possible states
and data values as type parameters. Within the body of the actor a DSL is used for declaring the state machine:

• startWith defines the initial state and initial data

• then there is one when(<state>) { ... } declaration per state to be handled (could potentially be
multiple ones, the passed PartialFunction will be concatenated using orElse)

• finally starting it up using initialize, which performs the transition into the initial state and sets up
timers (if required).

In this case, we start out in the Idle and Uninitialized state, where only the SetTarget() message
is handled; stay prepares to end this event’s processing for not leaving the current state, while the using

4.3. FSM (Java with Lambda Support) 212

Akka Java Documentation, Release 2.3.16

modifier makes the FSM replace the internal state (which is Uninitialized at this point) with a fresh Todo()
object containing the target actor reference. The Active state has a state timeout declared, which means that
if no message is received for 1 second, a FSM.StateTimeout message will be generated. This has the same
effect as receiving the Flush command in this case, namely to transition back into the Idle state and resetting
the internal queue to the empty vector. But how do messages get queued? Since this shall work identically in
both states, we make use of the fact that any event which is not handled by the when() block is passed to the
whenUnhandled() block:

whenUnhandled(
matchEvent(Queue.class, Todo.class,
(queue, todo) -> goTo(Active).using(todo.addElement(queue.getObj()))).
anyEvent((event, state) -> {

log().warning("received unhandled request {} in state {}/{}",
event, stateName(), state);

return stay();
}));

The first case handled here is adding Queue() requests to the internal queue and going to the Active state
(this does the obvious thing of staying in the Active state if already there), but only if the FSM data are not
Uninitialized when the Queue() event is received. Otherwise—and in all other non-handled cases—the
second case just logs a warning and does not change the internal state.

The only missing piece is where the Batches are actually sent to the target, for which we use the
onTransition mechanism: you can declare multiple such blocks and all of them will be tried for matching
behavior in case a state transition occurs (i.e. only when the state actually changes).

onTransition(
matchState(Active, Idle, () -> {
// reuse this matcher
final UnitMatch<Data> m = UnitMatch.create(

matchData(Todo.class,
todo -> todo.getTarget().tell(new Batch(todo.getQueue()), self())));

m.match(stateData());
}).
state(Idle, Active, () -> {/* Do something here */}));

The transition callback is a partial function which takes as input a pair of states—the current and the next state.
During the state change, the old state data is available via stateData as shown, and the new state data would
be available as nextStateData.

To verify that this buncher actually works, it is quite easy to write a test using the akka-testkit, here using JUnit as
an example:

public class BuncherTest {

static ActorSystem system;

@BeforeClass
public static void setup() {
system = ActorSystem.create("BuncherTest");

}

@AfterClass
public static void tearDown() {
JavaTestKit.shutdownActorSystem(system);
system = null;

}

@Test
public void testBuncherActorBatchesCorrectly() {
new JavaTestKit(system) {{

final ActorRef buncher =
system.actorOf(Props.create(Buncher.class));

final ActorRef probe = getRef();

4.3. FSM (Java with Lambda Support) 213

Akka Java Documentation, Release 2.3.16

buncher.tell(new SetTarget(probe), probe);
buncher.tell(new Queue(42), probe);
buncher.tell(new Queue(43), probe);
LinkedList<Object> list1 = new LinkedList<>();
list1.add(42);
list1.add(43);
expectMsgEquals(new Batch(list1));
buncher.tell(new Queue(44), probe);
buncher.tell(Flush, probe);
buncher.tell(new Queue(45), probe);
LinkedList<Object> list2 = new LinkedList<>();
list2.add(44);
expectMsgEquals(new Batch(list2));
LinkedList<Object> list3 = new LinkedList<>();
list3.add(45);
expectMsgEquals(new Batch(list3));
system.stop(buncher);

}};
}

@Test
public void testBuncherActorDoesntBatchUninitialized() {
new JavaTestKit(system) {{

final ActorRef buncher =
system.actorOf(Props.create(Buncher.class));

final ActorRef probe = getRef();

buncher.tell(new Queue(42), probe);
expectNoMsg();
system.stop(buncher);

}};
}

}

4.3.3 Reference

The AbstractFSM Class

The AbstractFSM abstract class is the base class used to implement an FSM. It implements Actor since an
Actor is created to drive the FSM.

public class Buncher extends AbstractFSM<State, Data> {
{
// fsm body ...

}
}

Note: The AbstractFSM class defines a receivemethod which handles internal messages and passes everything
else through to the FSM logic (according to the current state). When overriding the receive method, keep in
mind that e.g. state timeout handling depends on actually passing the messages through the FSM logic.

The AbstractFSM class takes two type parameters:

1. the supertype of all state names, usually an enum,

2. the type of the state data which are tracked by the AbstractFSM module itself.

Note: The state data together with the state name describe the internal state of the state machine; if you stick to
this scheme and do not add mutable fields to the FSM class you have the advantage of making all changes of the

4.3. FSM (Java with Lambda Support) 214

Akka Java Documentation, Release 2.3.16

internal state explicit in a few well-known places.

Defining States

A state is defined by one or more invocations of the method

when(<name>[, stateTimeout = <timeout>])(stateFunction).

The given name must be an object which is type-compatible with the first type parameter given to the
AbstractFSM class. This object is used as a hash key, so you must ensure that it properly implements equals
and hashCode; in particular it must not be mutable. The easiest fit for these requirements are case objects.

If the stateTimeout parameter is given, then all transitions into this state, including staying, receive this time-
out by default. Initiating the transition with an explicit timeout may be used to override this default, see Initiating
Transitions for more information. The state timeout of any state may be changed during action processing with
setStateTimeout(state, duration). This enables runtime configuration e.g. via external message.

The stateFunction argument is a PartialFunction[Event, State], which is conveniently given
using the state function builder syntax as demonstrated below:

when(Idle,
matchEvent(SetTarget.class, Uninitialized.class,
(setTarget, uninitialized) ->

stay().using(new Todo(setTarget.getRef(), new LinkedList<>()))));

Warning: It is required that you define handlers for each of the possible FSM states, otherwise there will be
failures when trying to switch to undeclared states.

It is recommended practice to declare the states as an enum and then verify that there is a when clause for each of
the states. If you want to leave the handling of a state “unhandled” (more below), it still needs to be declared like
this:

when(SomeState, AbstractFSM.NullFunction());

Defining the Initial State

Each FSM needs a starting point, which is declared using

startWith(state, data[, timeout])

The optionally given timeout argument overrides any specification given for the desired initial state. If you want
to cancel a default timeout, use Duration.Inf.

Unhandled Events

If a state doesn’t handle a received event a warning is logged. If you want to do something else in this case you
can specify that with whenUnhandled(stateFunction):

whenUnhandled(
matchEvent(X.class, (x, data) -> {
log().info("Received unhandled event: " + x);
return stay();

}).
anyEvent((event, data) -> {
log().warning("Received unknown event: " + event);
return goTo(Error);

}));
}

4.3. FSM (Java with Lambda Support) 215

Akka Java Documentation, Release 2.3.16

Within this handler the state of the FSM may be queried using the stateName method.

IMPORTANT: This handler is not stacked, meaning that each invocation of whenUnhandled replaces the
previously installed handler.

Initiating Transitions

The result of any stateFunction must be a definition of the next state unless terminating the FSM, which is
described in Termination from Inside. The state definition can either be the current state, as described by the stay
directive, or it is a different state as given by goto(state). The resulting object allows further qualification by
way of the modifiers described in the following:

• forMax(duration)

This modifier sets a state timeout on the next state. This means that a timer is started which upon expiry
sends a StateTimeout message to the FSM. This timer is canceled upon reception of any other message
in the meantime; you can rely on the fact that the StateTimeout message will not be processed after an
intervening message.

This modifier can also be used to override any default timeout which is specified for the target state. If you
want to cancel the default timeout, use Duration.Inf.

• using(data)

This modifier replaces the old state data with the new data given. If you follow the advice above, this is the
only place where internal state data are ever modified.

• replying(msg)

This modifier sends a reply to the currently processed message and otherwise does not modify the state
transition.

All modifiers can be chained to achieve a nice and concise description:

when(SomeState, matchAnyEvent((msg, data) -> {
return goTo(Processing).using(newData).

forMax(Duration.create(5, SECONDS)).replying(WillDo);
}));

The parentheses are not actually needed in all cases, but they visually distinguish between modifiers and their
arguments and therefore make the code even more pleasant to read for foreigners.

Note: Please note that the return statement may not be used in when blocks or similar; this is a Scala
restriction. Either refactor your code using if () ... else ... or move it into a method definition.

Monitoring Transitions

Transitions occur “between states” conceptually, which means after any actions you have put into the event han-
dling block; this is obvious since the next state is only defined by the value returned by the event handling logic.
You do not need to worry about the exact order with respect to setting the internal state variable, as everything
within the FSM actor is running single-threaded anyway.

Internal Monitoring

Up to this point, the FSM DSL has been centered on states and events. The dual view is to describe it as a series
of transitions. This is enabled by the method

onTransition(handler)

4.3. FSM (Java with Lambda Support) 216

Akka Java Documentation, Release 2.3.16

which associates actions with a transition instead of with a state and event. The handler is a partial function which
takes a pair of states as input; no resulting state is needed as it is not possible to modify the transition in progress.

onTransition(
matchState(Active, Idle, () -> setTimer("timeout",
Tick, Duration.create(1, SECONDS), true)).

state(Active, null, () -> cancelTimer("timeout")).
state(null, Idle, (f, t) -> log().info("entering Idle from " + f)));

It is also possible to pass a function object accepting two states to onTransition, in case your transition
handling logic is implemented as a method:

public void handler(StateType from, StateType to) {
// handle transition here

}

onTransition(this::handler);

The handlers registered with this method are stacked, so you can intersperse onTransition blocks with when
blocks as suits your design. It should be noted, however, that all handlers will be invoked for each transition,
not only the first matching one. This is designed specifically so you can put all transition handling for a certain
aspect into one place without having to worry about earlier declarations shadowing later ones; the actions are still
executed in declaration order, though.

Note: This kind of internal monitoring may be used to structure your FSM according to transitions, so that for
example the cancellation of a timer upon leaving a certain state cannot be forgot when adding new target states.

External Monitoring

External actors may be registered to be notified of state transitions by sending a mes-
sage SubscribeTransitionCallBack(actorRef). The named actor will be
sent a CurrentState(self, stateName) message immediately and will receive
Transition(actorRef, oldState, newState) messages whenever a new state is reached. External
monitors may be unregistered by sending UnsubscribeTransitionCallBack(actorRef) to the FSM
actor.

Stopping a listener without unregistering will not remove the listener from the subscription list; use
UnsubscribeTransitionCallback before stopping the listener.

Timers

Besides state timeouts, FSM manages timers identified by String names. You may set a timer using

setTimer(name, msg, interval, repeat)

where msg is the message object which will be sent after the duration interval has elapsed. If repeat is
true, then the timer is scheduled at fixed rate given by the interval parameter. Any existing timer with the
same name will automatically be canceled before adding the new timer.

Timers may be canceled using

cancelTimer(name)

which is guaranteed to work immediately, meaning that the scheduled message will not be processed after this call
even if the timer already fired and queued it. The status of any timer may be inquired with

isTimerActive(name)

These named timers complement state timeouts because they are not affected by intervening reception of other
messages.

4.3. FSM (Java with Lambda Support) 217

Akka Java Documentation, Release 2.3.16

Termination from Inside

The FSM is stopped by specifying the result state as

stop([reason[, data]])

The reason must be one of Normal (which is the default), Shutdown or Failure(reason), and the second
argument may be given to change the state data which is available during termination handling.

Note: It should be noted that stop does not abort the actions and stop the FSM immediately. The stop action
must be returned from the event handler in the same way as a state transition (but note that the return statement
may not be used within a when block).

when(Error, matchEventEquals("stop", (event, data) -> {
// do cleanup ...
return stop();

}));

You can use onTermination(handler) to specify custom code that is executed when the FSM is stopped.
The handler is a partial function which takes a StopEvent(reason, stateName, stateData) as argu-
ment:

onTermination(
matchStop(Normal(),
(state, data) -> {/* Do something here */}).
stop(Shutdown(),

(state, data) -> {/* Do something here */}).
stop(Failure.class,

(reason, state, data) -> {/* Do something here */}));

As for the whenUnhandled case, this handler is not stacked, so each invocation of onTermination replaces
the previously installed handler.

Termination from Outside

When an ActorRef associated to a FSM is stopped using the stop method, its postStop hook will be
executed. The default implementation by the AbstractFSM class is to execute the onTermination handler
if that is prepared to handle a StopEvent(Shutdown, ...).

Warning: In case you override postStop and want to have your onTermination handler called, do not
forget to call super.postStop.

4.3.4 Testing and Debugging Finite State Machines

During development and for trouble shooting FSMs need care just as any other actor. There are specialized tools
available as described in TestFSMRef and in the following.

Event Tracing

The setting akka.actor.debug.fsm in Configuration enables logging of an event trace by LoggingFSM
instances:

public class MyFSM extends AbstractLoggingFSM<StateType, Data> {
// body elided ...

}

This FSM will log at DEBUG level:

4.3. FSM (Java with Lambda Support) 218

Akka Java Documentation, Release 2.3.16

• all processed events, including StateTimeout and scheduled timer messages

• every setting and cancellation of named timers

• all state transitions

Life cycle changes and special messages can be logged as described for Actors.

Rolling Event Log

The AbstractLoggingFSM class adds one more feature to the FSM: a rolling event log which may be used
during debugging (for tracing how the FSM entered a certain failure state) or for other creative uses:

public class MyFSM extends AbstractLoggingFSM<StateType, Data> {
@Override
public int logDepth() { return 12; }
{
onTermination(

matchStop(Failure.class, (reason, state, data) -> {
String lastEvents = getLog().mkString("\n\t");
log().warning("Failure in state " + state + " with data " + data + "\n" +
"Events leading up to this point:\n\t" + lastEvents);

})
);
//...

}
}

The logDepth defaults to zero, which turns off the event log.

Warning: The log buffer is allocated during actor creation, which is why the configuration is done using a
virtual method call. If you want to override with a val, make sure that its initialization happens before the
initializer of LoggingFSM runs, and do not change the value returned by logDepth after the buffer has
been allocated.

The contents of the event log are available using method getLog, which returns an IndexedSeq[LogEntry]
where the oldest entry is at index zero.

4.3.5 Examples

A bigger FSM example contrasted with Actor’s become/unbecome can be found in the Typesafe Activator
template named Akka FSM in Scala

4.4 Persistence (Java with Lambda Support)

Akka persistence enables stateful actors to persist their internal state so that it can be recovered when an actor is
started, restarted after a JVM crash or by a supervisor, or migrated in a cluster. The key concept behind Akka
persistence is that only changes to an actor’s internal state are persisted but never its current state directly (except
for optional snapshots). These changes are only ever appended to storage, nothing is ever mutated, which allows
for very high transaction rates and efficient replication. Stateful actors are recovered by replaying stored changes
to these actors from which they can rebuild internal state. This can be either the full history of changes or starting
from a snapshot which can dramatically reduce recovery times. Akka persistence also provides point-to-point
communication with at-least-once message delivery semantics.

4.4. Persistence (Java with Lambda Support) 219

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-fsm-java-lambda

Akka Java Documentation, Release 2.3.16

Warning: This module is marked as “experimental” as of its introduction in Akka 2.3.0. We will continue to
improve this API based on our users’ feedback, which implies that while we try to keep incompatible changes
to a minimum the binary compatibility guarantee for maintenance releases does not apply to the contents of
the akka.persistence package.

Akka persistence is inspired by the eventsourced library. It follows the same concepts and architecture of
eventsourced but significantly differs on API and implementation level.

4.4.1 Changes in Akka 2.3.4

In Akka 2.3.4 several of the concepts of the earlier versions were collapsed and simplified. In
essence; Processor and EventsourcedProcessor are replaced by PersistentActor. Channel
and PersistentChannel are replaced by AtLeastOnceDelivery. View is replaced by
PersistentView.

See full details of the changes in the Migration Guide Akka Persistence (experimental) 2.3.3 to 2.3.4 (and 2.4.x).
The old classes are still included, and deprecated, for a while to make the transition smooth. In case you need the
old documentation it is located here.

4.4.2 Dependencies

Akka persistence is a separate jar file. Make sure that you have the following dependency in your project:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-persistence-experimental_2.10</artifactId>
<version>2.3.16</version>

</dependency>

4.4.3 Architecture

• AbstractPersistentActor: Is a persistent, stateful actor. It is able to persist events to a journal and can react
to them in a thread-safe manner. It can be used to implement both command as well as event sourced actors.
When a persistent actor is started or restarted, journaled messages are replayed to that actor, so that it can
recover internal state from these messages.

• AbstractPersistentView: A view is a persistent, stateful actor that receives journaled messages that have been
written by another persistent actor. A view itself does not journal new messages, instead, it updates internal
state only from a persistent actor’s replicated message stream.

• AbstractPersistentActorAtLeastOnceDelivery: To send messages with at-least-once delivery semantics to
destinations, also in case of sender and receiver JVM crashes.

• Journal: A journal stores the sequence of messages sent to a persistent actor. An application can control
which messages are journaled and which are received by the persistent actor without being journaled. The
storage backend of a journal is pluggable. The default journal storage plugin writes to the local filesystem,
replicated journals are available as Community plugins.

• Snapshot store: A snapshot store persists snapshots of a persistent actor’s or a view’s internal state. Snap-
shots are used for optimizing recovery times. The storage backend of a snapshot store is pluggable. The
default snapshot storage plugin writes to the local filesystem.

• Event sourcing. Based on the building blocks described above, Akka persistence provides abstractions for
the development of event sourced applications (see section Event sourcing)

4.4. Persistence (Java with Lambda Support) 220

https://github.com/eligosource/eventsourced
https://github.com/eligosource/eventsourced
http://doc.akka.io/docs/akka/2.3.3/java/lambda-persistence.html#persistence-lambda-java
https://gist.github.com/krasserm/8612920#file-akka-persistence-plugins-md

Akka Java Documentation, Release 2.3.16

4.4.4 Event sourcing

The basic idea behind Event Sourcing is quite simple. A persistent actor receives a (non-persistent) command
which is first validated if it can be applied to the current state. Here, validation can mean anything, from simple
inspection of a command message’s fields up to a conversation with several external services, for example. If
validation succeeds, events are generated from the command, representing the effect of the command. These
events are then persisted and, after successful persistence, used to change the actor’s state. When the persistent
actor needs to be recovered, only the persisted events are replayed of which we know that they can be successfully
applied. In other words, events cannot fail when being replayed to a persistent actor, in contrast to commands.
Event sourced actors may of course also process commands that do not change application state, such as query
commands, for example.

Akka persistence supports event sourcing with the AbstractPersistentActor abstract class. An ac-
tor that extends this class uses the persist method to persist and handle events. The behavior of an
AbstractPersistentActor is defined by implementing receiveRecover and receiveCommand.
This is demonstrated in the following example.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.japi.pf.ReceiveBuilder;
import akka.persistence.AbstractPersistentActor;
import akka.persistence.SnapshotOffer;
import scala.PartialFunction;
import scala.runtime.BoxedUnit;

import java.io.Serializable;
import java.util.ArrayList;

import static java.util.Arrays.asList;

class Cmd implements Serializable {
private final String data;

public Cmd(String data) {
this.data = data;

}

public String getData() {
return data;

}
}

class Evt implements Serializable {
private final String data;

public Evt(String data) {
this.data = data;

}

public String getData() {
return data;

}
}

class ExampleState implements Serializable {
private final ArrayList<String> events;

public ExampleState() {
this(new ArrayList<>());

}

public ExampleState(ArrayList<String> events) {

4.4. Persistence (Java with Lambda Support) 221

http://martinfowler.com/eaaDev/EventSourcing.html

Akka Java Documentation, Release 2.3.16

this.events = events;
}

public ExampleState copy() {
return new ExampleState(new ArrayList<>(events));

}

public void update(Evt evt) {
events.add(evt.getData());

}

public int size() {
return events.size();

}

@Override
public String toString() {

return events.toString();
}

}

class ExamplePersistentActor extends AbstractPersistentActor {

private ExampleState state = new ExampleState();

public int getNumEvents() {
return state.size();

}

@Override
public String persistenceId() { return "sample-id-1"; }

@Override
public PartialFunction<Object, BoxedUnit> receiveRecover() {

return ReceiveBuilder.
match(Evt.class, state::update).
match(SnapshotOffer.class, ss -> state = (ExampleState) ss.snapshot()).build();

}

@Override
public PartialFunction<Object, BoxedUnit> receiveCommand() {

return ReceiveBuilder.
match(Cmd.class, c -> {

final String data = c.getData();
final Evt evt1 = new Evt(data + "-" + getNumEvents());
final Evt evt2 = new Evt(data + "-" + (getNumEvents() + 1));
persist(asList(evt1, evt2), (Evt evt) -> {

state.update(evt);
if (evt.equals(evt2)) {

context().system().eventStream().publish(evt);
}

});
}).
match(String.class, s -> s.equals("snap"), s -> saveSnapshot(state.copy())).
match(String.class, s -> s.equals("print"), s -> System.out.println(state)).
build();

}

}

The example defines two data types, Cmd and Evt to represent commands and events, respectively. The state
of the ExamplePersistentActor is a list of persisted event data contained in ExampleState.

4.4. Persistence (Java with Lambda Support) 222

Akka Java Documentation, Release 2.3.16

The persistent actor’s receiveRecover method defines how state is updated during recovery by handling
Evt and SnapshotOffermessages. The persistent actor’s receiveCommandmethod is a command handler.
In this example, a command is handled by generating two events which are then persisted and handled. Events are
persisted by calling persist with an event (or a sequence of events) as first argument and an event handler as
second argument.

The persist method persists events asynchronously and the event handler is executed for successfully persisted
events. Successfully persisted events are internally sent back to the persistent actor as individual messages that
trigger event handler executions. An event handler may close over persistent actor state and mutate it. The sender
of a persisted event is the sender of the corresponding command. This allows event handlers to reply to the sender
of a command (not shown).

The main responsibility of an event handler is changing persistent actor state using event data and notifying others
about successful state changes by publishing events.

When persisting events with persist it is guaranteed that the persistent actor will not receive further commands
between the persist call and the execution(s) of the associated event handler. This also holds for multiple
persist calls in context of a single command.

The easiest way to run this example yourself is to download Typesafe Activator and open the tutorial
named Akka Persistence Samples in Java with Lambdas. It contains instructions on how to run the
PersistentActorExample.

Note: It’s also possible to switch between different command handlers during normal processing and recovery
with context().become() and context().unbecome(). To get the actor into the same state after
recovery you need to take special care to perform the same state transitions with become and unbecome in the
receiveRecover method as you would have done in the command handler.

Identifiers

A persistent actor must have an identifier that doesn’t change across different actor incarnations. The identifier
must be defined with the persistenceId method.

@Override
public String persistenceId() {

return "my-stable-persistence-id";
}

Recovery

By default, a persistent actor is automatically recovered on start and on restart by replaying journaled messages.
New messages sent to a persistent actor during recovery do not interfere with replayed messages. New messages
will only be received by a persistent actor after recovery completes.

Recovery customization

Automated recovery on start can be disabled by overriding preStart with an empty implementation.

@Override
public void preStart() {}

In this case, a persistent actor must be recovered explicitly by sending it a Recover message.

processor.tell(Recover.create(), null);

If not overridden, preStart sends a Recover message to self(). Applications may also override
preStart to define further Recover parameters such as an upper sequence number bound, for example.

4.4. Persistence (Java with Lambda Support) 223

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-persistence-java-lambda

Akka Java Documentation, Release 2.3.16

@Override
public void preStart() {

self().tell(Recover.create(457L), null);
}

Upper sequence number bounds can be used to recover a persistent actor to past state instead of current state.
Automated recovery on restart can be disabled by overriding preRestart with an empty implementation.

@Override
public void preRestart(Throwable reason, Option<Object> message) {}

Recovery status

A persistent actor can query its own recovery status via the methods

public boolean recoveryRunning();
public boolean recoveryFinished();

Sometimes there is a need for performing additional initialization when the recovery has completed, be-
fore processing any other message sent to the persistent actor. The persistent actor will receive a special
RecoveryCompleted message right after recovery and before any other received messages.

If there is a problem with recovering the state of the actor from the journal, the actor will be sent a
RecoveryFailure message that it can choose to handle in receiveRecover. If the actor doesn’t han-
dle the RecoveryFailure message it will be stopped.

class MyPersistentActor5 extends AbstractPersistentActor {

@Override public String persistenceId() {
return "my-stable-persistence-id";

}

@Override public PartialFunction<Object, BoxedUnit> receiveRecover() {
return ReceiveBuilder.

match(RecoveryCompleted.class, r -> {
recoveryCompleted();

}).
match(String.class, this::handleEvent).build();

}

@Override public PartialFunction<Object, BoxedUnit> receiveCommand() {
return ReceiveBuilder.

match(String.class, s -> s.equals("cmd"),
s -> persist("evt", this::handleEvent)).build();

}

private void recoveryCompleted() {
// perform init after recovery, before any other messages
// ...

}

private void handleEvent(String event) {
// update state
// ...

}

}

4.4. Persistence (Java with Lambda Support) 224

Akka Java Documentation, Release 2.3.16

Relaxed local consistency requirements and high throughput use-cases

If faced with relaxed local consistency requirements and high throughput demands sometimes
PersistentActor and it’s persist may not be enough in terms of consuming incoming Commands
at a high rate, because it has to wait until all Events related to a given Command are processed in order to start
processing the next Command. While this abstraction is very useful for most cases, sometimes you may be faced
with relaxed requirements about consistency – for example you may want to process commands as fast as you
can, assuming that Event will eventually be persisted and handled properly in the background and retroactively
reacting to persistence failures if needed.

The persistAsyncmethod provides a tool for implementing high-throughput persistent actors. It will not stash
incoming Commands while the Journal is still working on persisting and/or user code is executing event callbacks.

In the below example, the event callbacks may be called “at any time”, even after the next Command has been
processed. The ordering between events is still guaranteed (“evt-b-1” will be sent after “evt-a-2”, which will be
sent after “evt-a-1” etc.).

class MyPersistentActor extends AbstractPersistentActor {

@Override public String persistenceId() {
return "my-stable-persistence-id";

}

private void handleCommand(String c) {
sender().tell(c, self());

persistAsync(String.format("evt-%s-1", c), e -> {
sender().tell(e, self());

});
persistAsync(String.format("evt-%s-2", c), e -> {

sender().tell(e, self());
});

}

@Override public PartialFunction<Object, BoxedUnit> receiveRecover() {
return ReceiveBuilder.

match(String.class, this::handleCommand).build();
}

@Override public PartialFunction<Object, BoxedUnit> receiveCommand() {
return ReceiveBuilder.

match(String.class, this::handleCommand).build();
}

}

Note: In order to implement the pattern known as “command sourcing” simply persistAsync all incoming
events right away, and handle them in the callback.

Warning: The callback will not be invoked if the actor is restarted (or stopped) in between the call to
persistAsync and the journal has confirmed the write.

Deferring actions until preceding persist handlers have executed

Sometimes when working with persistAsync you may find that it would be nice to define some actions in
terms of ‘’happens-after the previous persistAsync handlers have been invoked’‘. PersistentActor
provides an utility method called defer, which works similarily to persistAsync yet does not persist the
passed in event. It is recommended to use it for read operations, and actions which do not have corresponding
events in your domain model.

4.4. Persistence (Java with Lambda Support) 225

Akka Java Documentation, Release 2.3.16

Using this method is very similar to the persist family of methods, yet it does not persist the passed in event. It
will be kept in memory and used when invoking the handler.

class MyPersistentActor extends AbstractPersistentActor {

@Override public String persistenceId() {
return "my-stable-persistence-id";

}

private void handleCommand(String c) {
persistAsync(String.format("evt-%s-1", c), e -> {

sender().tell(e, self());
});
persistAsync(String.format("evt-%s-2", c), e -> {

sender().tell(e, self());
});

defer(String.format("evt-%s-3", c), e -> {
sender().tell(e, self());

});
}

@Override public PartialFunction<Object, BoxedUnit> receiveRecover() {
return ReceiveBuilder.

match(String.class, this::handleCommand).build();
}

@Override public PartialFunction<Object, BoxedUnit> receiveCommand() {
return ReceiveBuilder.

match(String.class, this::handleCommand).build();
}

}

Notice that the sender() is safe to access in the handler callback, and will be pointing to the original sender of
the command for which this defer handler was called.

final ActorRef processor = system.actorOf(Props.create(MyPersistentActor.class));
processor.tell("a", sender);
processor.tell("b", sender);

// order of received messages:
// a
// b
// evt-a-1
// evt-a-2
// evt-a-3
// evt-b-1
// evt-b-2
// evt-b-3

Warning: The callback will not be invoked if the actor is restarted (or stopped) in between the call to defer
and the journal has processed and confirmed all preceding writes.

Batch writes

To optimize throughput, a persistent actor internally batches events to be stored under high load before writing
them to the journal (as a single batch). The batch size dynamically grows from 1 under low and moderate loads to
a configurable maximum size (default is 200) under high load. When using persistAsync this increases the
maximum throughput dramatically.

4.4. Persistence (Java with Lambda Support) 226

Akka Java Documentation, Release 2.3.16

akka.persistence.journal.max-message-batch-size = 200

A new batch write is triggered by a persistent actor as soon as a batch reaches the maximum size or if the journal
completed writing the previous batch. Batch writes are never timer-based which keeps latencies at a minimum.

The batches are also used internally to ensure atomic writes of events. All events that are persisted in context
of a single command are written as a single batch to the journal (even if persist is called multiple times per
command). The recovery of an AbstractPersistentActor will therefore never be done partially (with
only a subset of events persisted by a single command).

Message deletion

To delete all messages (journaled by a single persistent actor) up to a specified sequence number, persistent actors
may call the deleteMessages method.

An optional permanent parameter specifies whether the message shall be permanently deleted from the journal
or only marked as deleted. In both cases, the message won’t be replayed. Later extensions to Akka persistence
will allow to replay messages that have been marked as deleted which can be useful for debugging purposes, for
example.

4.4.5 Views

Persistent views can be implemented by extending the AbstractView abstract class, implement the
persistenceId method and setting the “initial behavior” in the constructor by calling the receive method.

class MyView extends AbstractPersistentView {
@Override public String persistenceId() { return "some-persistence-id"; }
@Override public String viewId() { return "some-persistence-id-view"; }

public MyView() {
receive(ReceiveBuilder.

match(Object.class, p -> isPersistent(), persistent -> {
// ...

}).build()
);

}
}

The persistenceId identifies the persistent actor from which the view receives journaled messages. It is
not necessary the referenced persistent actor is actually running. Views read messages from a persistent actor’s
journal directly. When a persistent actor is started later and begins to write new messages, the corresponding view
is updated automatically, by default.

It is possible to determine if a message was sent from the Journal or from another actor in user-land by calling
the isPersistent method. Having that said, very often you don’t need this information at all and can simply
apply the same logic to both cases (skip the if isPersistent check).

Updates

The default update interval of all persistent views of an actor system is configurable:

akka.persistence.view.auto-update-interval = 5s

AbstractPersistentView implementation classes may also override the autoUpdateInterval
method to return a custom update interval for a specific view class or view instance. Applications may also
trigger additional updates at any time by sending a view an Update message.

final ActorRef view = system.actorOf(Props.create(MyView.class));
view.tell(Update.create(true), null);

4.4. Persistence (Java with Lambda Support) 227

Akka Java Documentation, Release 2.3.16

If the await parameter is set to true, messages that follow the Update request are processed when the incre-
mental message replay, triggered by that update request, completed. If set to false (default), messages following
the update request may interleave with the replayed message stream. Automated updates always run with await
= false.

Automated updates of all persistent views of an actor system can be turned off by configuration:

akka.persistence.view.auto-update = off

Implementation classes may override the configured default value by overriding the autoUpdate
method. To limit the number of replayed messages per update request, applications can con-
figure a custom akka.persistence.view.auto-update-replay-max value or override the
autoUpdateReplayMax method. The number of replayed messages for manual updates can be limited with
the replayMax parameter of the Update message.

Recovery

Initial recovery of persistent views works in the very same way as for a persistent actor (i.e. by sending a
Recover message to self). The maximum number of replayed messages during initial recovery is determined by
autoUpdateReplayMax. Further possibilities to customize initial recovery are explained in section Recovery.

Identifiers

A persistent view must have an identifier that doesn’t change across different actor incarnations. The identifier
must be defined with the viewId method.

The viewId must differ from the referenced persistenceId, unless Snapshots of a view and its persistent
actor shall be shared (which is what applications usually do not want).

4.4.6 Snapshots

Snapshots can dramatically reduce recovery times of persistent actors and views. The following discusses snap-
shots in context of persistent actors but this is also applicable to persistent views.

Persistent actor can save snapshots of internal state by calling the saveSnapshot method. If saving
of a snapshot succeeds, the persistent actor receives a SaveSnapshotSuccess message, otherwise a
SaveSnapshotFailure message

class MyProcessor extends AbstractProcessor {
private Object state;

public MyProcessor() {
receive(ReceiveBuilder.

match(String.class, s -> s.equals("snap"),
s -> saveSnapshot(state)).

match(SaveSnapshotSuccess.class, ss -> {
SnapshotMetadata metadata = ss.metadata();
// ...

}).
match(SaveSnapshotFailure.class, sf -> {

SnapshotMetadata metadata = sf.metadata();
// ...

}).build()
);

}
}

During recovery, the persistent actor is offered a previously saved snapshot via a SnapshotOffer message
from which it can initialize internal state.

4.4. Persistence (Java with Lambda Support) 228

Akka Java Documentation, Release 2.3.16

class MyProcessor extends AbstractProcessor {
private Object state;

public MyProcessor() {
receive(ReceiveBuilder.

match(SnapshotOffer.class, s -> {
state = s.snapshot();
// ...

}).
match(Persistent.class, p -> {/* ...*/}).build()

);
}

}

The replayed messages that follow the SnapshotOffer message, if any, are younger than the offered snapshot.
They finally recover the persistent actor to its current (i.e. latest) state.

In general, a persistent actor is only offered a snapshot if that persistent actor has previously saved one or more
snapshots and at least one of these snapshots matches the SnapshotSelectionCriteria that can be speci-
fied for recovery.

processor.tell(Recover.create(
SnapshotSelectionCriteria
.create(457L, System.currentTimeMillis())), null);

If not specified, they default to SnapshotSelectionCriteria.latest() which selects
the latest (= youngest) snapshot. To disable snapshot-based recovery, applications should use
SnapshotSelectionCriteria.none(). A recovery where no saved snapshot matches the speci-
fied SnapshotSelectionCriteria will replay all journaled messages.

Snapshot deletion

A persistent actor can delete individual snapshots by calling the deleteSnapshot method with the
sequence number and the timestamp of a snapshot as argument. To bulk-delete snapshots matching
SnapshotSelectionCriteria, persistent actors should use the deleteSnapshots method.

4.4.7 At-Least-Once Delivery

To send messages with at-least-once delivery semantics to destinations you can ex-
tend the AbstractPersistentActorWithAtLeastOnceDelivery class instead of
AbstractPersistentActor on the sending side. It takes care of re-sending messages when they
have not been confirmed within a configurable timeout.

Note: At-least-once delivery implies that original message send order is not always preserved and the destination
may receive duplicate messages. That means that the semantics do not match those of a normal ActorRef send
operation:

• it is not at-most-once delivery

• message order for the same sender–receiver pair is not preserved due to possible resends

• after a crash and restart of the destination messages are still delivered—to the new actor incarnation

These semantics is similar to what an ActorPath represents (see actor-lifecycle-scala), therefore you need to
supply a path and not a reference when delivering messages. The messages are sent to the path with an actor
selection.

Use the deliver method to send a message to a destination. Call the confirmDelivery method when the
destination has replied with a confirmation message.

4.4. Persistence (Java with Lambda Support) 229

Akka Java Documentation, Release 2.3.16

class Msg implements Serializable {
public final long deliveryId;
public final String s;

public Msg(long deliveryId, String s) {
this.deliveryId = deliveryId;
this.s = s;

}
}

class Confirm implements Serializable {
public final long deliveryId;

public Confirm(long deliveryId) {
this.deliveryId = deliveryId;

}
}

class MsgSent implements Serializable {
public final String s;

public MsgSent(String s) {
this.s = s;

}
}
class MsgConfirmed implements Serializable {

public final long deliveryId;

public MsgConfirmed(long deliveryId) {
this.deliveryId = deliveryId;

}
}

class MyPersistentActor extends AbstractPersistentActorWithAtLeastOnceDelivery {
private final ActorPath destination;

public MyPersistentActor(ActorPath destination) {
this.destination = destination;

}

@Override
public PartialFunction<Object, BoxedUnit> receiveCommand() {
return ReceiveBuilder.

match(String.class, s -> {
persist(new MsgSent(s), evt -> updateState(evt));

}).
match(Confirm.class, confirm -> {

persist(new MsgConfirmed(confirm.deliveryId), evt -> updateState(evt));
}).
build();

}

@Override
public PartialFunction<Object, BoxedUnit> receiveRecover() {
return ReceiveBuilder.

match(Object.class, evt -> updateState(evt)).build();
}

void updateState(Object event) {
if (event instanceof MsgSent) {

final MsgSent evt = (MsgSent) event;
deliver(destination, deliveryId -> new Msg(deliveryId, evt.s));

4.4. Persistence (Java with Lambda Support) 230

Akka Java Documentation, Release 2.3.16

} else if (event instanceof MsgConfirmed) {
final MsgConfirmed evt = (MsgConfirmed) event;
confirmDelivery(evt.deliveryId);

}
}

}

class MyDestination extends AbstractActor {
public MyDestination() {
receive(ReceiveBuilder.

match(Msg.class, msg -> {
// ...
sender().tell(new Confirm(msg.deliveryId), self());

}).build()
);

}
}

Correlation between deliver and confirmDelivery is performed with the deliveryId that is provided
as parameter to the deliveryIdToMessage function. The deliveryId is typically passed in the message
to the destination, which replies with a message containing the same deliveryId.

The deliveryId is a strictly monotonically increasing sequence number without gaps. The same sequence is
used for all destinations of the actor, i.e. when sending to multiple destinations the destinations will see gaps in
the sequence if no translation is performed.

The AbstractPersistentActorWithAtLeastOnceDelivery class has a state consisting of uncon-
firmed messages and a sequence number. It does not store this state itself. You must persist events correspond-
ing to the deliver and confirmDelivery invocations from your PersistentActor so that the state
can be restored by calling the same methods during the recovery phase of the PersistentActor. Some-
times these events can be derived from other business level events, and sometimes you must create separate
events. During recovery calls to deliver will not send out the message, but it will be sent later if no matching
confirmDelivery was performed.

Support for snapshots is provided by getDeliverySnapshot and setDeliverySnapshot. The
AtLeastOnceDeliverySnapshot contains the full delivery state, including unconfirmed messages.
If you need a custom snapshot for other parts of the actor state you must also include the
AtLeastOnceDeliverySnapshot. It is serialized using protobuf with the ordinary Akka serialization mech-
anism. It is easiest to include the bytes of the AtLeastOnceDeliverySnapshot as a blob in your custom
snapshot.

The interval between redelivery attempts is defined by the redeliverIntervalmethod. The default value can
be configured with the akka.persistence.at-least-once-delivery.redeliver-interval
configuration key. The method can be overridden by implementation classes to return non-default values.

After a number of delivery attempts a AtLeastOnceDelivery.UnconfirmedWarning message will
be sent to self. The re-sending will still continue, but you can choose to call confirmDelivery
to cancel the re-sending. The number of delivery attempts before emitting the warning is defined by the
warnAfterNumberOfUnconfirmedAttempts method. The default value can be configured with the
akka.persistence.at-least-once-delivery.warn-after-number-of-unconfirmed-attempts
configuration key. The method can be overridden by implementation classes to return non-default values.

The AbstractPersistentActorWithAtLeastOnceDelivery class holds messages in mem-
ory until their successful delivery has been confirmed. The limit of maximum number of unconfirmed
messages that the actor is allowed to hold in memory is defined by the maxUnconfirmedMessages
method. If this limit is exceed the deliver method will not accept more messages and it will throw
AtLeastOnceDelivery.MaxUnconfirmedMessagesExceededException. The default value can
be configured with the akka.persistence.at-least-once-delivery.max-unconfirmed-messages
configuration key. The method can be overridden by implementation classes to return non-default values.

4.4. Persistence (Java with Lambda Support) 231

Akka Java Documentation, Release 2.3.16

4.4.8 Storage plugins

Storage backends for journals and snapshot stores are pluggable in Akka persistence. The default journal plugin
writes messages to LevelDB (see Local LevelDB journal). The default snapshot store plugin writes snapshots
as individual files to the local filesystem (see Local snapshot store). Applications can provide their own plugins
by implementing a plugin API and activate them by configuration. Plugin development requires the following
imports:

import akka.japi.pf.ReceiveBuilder;
import scala.concurrent.Future;
import akka.japi.Option;
import akka.japi.Procedure;
import akka.persistence.*;
import akka.persistence.journal.japi.*;
import akka.persistence.snapshot.japi.*;

Journal plugin API

A journal plugin either extends SyncWriteJournal or AsyncWriteJournal. SyncWriteJournal is
an actor that should be extended when the storage backend API only supports synchronous, blocking writes. In
this case, the methods to be implemented are:

/**
* Java API, Plugin API: synchronously writes a batch of persistent messages to the

* journal. The batch write must be atomic i.e. either all persistent messages in the

* batch are written or none.

*/
void doWriteMessages(Iterable<PersistentRepr> messages);

/**
* Java API, Plugin API: synchronously writes a batch of delivery confirmations to

* the journal.

*
* @deprecated doWriteConfirmations will be removed, since Channels will be removed (since 2.3.4)

*/
@Deprecated void doWriteConfirmations(Iterable<PersistentConfirmation> confirmations);

/**
* Java API, Plugin API: synchronously deletes messages identified by `messageIds`

* from the journal. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @deprecated doDeleteMessages will be removed (since 2.3.4)

*/
@Deprecated void doDeleteMessages(Iterable<PersistentId> messageIds, boolean permanent);

/**
* Java API, Plugin API: synchronously deletes all persistent messages up to

* `toSequenceNr`. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @see AsyncRecoveryPlugin

*/
void doDeleteMessagesTo(String persistenceId, long toSequenceNr, boolean permanent);

AsyncWriteJournal is an actor that should be extended if the storage backend API supports asynchronous,
non-blocking writes. In this case, the methods to be implemented are:

/**
* Java API, Plugin API: synchronously writes a batch of persistent messages to the

* journal. The batch write must be atomic i.e. either all persistent messages in the

* batch are written or none.

4.4. Persistence (Java with Lambda Support) 232

Akka Java Documentation, Release 2.3.16

*/
Future<Void> doAsyncWriteMessages(Iterable<PersistentRepr> messages);

/**
* Java API, Plugin API: synchronously writes a batch of delivery confirmations to

* the journal.

*
* @deprecated doAsyncWriteConfirmations will be removed, since Channels will be removed (since 2.3.4)

*/
@Deprecated Future<Void> doAsyncWriteConfirmations(Iterable<PersistentConfirmation> confirmations);

/**
* Java API, Plugin API: synchronously deletes messages identified by `messageIds`

* from the journal. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @deprecated doAsyncDeleteMessages will be removed (since 2.3.4)

*/
@Deprecated Future<Void> doAsyncDeleteMessages(Iterable<PersistentId> messageIds, boolean permanent);

/**
* Java API, Plugin API: synchronously deletes all persistent messages up to

* `toSequenceNr`. If `permanent` is set to `false`, the persistent messages are

* marked as deleted, otherwise they are permanently deleted.

*
* @see AsyncRecoveryPlugin

*/
Future<Void> doAsyncDeleteMessagesTo(String persistenceId, long toSequenceNr, boolean permanent);

Message replays and sequence number recovery are always asynchronous, therefore, any journal plugin must
implement:

/**
* Java API, Plugin API: asynchronously replays persistent messages.

* Implementations replay a message by calling `replayCallback`. The returned

* future must be completed when all messages (matching the sequence number

* bounds) have been replayed. The future must be completed with a failure if

* any of the persistent messages could not be replayed.

*
* The `replayCallback` must also be called with messages that have been marked

* as deleted. In this case a replayed message's `deleted` method must return

* `true`.

*
* The channel ids of delivery confirmations that are available for a replayed

* message must be contained in that message's `confirms` sequence.

*
* @param persistenceId processor id.

* @param fromSequenceNr sequence number where replay should start (inclusive).

* @param toSequenceNr sequence number where replay should end (inclusive).

* @param max maximum number of messages to be replayed.

* @param replayCallback called to replay a single message. Can be called from any

* thread.

*/
Future<Void> doAsyncReplayMessages(String persistenceId, long fromSequenceNr, long toSequenceNr, long max, Procedure<PersistentRepr> replayCallback);

/**
* Java API, Plugin API: asynchronously reads the highest stored sequence number

* for the given `persistenceId`.

*
* @param persistenceId processor id.

* @param fromSequenceNr hint where to start searching for the highest sequence

* number.

*/

4.4. Persistence (Java with Lambda Support) 233

Akka Java Documentation, Release 2.3.16

Future<Long> doAsyncReadHighestSequenceNr(String persistenceId, long fromSequenceNr);

A journal plugin can be activated with the following minimal configuration:

Path to the journal plugin to be used
akka.persistence.journal.plugin = "my-journal"

My custom journal plugin
my-journal {

Class name of the plugin.
class = "docs.persistence.MyJournal"
Dispatcher for the plugin actor.
plugin-dispatcher = "akka.actor.default-dispatcher"

}

The specified plugin class must have a no-arg constructor. The plugin-dispatcher
is the dispatcher used for the plugin actor. If not specified, it defaults to
akka.persistence.dispatchers.default-plugin-dispatcher for SyncWriteJournal
plugins and akka.actor.default-dispatcher for AsyncWriteJournal plugins.

Snapshot store plugin API

A snapshot store plugin must extend the SnapshotStore actor and implement the following methods:

/**
* Java API, Plugin API: asynchronously loads a snapshot.

*
* @param persistenceId processor id.

* @param criteria selection criteria for loading.

*/
Future<Option<SelectedSnapshot>> doLoadAsync(String persistenceId, SnapshotSelectionCriteria criteria);

/**
* Java API, Plugin API: asynchronously saves a snapshot.

*
* @param metadata snapshot metadata.

* @param snapshot snapshot.

*/
Future<Void> doSaveAsync(SnapshotMetadata metadata, Object snapshot);

/**
* Java API, Plugin API: called after successful saving of a snapshot.

*
* @param metadata snapshot metadata.

*/
void onSaved(SnapshotMetadata metadata) throws Exception;

/**
* Java API, Plugin API: deletes the snapshot identified by `metadata`.

*
* @param metadata snapshot metadata.

*/
void doDelete(SnapshotMetadata metadata) throws Exception;

/**
* Java API, Plugin API: deletes all snapshots matching `criteria`.

*
* @param persistenceId processor id.

* @param criteria selection criteria for deleting.

*/
void doDelete(String persistenceId, SnapshotSelectionCriteria criteria) throws Exception;

4.4. Persistence (Java with Lambda Support) 234

Akka Java Documentation, Release 2.3.16

A snapshot store plugin can be activated with the following minimal configuration:

Path to the snapshot store plugin to be used
akka.persistence.snapshot-store.plugin = "my-snapshot-store"

My custom snapshot store plugin
my-snapshot-store {

Class name of the plugin.
class = "docs.persistence.MySnapshotStore"
Dispatcher for the plugin actor.
plugin-dispatcher = "akka.persistence.dispatchers.default-plugin-dispatcher"

}

The specified plugin class must have a no-arg constructor. The plugin-dispatcher
is the dispatcher used for the plugin actor. If not specified, it defaults to
akka.persistence.dispatchers.default-plugin-dispatcher.

4.4.9 Pre-packaged plugins

Local LevelDB journal

The default journal plugin is akka.persistence.journal.leveldb which writes messages to a local
LevelDB instance. The default location of the LevelDB files is a directory named journal in the current working
directory. This location can be changed by configuration where the specified path can be relative or absolute:

akka.persistence.journal.leveldb.dir = "target/journal"

With this plugin, each actor system runs its own private LevelDB instance.

Shared LevelDB journal

A LevelDB instance can also be shared by multiple actor systems (on the same or on different nodes). This, for
example, allows persistent actors to failover to a backup node and continue using the shared journal instance from
the backup node.

Warning: A shared LevelDB instance is a single point of failure and should therefore only be used for testing
purposes. Highly-available, replicated journal are available as Community plugins.

A shared LevelDB instance is started by instantiating the SharedLeveldbStore actor.

final ActorRef store = system.actorOf(Props.create(SharedLeveldbStore.class), "store");

By default, the shared instance writes journaled messages to a local directory named journal in the current
working directory. The storage location can be changed by configuration:

akka.persistence.journal.leveldb-shared.store.dir = "target/shared"

Actor systems that use a shared LevelDB store must activate the akka.persistence.journal.leveldb-shared
plugin.

akka.persistence.journal.plugin = "akka.persistence.journal.leveldb-shared"

This plugin must be initialized by injecting the (remote) SharedLeveldbStore actor reference. Injection is
done by calling the SharedLeveldbJournal.setStore method with the actor reference as argument.

class SharedStorageUsage extends AbstractActor {
@Override
public void preStart() throws Exception {
String path = "akka.tcp://example@127.0.0.1:2552/user/store";
ActorSelection selection = context().actorSelection(path);
selection.tell(new Identify(1), self());

4.4. Persistence (Java with Lambda Support) 235

https://gist.github.com/krasserm/8612920#file-akka-persistence-plugins-md

Akka Java Documentation, Release 2.3.16

}

public SharedStorageUsage() {
receive(ReceiveBuilder.

match(ActorIdentity.class, ai -> {
if (ai.correlationId().equals(1)) {
ActorRef store = ai.getRef();
if (store != null) {

SharedLeveldbJournal.setStore(store, context().system());
}

}
}).build()

);
}

}

Internal journal commands (sent by persistent actors) are buffered until injection completes. Injection is idempo-
tent i.e. only the first injection is used.

Local snapshot store

The default snapshot store plugin is akka.persistence.snapshot-store.local. It writes snapshot
files to the local filesystem. The default storage location is a directory named snapshots in the current working
directory. This can be changed by configuration where the specified path can be relative or absolute:

akka.persistence.snapshot-store.local.dir = "target/snapshots"

4.4.10 Custom serialization

Serialization of snapshots and payloads of Persistent messages is configurable with Akka’s Serialization
infrastructure. For example, if an application wants to serialize

• payloads of type MyPayload with a custom MyPayloadSerializer and

• snapshots of type MySnapshot with a custom MySnapshotSerializer

it must add

akka.actor {
serializers {
my-payload = "docs.persistence.MyPayloadSerializer"
my-snapshot = "docs.persistence.MySnapshotSerializer"

}
serialization-bindings {
"docs.persistence.MyPayload" = my-payload
"docs.persistence.MySnapshot" = my-snapshot

}
}

to the application configuration. If not specified, a default serializer is used.

4.4.11 Testing

When running tests with LevelDB default settings in sbt, make sure to set fork := true in your sbt project
otherwise, you’ll see an UnsatisfiedLinkError. Alternatively, you can switch to a LevelDB Java port by
setting

akka.persistence.journal.leveldb.native = off

or

4.4. Persistence (Java with Lambda Support) 236

Akka Java Documentation, Release 2.3.16

akka.persistence.journal.leveldb-shared.store.native = off

in your Akka configuration. The LevelDB Java port is for testing purposes only.

4.4. Persistence (Java with Lambda Support) 237

CHAPTER

FIVE

FUTURES AND AGENTS

5.1 Futures

5.1.1 Introduction

In the Scala Standard Library, a Future is a data structure used to retrieve the result of some concurrent operation.
This result can be accessed synchronously (blocking) or asynchronously (non-blocking). To be able to use this
from Java, Akka provides a java friendly interface in akka.dispatch.Futures.

5.1.2 Execution Contexts

In order to execute callbacks and operations, Futures need something called an ExecutionContext, which
is very similar to a java.util.concurrent.Executor. if you have an ActorSystem in scope, it will
use its default dispatcher as the ExecutionContext, or you can use the factory methods provided by the
ExecutionContexts class to wrap Executors and ExecutorServices, or even create your own.

import akka.dispatch.*;
import scala.concurrent.ExecutionContext;
import scala.concurrent.Future;
import scala.concurrent.Await;
import scala.concurrent.Promise;
import akka.util.Timeout;
import scala.concurrent.ExecutionContext;
import scala.concurrent.ExecutionContext$;

ExecutionContext ec =
ExecutionContexts.fromExecutorService(yourExecutorServiceGoesHere);

//Use ec with your Futures
Future<String> f1 = Futures.successful("foo");

// Then you shut down the ExecutorService at the end of your application.
yourExecutorServiceGoesHere.shutdown();

5.1.3 Use with Actors

There are generally two ways of getting a reply from an UntypedActor: the first is by a sent message
(actorRef.tell(msg, sender)), which only works if the original sender was an UntypedActor) and
the second is through a Future.

Using the ActorRef‘s ask method to send a message will return a Future. To wait for and retrieve the actual
result the simplest method is:

import akka.dispatch.*;
import scala.concurrent.ExecutionContext;

238

http://en.wikipedia.org/wiki/Futures_and_promises

Akka Java Documentation, Release 2.3.16

import scala.concurrent.Future;
import scala.concurrent.Await;
import scala.concurrent.Promise;
import akka.util.Timeout;

Timeout timeout = new Timeout(Duration.create(5, "seconds"));
Future<Object> future = Patterns.ask(actor, msg, timeout);
String result = (String) Await.result(future, timeout.duration());

This will cause the current thread to block and wait for the UntypedActor to ‘complete’ the Future with it’s
reply. Blocking is discouraged though as it can cause performance problem. The blocking operations are located
in Await.result and Await.ready to make it easy to spot where blocking occurs. Alternatives to blocking
are discussed further within this documentation. Also note that the Future returned by an UntypedActor is a
Future<Object> since an UntypedActor is dynamic. That is why the cast to String is used in the above
sample.

Warning: Await.result and Await.ready are provided for exceptional situations where you must
block, a good rule of thumb is to only use them if you know why you must block. For all other cases, use
asynchronous composition as described below.

To send the result of a Future to an Actor, you can use the pipe construct:

akka.pattern.Patterns.pipe(future, system.dispatcher()).to(actor);

5.1.4 Use Directly

A common use case within Akka is to have some computation performed concurrently without needing the extra
utility of an UntypedActor. If you find yourself creating a pool of UntypedActors for the sole reason of
performing a calculation in parallel, there is an easier (and faster) way:

import scala.concurrent.duration.Duration;
import akka.japi.Function;
import java.util.concurrent.Callable;
import static akka.dispatch.Futures.future;
import static java.util.concurrent.TimeUnit.SECONDS;

Future<String> f = future(new Callable<String>() {
public String call() {
return "Hello" + "World";

}
}, system.dispatcher());

f.onSuccess(new PrintResult<String>(), system.dispatcher());

In the above code the block passed to future will be executed by the default Dispatcher, with the return
value of the block used to complete the Future (in this case, the result would be the string: “HelloWorld”).
Unlike a Future that is returned from an UntypedActor, this Future is properly typed, and we also avoid
the overhead of managing an UntypedActor.

You can also create already completed Futures using the Futures class, which can be either successes:

Future<String> future = Futures.successful("Yay!");

Or failures:

Future<String> otherFuture = Futures.failed(
new IllegalArgumentException("Bang!"));

It is also possible to create an empty Promise, to be filled later, and obtain the corresponding Future:

5.1. Futures 239

Akka Java Documentation, Release 2.3.16

Promise<String> promise = Futures.promise();
Future<String> theFuture = promise.future();
promise.success("hello");

For these examples PrintResult is defined as follows:

public final static class PrintResult<T> extends OnSuccess<T> {
@Override public final void onSuccess(T t) {
System.out.println(t);

}
}

5.1.5 Functional Futures

Scala’s Future has several monadic methods that are very similar to the ones used by Scala‘s collections.
These allow you to create ‘pipelines’ or ‘streams’ that the result will travel through.

Future is a Monad

The first method for working with Future functionally is map. This method takes a Mapper which performs
some operation on the result of the Future, and returning a new result. The return value of the map method is
another Future that will contain the new result:

import scala.concurrent.duration.Duration;
import akka.japi.Function;
import java.util.concurrent.Callable;
import static akka.dispatch.Futures.future;
import static java.util.concurrent.TimeUnit.SECONDS;

final ExecutionContext ec = system.dispatcher();

Future<String> f1 = future(new Callable<String>() {
public String call() {
return "Hello" + "World";

}
}, ec);

Future<Integer> f2 = f1.map(new Mapper<String, Integer>() {
public Integer apply(String s) {
return s.length();

}
}, ec);

f2.onSuccess(new PrintResult<Integer>(), system.dispatcher());

In this example we are joining two strings together within a Future. Instead of waiting for f1 to complete, we
apply our function that calculates the length of the string using the map method. Now we have a second Future,
f2, that will eventually contain an Integer. When our original Future, f1, completes, it will also apply our
function and complete the second Future with its result. When we finally get the result, it will contain the
number 10. Our original Future still contains the string “HelloWorld” and is unaffected by the map.

Something to note when using these methods: if the Future is still being processed when one of these methods
are called, it will be the completing thread that actually does the work. If the Future is already complete though,
it will be run in our current thread. For example:

final ExecutionContext ec = system.dispatcher();

Future<String> f1 = future(new Callable<String>() {
public String call() throws Exception {
Thread.sleep(100);

5.1. Futures 240

Akka Java Documentation, Release 2.3.16

return "Hello" + "World";
}

}, ec);

Future<Integer> f2 = f1.map(new Mapper<String, Integer>() {
public Integer apply(String s) {
return s.length();

}
}, ec);

f2.onSuccess(new PrintResult<Integer>(), system.dispatcher());

The original Future will take at least 0.1 second to execute now, which means it is still being processed at the
time we call map. The function we provide gets stored within the Future and later executed automatically by
the dispatcher when the result is ready.

If we do the opposite:

final ExecutionContext ec = system.dispatcher();

Future<String> f1 = future(new Callable<String>() {
public String call() {
return "Hello" + "World";

}
}, ec);

// Thread.sleep is only here to prove a point
Thread.sleep(100); // Do not use this in your code

Future<Integer> f2 = f1.map(new Mapper<String, Integer>() {
public Integer apply(String s) {
return s.length();

}
}, ec);

f2.onSuccess(new PrintResult<Integer>(), system.dispatcher());

Our little string has been processed long before our 0.1 second sleep has finished. Because of this, the dispatcher
has moved onto other messages that need processing and can no longer calculate the length of the string for us,
instead it gets calculated in the current thread just as if we weren’t using a Future.

Normally this works quite well as it means there is very little overhead to running a quick function. If there is
a possibility of the function taking a non-trivial amount of time to process it might be better to have this done
concurrently, and for that we use flatMap:

final ExecutionContext ec = system.dispatcher();

Future<String> f1 = future(new Callable<String>() {
public String call() {
return "Hello" + "World";

}
}, ec);

Future<Integer> f2 = f1.flatMap(new Mapper<String, Future<Integer>>() {
public Future<Integer> apply(final String s) {
return future(new Callable<Integer>() {

public Integer call() {
return s.length();

}
}, ec);

}
}, ec);

f2.onSuccess(new PrintResult<Integer>(), system.dispatcher());

5.1. Futures 241

Akka Java Documentation, Release 2.3.16

Now our second Future is executed concurrently as well. This technique can also be used to combine the results
of several Futures into a single calculation, which will be better explained in the following sections.

If you need to do conditional propagation, you can use filter:

final ExecutionContext ec = system.dispatcher();
Future<Integer> future1 = Futures.successful(4);
Future<Integer> successfulFilter = future1.filter(Filter.filterOf(

new Function<Integer, Boolean>() {
public Boolean apply(Integer i) {

return i % 2 == 0;
}

}), ec);

Future<Integer> failedFilter = future1.filter(Filter.filterOf(
new Function<Integer, Boolean>() {
public Boolean apply(Integer i) {

return i % 2 != 0;
}

}), ec);
//When filter fails, the returned Future will be failed with a scala.MatchError

Composing Futures

It is very often desirable to be able to combine different Futures with each other, below are some examples on how
that can be done in a non-blocking fashion.

import static akka.dispatch.Futures.sequence;

final ExecutionContext ec = system.dispatcher();
//Some source generating a sequence of Future<Integer>:s
Iterable<Future<Integer>> listOfFutureInts = source;

// now we have a Future[Iterable[Integer]]
Future<Iterable<Integer>> futureListOfInts = sequence(listOfFutureInts, ec);

// Find the sum of the odd numbers
Future<Long> futureSum = futureListOfInts.map(

new Mapper<Iterable<Integer>, Long>() {
public Long apply(Iterable<Integer> ints) {

long sum = 0;
for (Integer i : ints)

sum += i;
return sum;

}
}, ec);

futureSum.onSuccess(new PrintResult<Long>(), system.dispatcher());

To better explain what happened in the example, Future.sequence is taking the
Iterable<Future<Integer>> and turning it into a Future<Iterable<Integer>>. We can
then use map to work with the Iterable<Integer> directly, and we aggregate the sum of the Iterable.

The traverse method is similar to sequence, but it takes a sequence of A‘‘s and applies a
function from ‘‘A to Future and returns a Future<Iterable>, enabling parallel map over
the sequence, if you use Futures.future to create the Future.

import static akka.dispatch.Futures.traverse;

5.1. Futures 242

Akka Java Documentation, Release 2.3.16

final ExecutionContext ec = system.dispatcher();
//Just a sequence of Strings
Iterable<String> listStrings = Arrays.asList("a", "b", "c");

Future<Iterable<String>> futureResult = traverse(listStrings,
new Function<String, Future<String>>() {
public Future<String> apply(final String r) {

return future(new Callable<String>() {
public String call() {
return r.toUpperCase();

}
}, ec);

}
}, ec);

//Returns the sequence of strings as upper case
futureResult.onSuccess(new PrintResult<Iterable<String>>(), system.dispatcher());

It’s as simple as that!

Then there’s a method that’s called fold that takes a start-value, a sequence of Future:s and a function from
the type of the start-value, a timeout, and the type of the futures and returns something with the same type as the
start-value, and then applies the function to all elements in the sequence of futures, non-blockingly, the execution
will be started when the last of the Futures is completed.

import akka.japi.Function2;
import static akka.dispatch.Futures.fold;

final ExecutionContext ec = system.dispatcher();

//A sequence of Futures, in this case Strings
Iterable<Future<String>> futures = source;

//Start value is the empty string
Future<String> resultFuture = fold("", futures,

new Function2<String, String, String>() {
public String apply(String r, String t) {

return r + t; //Just concatenate
}

}, ec);

resultFuture.onSuccess(new PrintResult<String>(), system.dispatcher());

That’s all it takes!

If the sequence passed to fold is empty, it will return the start-value, in the case above, that will be empty String.
In some cases you don’t have a start-value and you’re able to use the value of the first completing Future in the
sequence as the start-value, you can use reduce, it works like this:

import static akka.dispatch.Futures.reduce;

final ExecutionContext ec = system.dispatcher();
//A sequence of Futures, in this case Strings
Iterable<Future<String>> futures = source;

Future<Object> resultFuture = reduce(futures,
new Function2<Object, String, Object>() {
public Object apply(Object r, String t) {

return r + t; //Just concatenate
}

}, ec);

resultFuture.onSuccess(new PrintResult<Object>(), system.dispatcher());

5.1. Futures 243

Akka Java Documentation, Release 2.3.16

Same as with fold, the execution will be started when the last of the Futures is completed, you can also parallelize
it by chunking your futures into sub-sequences and reduce them, and then reduce the reduced results again.

This is just a sample of what can be done.

5.1.6 Callbacks

Sometimes you just want to listen to a Future being completed, and react to that not by creating a new Future,
but by side-effecting. For this Scala supports onComplete, onSuccess and onFailure, of which the latter
two are specializations of the first.

final ExecutionContext ec = system.dispatcher();

future.onSuccess(new OnSuccess<String>() {
public void onSuccess(String result) {
if ("bar" == result) {

//Do something if it resulted in "bar"
} else {

//Do something if it was some other String
}

}
}, ec);

final ExecutionContext ec = system.dispatcher();

future.onFailure(new OnFailure() {
public void onFailure(Throwable failure) {
if (failure instanceof IllegalStateException) {

//Do something if it was this particular failure
} else {

//Do something if it was some other failure
}

}
}, ec);

final ExecutionContext ec = system.dispatcher();

future.onComplete(new OnComplete<String>() {
public void onComplete(Throwable failure, String result) {
if (failure != null) {

//We got a failure, handle it here
} else {

// We got a result, do something with it
}

}
}, ec);

5.1.7 Ordering

Since callbacks are executed in any order and potentially in parallel, it can be tricky at the times when you need
sequential ordering of operations. But there’s a solution! And it’s name is andThen, and it creates a new Future
with the specified callback, a Future that will have the same result as the Future it’s called on, which allows
for ordering like in the following sample:

final ExecutionContext ec = system.dispatcher();
Future<String> future1 = Futures.successful("value").andThen(

new OnComplete<String>() {
public void onComplete(Throwable failure, String result) {

if (failure != null)
sendToIssueTracker(failure);

}

5.1. Futures 244

Akka Java Documentation, Release 2.3.16

}, ec).andThen(new OnComplete<String>() {
public void onComplete(Throwable failure, String result) {
if (result != null)

sendToTheInternetz(result);
}

}, ec);

5.1.8 Auxiliary methods

Future fallbackTo combines 2 Futures into a new Future, and will hold the successful value of the second
Future if the first Future fails.

Future<String> future1 = Futures.failed(new IllegalStateException("OHNOES1"));
Future<String> future2 = Futures.failed(new IllegalStateException("OHNOES2"));
Future<String> future3 = Futures.successful("bar");
// Will have "bar" in this case
Future<String> future4 = future1.fallbackTo(future2).fallbackTo(future3);
future4.onSuccess(new PrintResult<String>(), system.dispatcher());

You can also combine two Futures into a new Future that will hold a tuple of the two Futures successful results,
using the zip operation.

final ExecutionContext ec = system.dispatcher();
Future<String> future1 = Futures.successful("foo");
Future<String> future2 = Futures.successful("bar");
Future<String> future3 = future1.zip(future2).map(

new Mapper<scala.Tuple2<String, String>, String>() {
public String apply(scala.Tuple2<String, String> zipped) {

return zipped._1() + " " + zipped._2();
}

}, ec);

future3.onSuccess(new PrintResult<String>(), system.dispatcher());

5.1.9 Exceptions

Since the result of a Future is created concurrently to the rest of the program, exceptions must be handled dif-
ferently. It doesn’t matter if an UntypedActor or the dispatcher is completing the Future, if an Exception
is caught the Future will contain it instead of a valid result. If a Future does contain an Exception, calling
Await.result will cause it to be thrown again so it can be handled properly.

It is also possible to handle an Exception by returning a different result. This is done with the recover
method. For example:

final ExecutionContext ec = system.dispatcher();

Future<Integer> future = future(new Callable<Integer>() {
public Integer call() {
return 1 / 0;

}
}, ec).recover(new Recover<Integer>() {

public Integer recover(Throwable problem) throws Throwable {
if (problem instanceof ArithmeticException)

return 0;
else

throw problem;
}

}, ec);

future.onSuccess(new PrintResult<Integer>(), system.dispatcher());

5.1. Futures 245

Akka Java Documentation, Release 2.3.16

In this example, if the actor replied with a akka.actor.Status.Failure containing the
ArithmeticException, our Future would have a result of 0. The recover method works very
similarly to the standard try/catch blocks, so multiple Exceptions can be handled in this manner, and if an
Exception is not handled this way it will behave as if we hadn’t used the recover method.

You can also use the recoverWith method, which has the same relationship to recover as flatMap has to
map, and is use like this:

final ExecutionContext ec = system.dispatcher();

Future<Integer> future = future(new Callable<Integer>() {
public Integer call() {
return 1 / 0;

}
}, ec).recoverWith(new Recover<Future<Integer>>() {

public Future<Integer> recover(Throwable problem) throws Throwable {
if (problem instanceof ArithmeticException) {

return future(new Callable<Integer>() {
public Integer call() {
return 0;

}
}, ec);

} else
throw problem;

}
}, ec);

future.onSuccess(new PrintResult<Integer>(), system.dispatcher());

5.1.10 After

akka.pattern.Patterns.after makes it easy to complete a Future with a value or exception after a
timeout.

import static akka.pattern.Patterns.after;
import java.util.Arrays;

final ExecutionContext ec = system.dispatcher();
Future<String> failExc = Futures.failed(new IllegalStateException("OHNOES1"));
Future<String> delayed = Patterns.after(Duration.create(200, "millis"),

system.scheduler(), ec, failExc);
Future<String> future = future(new Callable<String>() {

public String call() throws InterruptedException {
Thread.sleep(1000);
return "foo";

}
}, ec);
Future<String> result = Futures.firstCompletedOf(

Arrays.<Future<String>>asList(future, delayed), ec);

5.2 Agents

Agents in Akka are inspired by agents in Clojure.

Agents provide asynchronous change of individual locations. Agents are bound to a single storage location for
their lifetime, and only allow mutation of that location (to a new state) to occur as a result of an action. Update
actions are functions that are asynchronously applied to the Agent’s state and whose return value becomes the
Agent’s new state. The state of an Agent should be immutable.

5.2. Agents 246

http://clojure.org/agents

Akka Java Documentation, Release 2.3.16

While updates to Agents are asynchronous, the state of an Agent is always immediately available for reading by
any thread (using get) without any messages.

Agents are reactive. The update actions of all Agents get interleaved amongst threads in an
ExecutionContext. At any point in time, at most one send action for each Agent is being executed. Actions
dispatched to an agent from another thread will occur in the order they were sent, potentially interleaved with
actions dispatched to the same agent from other threads.

5.2.1 Creating Agents

Agents are created by invoking new Agent<ValueType>(value, executionContext) – passing in
the Agent’s initial value and providing an ExecutionContext to be used for it:

import scala.concurrent.ExecutionContext;
import akka.agent.Agent;
import akka.dispatch.ExecutionContexts;
ExecutionContext ec = ExecutionContexts.global();
Agent<Integer> agent = Agent.create(5, ec);

5.2.2 Reading an Agent’s value

Agents can be dereferenced (you can get an Agent’s value) by invoking the Agent with get() like this:

Integer result = agent.get();

Reading an Agent’s current value does not involve any message passing and happens immediately. So while
updates to an Agent are asynchronous, reading the state of an Agent is synchronous.

You can also get a Future to the Agents value, that will be completed after the currently queued updates have
completed:

import scala.concurrent.Future;
Future<Integer> future = agent.future();

See Futures for more information on Futures.

5.2.3 Updating Agents (send & alter)

You update an Agent by sending a function (akka.dispatch.Mapper) that transforms the current value or
by sending just a new value. The Agent will apply the new value or function atomically and asynchronously. The
update is done in a fire-forget manner and you are only guaranteed that it will be applied. There is no guarantee
of when the update will be applied but dispatches to an Agent from a single thread will occur in order. You apply
a value or a function by invoking the send function.

import akka.dispatch.Mapper;
// send a value, enqueues this change
// of the value of the Agent
agent.send(7);

// send a Mapper, enqueues this change
// to the value of the Agent
agent.send(new Mapper<Integer, Integer>() {

public Integer apply(Integer i) {
return i * 2;

}
});

You can also dispatch a function to update the internal state but on its own thread. This does not use the reactive
thread pool and can be used for long-running or blocking operations. You do this with the sendOff method.
Dispatches using either sendOff or send will still be executed in order.

5.2. Agents 247

Akka Java Documentation, Release 2.3.16

import akka.dispatch.Mapper;
// sendOff a function
agent.sendOff(longRunningOrBlockingFunction,

theExecutionContextToExecuteItIn);

All send methods also have a corresponding alter method that returns a Future. See Futures for more
information on Futures.

import akka.dispatch.Mapper;
import scala.concurrent.Future;
// alter a value
Future<Integer> f1 = agent.alter(7);

// alter a function (Mapper)
Future<Integer> f2 = agent.alter(new Mapper<Integer, Integer>() {

public Integer apply(Integer i) {
return i * 2;

}
});

import akka.dispatch.Mapper;
import scala.concurrent.Future;
// alterOff a function (Mapper)
Future<Integer> f3 = agent.alterOff(longRunningOrBlockingFunction,

theExecutionContextToExecuteItIn);

5.2.4 Configuration

There are several configuration properties for the agents module, please refer to the reference configuration.

5.2.5 Deprecated Transactional Agents

Agents participating in enclosing STM transaction is a deprecated feature in 2.3.

If an Agent is used within an enclosing Scala STM transaction, then it will participate in that transaction.
If you send to an Agent within a transaction then the dispatch to the Agent will be held until that transaction
commits, and discarded if the transaction is aborted.

5.2. Agents 248

CHAPTER

SIX

NETWORKING

6.1 Cluster Specification

Note: This document describes the design concepts of the clustering. It is divided into two parts, where the first
part describes what is currently implemented and the second part describes what is planned as future enhance-
ments/additions. References to unimplemented parts have been marked with the footnote [*]

6.1.1 The Current Cluster

Intro

Akka Cluster provides a fault-tolerant decentralized peer-to-peer based cluster membership service with no single
point of failure or single point of bottleneck. It does this using gossip protocols and an automatic failure detector.

Terms

node A logical member of a cluster. There could be multiple nodes on a physical machine. Defined by a host-
name:port:uid tuple.

cluster A set of nodes joined together through the membership service.

leader A single node in the cluster that acts as the leader. Managing cluster convergence, partitions [*], fail-over
[*], rebalancing [*] etc.

Membership

A cluster is made up of a set of member nodes. The identifier for each node is a hostname:port:uid tuple.
An Akka application can be distributed over a cluster with each node hosting some part of the application. Cluster
membership and partitioning [*] of the application are decoupled. A node could be a member of a cluster without
hosting any actors. Joining a cluster is initiated by issuing a Join command to one of the nodes in the cluster to
join.

The node identifier internally also contains a UID that uniquely identifies this actor system instance at that
hostname:port. Akka uses the UID to be able to reliably trigger remote death watch. This means that
the same actor system can never join a cluster again once it’s been removed from that cluster. To re-join an actor
system with the same hostname:port to a cluster you have to stop the actor system and start a new one with
the same hotname:port which will then receive a different UID.

The cluster membership state is a specialized CRDT, which means that it has a monotonic merge function. When
concurrent changes occur on different nodes the updates can always be merged and converge to the same end
result.

249

http://hal.upmc.fr/docs/00/55/55/88/PDF/techreport.pdf

Akka Java Documentation, Release 2.3.16

Gossip

The cluster membership used in Akka is based on Amazon’s Dynamo system and particularly the approach taken
in Basho’s‘ Riak distributed database. Cluster membership is communicated using a Gossip Protocol, where the
current state of the cluster is gossiped randomly through the cluster, with preference to members that have not
seen the latest version.

Vector Clocks Vector clocks are a type of data structure and algorithm for generating a partial ordering of events
in a distributed system and detecting causality violations.

We use vector clocks to reconcile and merge differences in cluster state during gossiping. A vector clock is a set
of (node, counter) pairs. Each update to the cluster state has an accompanying update to the vector clock.

Gossip Convergence Information about the cluster converges locally at a node at certain points in time. This is
when a node can prove that the cluster state he is observing has been observed by all other nodes in the cluster.
Convergence is implemented by passing a set of nodes that have seen current state version during gossip. This
information is referred to as the seen set in the gossip overview. When all nodes are included in the seen set there
is convergence.

Gossip convergence cannot occur while any nodes are unreachable. The nodes need to become reachable
again, or moved to the down and removed states (see the Membership Lifecycle section below). This only blocks
the leader from performing its cluster membership management and does not influence the application running on
top of the cluster. For example this means that during a network partition it is not possible to add more nodes to
the cluster. The nodes can join, but they will not be moved to the up state until the partition has healed or the
unreachable nodes have been downed.

Failure Detector The failure detector is responsible for trying to detect if a node is unreachable from the
rest of the cluster. For this we are using an implementation of The Phi Accrual Failure Detector by Hayashibara
et al.

An accrual failure detector decouple monitoring and interpretation. That makes them applicable to a wider area
of scenarios and more adequate to build generic failure detection services. The idea is that it is keeping a history
of failure statistics, calculated from heartbeats received from other nodes, and is trying to do educated guesses by
taking multiple factors, and how they accumulate over time, into account in order to come up with a better guess
if a specific node is up or down. Rather than just answering “yes” or “no” to the question “is the node down?” it
returns a phi value representing the likelihood that the node is down.

The threshold that is the basis for the calculation is configurable by the user. A low threshold is prone
to generate many wrong suspicions but ensures a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect actual crashes. The default threshold is
8 and is appropriate for most situations. However in cloud environments, such as Amazon EC2, the value could
be increased to 12 in order to account for network issues that sometimes occur on such platforms.

In a cluster each node is monitored by a few (default maximum 5) other nodes, and when any of these detects the
node as unreachable that information will spread to the rest of the cluster through the gossip. In other words,
only one node needs to mark a node unreachable to have the rest of the cluster mark that node unreachable.

The nodes to monitor are picked out of neighbors in a hashed ordered node ring. This is to increase the likelihood
to monitor across racks and data centers, but the order is the same on all nodes, which ensures full coverage.

Heartbeats are sent out every second and every heartbeat is performed in a request/reply handshake with the replies
used as input to the failure detector.

The failure detector will also detect if the node becomes reachable again. When all nodes that monitored the
unreachable node detects it as reachable again the cluster, after gossip dissemination, will consider it as
reachable.

If system messages cannot be delivered to a node it will be quarantined and then it cannot come back from
unreachable. This can happen if the there are too many unacknowledged system messages (e.g. watch,
Terminated, remote actor deployment, failures of actors supervised by remote parent). Then the node needs to be

6.1. Cluster Specification 250

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://basho.com/technology/architecture/
http://en.wikipedia.org/wiki/Gossip_protocol
http://en.wikipedia.org/wiki/Vector_clock
http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Java Documentation, Release 2.3.16

moved to the down or removed states (see the Membership Lifecycle section below) and the actor system must
be restarted before it can join the cluster again.

Leader After gossip convergence a leader for the cluster can be determined. There is no leader election
process, the leader can always be recognised deterministically by any node whenever there is gossip conver-
gence. The leader is just a role, any node can be the leader and it can change between convergence rounds. The
leader is simply the first node in sorted order that is able to take the leadership role, where the preferred member
states for a leader are up and leaving (see the Membership Lifecycle section below for more information
about member states).

The role of the leader is to shift members in and out of the cluster, changing joining members to the up
state or exiting members to the removed state. Currently leader actions are only triggered by receiving a
new cluster state with gossip convergence.

The leader also has the power, if configured so, to “auto-down” a node that according to the Failure Detector
is considered unreachable. This means setting the unreachable node status to down automatically after a
configured time of unreachability.

Seed Nodes The seed nodes are configured contact points for new nodes joining the cluster. When a new node
is started it sends a message to all seed nodes and then sends a join command to the seed node that answers first.

The seed nodes configuration value does not have any influence on the running cluster itself, it is only relevant for
new nodes joining the cluster as it helps them to find contact points to send the join command to; a new member
can send this command to any current member of the cluster, not only to the seed nodes.

Gossip Protocol A variation of push-pull gossip is used to reduce the amount of gossip information sent around
the cluster. In push-pull gossip a digest is sent representing current versions but not actual values; the recipient of
the gossip can then send back any values for which it has newer versions and also request values for which it has
outdated versions. Akka uses a single shared state with a vector clock for versioning, so the variant of push-pull
gossip used in Akka makes use of this version to only push the actual state as needed.

Periodically, the default is every 1 second, each node chooses another random node to initiate a round of gossip
with. If less than ½ of the nodes resides in the seen set (have seen the new state) then the cluster gossips 3 times
instead of once every second. This adjusted gossip interval is a way to speed up the convergence process in the
early dissemination phase after a state change.

The choice of node to gossip with is random but it is biased to towards nodes that might not have seen the
current state version. During each round of gossip exchange when no convergence it uses a probability of 0.8
(configurable) to gossip to a node not part of the seen set, i.e. that probably has an older version of the state.
Otherwise gossip to any random live node.

This biased selection is a way to speed up the convergence process in the late dissemination phase after a state
change.

For clusters larger than 400 nodes (configurable, and suggested by empirical evidence) the 0.8 probability is
gradually reduced to avoid overwhelming single stragglers with too many concurrent gossip requests. The gossip
receiver also has a mechanism to protect itself from too many simultaneous gossip messages by dropping messages
that have been enqueued in the mailbox for too long time.

While the cluster is in a converged state the gossiper only sends a small gossip status message containing the
gossip version to the chosen node. As soon as there is a change to the cluster (meaning non-convergence) then it
goes back to biased gossip again.

The recipient of the gossip state or the gossip status can use the gossip version (vector clock) to determine whether:

1. it has a newer version of the gossip state, in which case it sends that back to the gossiper

2. it has an outdated version of the state, in which case the recipient requests the current state from the gossiper
by sending back its version of the gossip state

3. it has conflicting gossip versions, in which case the different versions are merged and sent back

6.1. Cluster Specification 251

Akka Java Documentation, Release 2.3.16

If the recipient and the gossip have the same version then the gossip state is not sent or requested.

The periodic nature of the gossip has a nice batching effect of state changes, e.g. joining several nodes quickly
after each other to one node will result in only one state change to be spread to other members in the cluster.

The gossip messages are serialized with protobuf and also gzipped to reduce payload size.

Membership Lifecycle

A node begins in the joining state. Once all nodes have seen that the new node is joining (through gossip
convergence) the leader will set the member state to up.

If a node is leaving the cluster in a safe, expected manner then it switches to the leaving state. Once the leader
sees the convergence on the node in the leaving state, the leader will then move it to exiting. Once all
nodes have seen the exiting state (convergence) the leader will remove the node from the cluster, marking it as
removed.

If a node is unreachable then gossip convergence is not possible and therefore any leader actions are also
not possible (for instance, allowing a node to become a part of the cluster). To be able to move forward the state
of the unreachable nodes must be changed. It must become reachable again or marked as down. If the
node is to join the cluster again the actor system must be restarted and go through the joining process again. The
cluster can, through the leader, also auto-down a node after a configured time of unreachability..

Note: If you have auto-down enabled and the failure detector triggers, you can over time end up with a lot of
single node clusters if you don’t put measures in place to shut down nodes that have become unreachable.
This follows from the fact that the unreachable node will likely see the rest of the cluster as unreachable,
become its own leader and form its own cluster.

State Diagram for the Member States

6.1. Cluster Specification 252

https://code.google.com/p/protobuf/

Akka Java Documentation, Release 2.3.16

Member States

• joining transient state when joining a cluster

• up normal operating state

• leaving / exiting states during graceful removal

• down marked as down (no longer part of cluster decisions)

• removed tombstone state (no longer a member)

User Actions

• join join a single node to a cluster - can be explicit or automatic on startup if a node to join have been
specified in the configuration

• leave tell a node to leave the cluster gracefully

• down mark a node as down

Leader Actions The leader has the following duties:

• shifting members in and out of the cluster

– joining -> up

– exiting -> removed

Failure Detection and Unreachability

• fd* the failure detector of one of the monitoring nodes has triggered causing the monitored node to be
marked as unreachable

• unreachable* unreachable is not a real member states but more of a flag in addition to the state signaling
that the cluster is unable to talk to this node, after beeing unreachable the failure detector may detect
it as reachable again and thereby remove the flag

6.1.2 Future Cluster Enhancements and Additions

Goal

In addition to membership also provide automatic partitioning [*], handoff [*], and cluster rebalancing [*] of
actors.

Additional Terms

These additional terms are used in this section.

partition [*] An actor or subtree of actors in the Akka application that is distributed within the cluster.

partition point [*] The actor at the head of a partition. The point around which a partition is formed.

partition path [*] Also referred to as the actor address. Has the format actor1/actor2/actor3

instance count [*] The number of instances of a partition in the cluster. Also referred to as the N-value of the
partition.

instance node [*] A node that an actor instance is assigned to.

partition table [*] A mapping from partition path to a set of instance nodes (where the nodes are referred to by
the ordinal position given the nodes in sorted order).

6.1. Cluster Specification 253

Akka Java Documentation, Release 2.3.16

Partitioning

Note: Actor partitioning is not implemented yet [*].

Each partition (an actor or actor subtree) in the actor system is assigned to a set of nodes in the cluster. The actor
at the head of the partition is referred to as the partition point. The mapping from partition path (actor address of
the format “a/b/c”) to instance nodes is stored in the partition table and is maintained as part of the cluster state
through the gossip protocol. The partition table is only updated by the leader node. Currently the only possible
partition points are routed actors.

Routed actors can have an instance count greater than one. The instance count is also referred to as the N-value.
If the N-value is greater than one then a set of instance nodes will be given in the partition table.

Note that in the first implementation there may be a restriction such that only top-level partitions are possible (the
highest possible partition points are used and sub-partitioning is not allowed). Still to be explored in more detail.

The cluster leader determines the current instance count for a partition based on two axes: fault-tolerance and
scaling.

Fault-tolerance determines a minimum number of instances for a routed actor (allowing N-1 nodes to crash while
still maintaining at least one running actor instance). The user can specify a function from current number of
nodes to the number of acceptable node failures: n: Int => f: Int where f < n.

Scaling reflects the number of instances needed to maintain good throughput and is influenced by metrics from the
system, particularly a history of mailbox size, CPU load, and GC percentages. It may also be possible to accept
scaling hints from the user that indicate expected load.

The balancing of partitions can be determined in a very simple way in the first implementation, where the overlap
of partitions is minimized. Partitions are spread over the cluster ring in a circular fashion, with each instance node
in the first available space. For example, given a cluster with ten nodes and three partitions, A, B, and C, having
N-values of 4, 3, and 5; partition A would have instances on nodes 1-4; partition B would have instances on nodes
5-7; partition C would have instances on nodes 8-10 and 1-2. The only overlap is on nodes 1 and 2.

The distribution of partitions is not limited, however, to having instances on adjacent nodes in the sorted ring
order. Each instance can be assigned to any node and the more advanced load balancing algorithms will make
use of this. The partition table contains a mapping from path to instance nodes. The partitioning for the above
example would be:

A -> { 1, 2, 3, 4 }
B -> { 5, 6, 7 }
C -> { 8, 9, 10, 1, 2 }

If 5 new nodes join the cluster and in sorted order these nodes appear after the current nodes 2, 4, 5, 7, and 8, then
the partition table could be updated to the following, with all instances on the same physical nodes as before:

A -> { 1, 2, 4, 5 }
B -> { 7, 9, 10 }
C -> { 12, 14, 15, 1, 2 }

When rebalancing is required the leader will schedule handoffs, gossiping a set of pending changes, and when
each change is complete the leader will update the partition table.

Additional Leader Responsibilities

After moving a member from joining to up, the leader can start assigning partitions [*] to the new node, and when
a node is leaving the leader will reassign partitions [*] across the cluster (it is possible for a leaving node to
itself be the leader). When all partition handoff [*] has completed then the node will change to the exiting
state.

On convergence the leader can schedule rebalancing across the cluster, but it may also be possible for the user to
explicitly rebalance the cluster by specifying migrations [*], or to rebalance [*] the cluster automatically based

6.1. Cluster Specification 254

Akka Java Documentation, Release 2.3.16

on metrics from member nodes. Metrics may be spread using the gossip protocol or possibly more efficiently
using a random chord method, where the leader contacts several random nodes around the cluster ring and
each contacted node gathers information from their immediate neighbours, giving a random sampling of load
information.

Handoff

Handoff for an actor-based system is different than for a data-based system. The most important point is that
message ordering (from a given node to a given actor instance) may need to be maintained. If an actor is a
singleton actor (only one instance possible throughout the cluster) then the cluster may also need to assure that
there is only one such actor active at any one time. Both of these situations can be handled by forwarding and
buffering messages during transitions.

A graceful handoff (one where the previous host node is up and running during the handoff), given a previous host
node N1, a new host node N2, and an actor partition A to be migrated from N1 to N2, has this general structure:

1. the leader sets a pending change for N1 to handoff A to N2

2. N1 notices the pending change and sends an initialization message to N2

3. in response N2 creates A and sends back a ready message

4. after receiving the ready message N1 marks the change as complete and shuts down A

5. the leader sees the migration is complete and updates the partition table

6. all nodes eventually see the new partitioning and use N2

Transitions There are transition times in the handoff process where different approaches can be used to give
different guarantees.

Migration Transition The first transition starts when N1 initiates the moving of A and ends when N1 receives
the ready message, and is referred to as the migration transition.

The first question is; during the migration transition, should:

• N1 continue to process messages for A?

• Or is it important that no messages for A are processed on N1 once migration begins?

If it is okay for the previous host node N1 to process messages during migration then there is nothing that needs
to be done at this point.

If no messages are to be processed on the previous host node during migration then there are two possibilities: the
messages are forwarded to the new host and buffered until the actor is ready, or the messages are simply dropped
by terminating the actor and allowing the normal dead letter process to be used.

Update Transition The second transition begins when the migration is marked as complete and ends when all
nodes have the updated partition table (when all nodes will use N2 as the host for A, i.e. we have convergence)
and is referred to as the update transition.

Once the update transition begins N1 can forward any messages it receives for A to the new host N2. The question
is whether or not message ordering needs to be preserved. If messages sent to the previous host node N1 are being
forwarded, then it is possible that a message sent to N1 could be forwarded after a direct message to the new host
N2, breaking message ordering from a client to actor A.

In this situation N2 can keep a buffer for messages per sending node. Each buffer is flushed and removed when
an acknowledgement (ack) message has been received. When each node in the cluster sees the partition update
it first sends an ack message to the previous host node N1 before beginning to use N2 as the new host for A. Any
messages sent from the client node directly to N2 will be buffered. N1 can count down the number of acks to
determine when no more forwarding is needed. The ack message from any node will always follow any other
messages sent to N1. When N1 receives the ackmessage it also forwards it to N2 and again this ackmessage will

6.1. Cluster Specification 255

Akka Java Documentation, Release 2.3.16

follow any other messages already forwarded for A. When N2 receives an ack message, the buffer for the sending
node can be flushed and removed. Any subsequent messages from this sending node can be queued normally.
Once all nodes in the cluster have acknowledged the partition change and N2 has cleared all buffers, the handoff is
complete and message ordering has been preserved. In practice the buffers should remain small as it is only those
messages sent directly to N2 before the acknowledgement has been forwarded that will be buffered.

Graceful Handoff A more complete process for graceful handoff would be:

1. the leader sets a pending change for N1 to handoff A to N2

2. N1 notices the pending change and sends an initialization message to N2. Options:

(a) keep A on N1 active and continuing processing messages as normal

(b) N1 forwards all messages for A to N2

(c) N1 drops all messages for A (terminate A with messages becoming dead letters)

3. in response N2 creates A and sends back a ready message. Options:

(a) N2 simply processes messages for A as normal

(b) N2 creates a buffer per sending node for A. Each buffer is opened (flushed and removed) when an
acknowledgement for the sending node has been received (via N1)

4. after receiving the ready message N1 marks the change as complete. Options:

(a) N1 forwards all messages for A to N2 during the update transition

(b) N1 drops all messages for A (terminate A with messages becoming dead letters)

5. the leader sees the migration is complete and updates the partition table

6. all nodes eventually see the new partitioning and use N2

(a) each node sends an acknowledgement message to N1

(b) when N1 receives the acknowledgement it can count down the pending acknowledgements and remove
forwarding when complete

(c) when N2 receives the acknowledgement it can open the buffer for the sending node (if buffers are
used)

The default approach is to take options 2a, 3a, and 4a - allowing A on N1 to continue processing messages during
migration and then forwarding any messages during the update transition. This assumes stateless actors that do
not have a dependency on message ordering from any given source.

• If an actor has persistent (durable) state then nothing needs to be done, other than migrating the actor.

• If message ordering needs to be maintained during the update transition then option 3b can be used, creating
buffers per sending node.

• If the actors are robust to message send failures then the dropping messages approach can be used (with no
forwarding or buffering needed).

• If an actor is a singleton (only one instance possible throughout the cluster) and state is transferred during
the migration initialization, then options 2b and 3b would be required.

Stateful Actor Replication

Note: Stateful actor replication is not implemented yet [*].

6.1. Cluster Specification 256

Akka Java Documentation, Release 2.3.16

[*] Not Implemented Yet

• Actor partitioning

• Actor handoff

• Actor rebalancing

• Stateful actor replication

6.2 Cluster Usage

For introduction to the Akka Cluster concepts please see Cluster Specification.

6.2.1 Preparing Your Project for Clustering

The Akka cluster is a separate jar file. Make sure that you have the following dependency in your project:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-cluster_2.10</artifactId>
<version>2.3.16</version>

</dependency>

6.2.2 A Simple Cluster Example

The following configuration enables the Cluster extension to be used. It joins the cluster and an actor subscribes
to cluster membership events and logs them.

The application.conf configuration looks like this:

akka {
actor {
provider = "akka.cluster.ClusterActorRefProvider"

}
remote {
log-remote-lifecycle-events = off
netty.tcp {

hostname = "127.0.0.1"
port = 0

}
}

cluster {
seed-nodes = [

"akka.tcp://ClusterSystem@127.0.0.1:2551",
"akka.tcp://ClusterSystem@127.0.0.1:2552"]

auto-down-unreachable-after = 10s
}

}

To enable cluster capabilities in your Akka project you should, at a minimum, add the Remoting settings, but with
akka.cluster.ClusterActorRefProvider. The akka.cluster.seed-nodes should normally
also be added to your application.conf file.

The seed nodes are configured contact points for initial, automatic, join of the cluster.

Note that if you are going to start the nodes on different machines you need to specify the ip-addresses or host
names of the machines in application.conf instead of 127.0.0.1

6.2. Cluster Usage 257

Akka Java Documentation, Release 2.3.16

An actor that uses the cluster extension may look like this:

package sample.cluster.simple;

import akka.actor.UntypedActor;
import akka.cluster.Cluster;
import akka.cluster.ClusterEvent;
import akka.cluster.ClusterEvent.MemberEvent;
import akka.cluster.ClusterEvent.MemberUp;
import akka.cluster.ClusterEvent.MemberRemoved;
import akka.cluster.ClusterEvent.UnreachableMember;
import akka.event.Logging;
import akka.event.LoggingAdapter;

public class SimpleClusterListener extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);
Cluster cluster = Cluster.get(getContext().system());

//subscribe to cluster changes
@Override
public void preStart() {
//#subscribe
cluster.subscribe(getSelf(), ClusterEvent.initialStateAsEvents(),

MemberEvent.class, UnreachableMember.class);
//#subscribe

}

//re-subscribe when restart
@Override
public void postStop() {
cluster.unsubscribe(getSelf());

}

@Override
public void onReceive(Object message) {
if (message instanceof MemberUp) {

MemberUp mUp = (MemberUp) message;
log.info("Member is Up: {}", mUp.member());

} else if (message instanceof UnreachableMember) {
UnreachableMember mUnreachable = (UnreachableMember) message;
log.info("Member detected as unreachable: {}", mUnreachable.member());

} else if (message instanceof MemberRemoved) {
MemberRemoved mRemoved = (MemberRemoved) message;
log.info("Member is Removed: {}", mRemoved.member());

} else if (message instanceof MemberEvent) {
// ignore

} else {
unhandled(message);

}

}
}

The actor registers itself as subscriber of certain cluster events. It receives events corresponding to the current
state of the cluster when the subscription starts and then it receives events for changes that happen in the cluster.

The easiest way to run this example yourself is to download Typesafe Activator and open the tutorial named Akka
Cluster Samples with Java. It contains instructions of how to run the SimpleClusterApp.

6.2. Cluster Usage 258

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-cluster-java
http://www.typesafe.com/activator/template/akka-sample-cluster-java

Akka Java Documentation, Release 2.3.16

6.2.3 Joining to Seed Nodes

You may decide if joining to the cluster should be done manually or automatically to configured initial contact
points, so-called seed nodes. When a new node is started it sends a message to all seed nodes and then sends join
command to the one that answers first. If no one of the seed nodes replied (might not be started yet) it retries this
procedure until successful or shutdown.

You define the seed nodes in the Configuration file (application.conf):

akka.cluster.seed-nodes = [
"akka.tcp://ClusterSystem@host1:2552",
"akka.tcp://ClusterSystem@host2:2552"]

This can also be defined as Java system properties when starting the JVM using the following syntax:

-Dakka.cluster.seed-nodes.0=akka.tcp://ClusterSystem@host1:2552
-Dakka.cluster.seed-nodes.1=akka.tcp://ClusterSystem@host2:2552

The seed nodes can be started in any order and it is not necessary to have all seed nodes running, but the node
configured as the first element in the seed-nodes configuration list must be started when initially starting a
cluster, otherwise the other seed-nodes will not become initialized and no other node can join the cluster. The
reason for the special first seed node is to avoid forming separated islands when starting from an empty cluster. It
is quickest to start all configured seed nodes at the same time (order doesn’t matter), otherwise it can take up to
the configured seed-node-timeout until the nodes can join.

Once more than two seed nodes have been started it is no problem to shut down the first seed node. If the first
seed node is restarted, it will first try to join the other seed nodes in the existing cluster.

If you don’t configure seed nodes you need to join the cluster programmatically or manually.

Manual joining can be performed by using ref:cluster_jmx_java or Command Line Management. Joining progra-
matically can be performed with Cluster.get(system).join.

You can join to any node in the cluster. It does not have to be configured as a seed node. Note that you can only
join to an existing cluster member, which means that for bootstrapping some node must join itself.

You may also use Cluster.get(system).joinSeedNodes to join programmatically, which is attrac-
tive when dynamically discovering other nodes at startup by using some external tool or API. When using
joinSeedNodes you should not include the node itself except for the node that is supposed to be the first
seed node, and that should be placed first in parameter to joinSeedNodes.

Unsuccessful join attempts are automatically retried after the time period defined in configuration property
retry-unsuccessful-join-after. When using seed-nodes this means that a new seed node is
picked. When joining manually or programatically this means that the last join request is retried. Retries can
be disabled by setting the property to off.

An actor system can only join a cluster once. Additional attempts will be ignored. When it has successfully joined
it must be restarted to be able to join another cluster or to join the same cluster again. It can use the same host
name and port after the restart, but it must have been removed from the cluster before the join request is accepted.

6.2.4 Automatic vs. Manual Downing

When a member is considered by the failure detector to be unreachable the leader is not allowed to perform its
duties, such as changing status of new joining members to ‘Up’. The node must first become reachable again, or
the status of the unreachable member must be changed to ‘Down’. Changing status to ‘Down’ can be performed
automatically or manually. By default it must be done manually, using JMX or Command Line Management.

It can also be performed programatically with Cluster.get(system).down(address).

You can enable automatic downing with configuration:

akka.cluster.auto-down-unreachable-after = 120s

6.2. Cluster Usage 259

Akka Java Documentation, Release 2.3.16

This means that the cluster leader member will change the unreachable node status to down automatically
after the configured time of unreachability.

Be aware of that using auto-down implies that two separate clusters will automatically be formed in case of
network partition. That might be desired by some applications but not by others.

Note: If you have auto-down enabled and the failure detector triggers, you can over time end up with a lot of
single node clusters if you don’t put measures in place to shut down nodes that have become unreachable.
This follows from the fact that the unreachable node will likely see the rest of the cluster as unreachable,
become its own leader and form its own cluster.

6.2.5 Leaving

There are two ways to remove a member from the cluster.

You can just stop the actor system (or the JVM process). It will be detected as unreachable and removed after the
automatic or manual downing as described above.

A more graceful exit can be performed if you tell the cluster that a node shall leave. This can be
performed using JMX or Command Line Management. It can also be performed programatically with
Cluster.get(system).leave(address).

Note that this command can be issued to any member in the cluster, not necessarily the one that is leaving. The
cluster extension, but not the actor system or JVM, of the leaving member will be shutdown after the leader has
changed status of the member to Exiting. Thereafter the member will be removed from the cluster. Normally this
is handled automatically, but in case of network failures during this process it might still be necessary to set the
node’s status to Down in order to complete the removal.

6.2.6 Subscribe to Cluster Events

You can subscribe to change notifications of the cluster membership by using
Cluster.get(system).subscribe.

cluster.subscribe(getSelf(), MemberEvent.class, UnreachableMember.class);

A snapshot of the full state, akka.cluster.ClusterEvent.CurrentClusterState, is sent to the
subscriber as the first message, followed by events for incremental updates.

Note that you may receive an empty CurrentClusterState, containing no members, if you start the sub-
scription before the initial join procedure has completed. This is expected behavior. When the node has been
accepted in the cluster you will receive MemberUp for that node, and other nodes.

If you find it inconvenient to handle the CurrentClusterState you can use
ClusterEvent.initialStateAsEvents() as parameter to subscribe. That means that in-
stead of receiving CurrentClusterState as the first message you will receive the events corresponding to
the current state to mimic what you would have seen if you were listening to the events when they occurred in the
past. Note that those initial events only correspond to the current state and it is not the full history of all changes
that actually has occurred in the cluster.

cluster.subscribe(getSelf(), ClusterEvent.initialStateAsEvents(),
MemberEvent.class, UnreachableMember.class);

The events to track the life-cycle of members are:

• ClusterEvent.MemberUp - A new member has joined the cluster and its status has been changed to
Up.

• ClusterEvent.MemberExited - A member is leaving the cluster and its status has been changed to
Exiting Note that the node might already have been shutdown when this event is published on another
node.

6.2. Cluster Usage 260

Akka Java Documentation, Release 2.3.16

• ClusterEvent.MemberRemoved - Member completely removed from the cluster.

• ClusterEvent.UnreachableMember - A member is considered as unreachable, detected by the
failure detector of at least one other node.

• ClusterEvent.ReachableMember - A member is considered as reachable again, after having been
unreachable. All nodes that previously detected it as unreachable has detected it as reachable again.

There are more types of change events, consult the API documentation of classes that extends
akka.cluster.ClusterEvent.ClusterDomainEvent for details about the events.

Instead of subscribing to cluster events it can sometimes be convenient to only get the full membership state with
Cluster.get(system).state(). Note that this state is not necessarily in sync with the events published
to a cluster subscription.

Worker Dial-in Example

Let’s take a look at an example that illustrates how workers, here named backend, can detect and register to new
master nodes, here named frontend.

The example application provides a service to transform text. When some text is sent to one of the frontend
services, it will be delegated to one of the backend workers, which performs the transformation job, and sends the
result back to the original client. New backend nodes, as well as new frontend nodes, can be added or removed to
the cluster dynamically.

Messages:

public interface TransformationMessages {

public static class TransformationJob implements Serializable {
private final String text;

public TransformationJob(String text) {
this.text = text;

}

public String getText() {
return text;

}
}

public static class TransformationResult implements Serializable {
private final String text;

public TransformationResult(String text) {
this.text = text;

}

public String getText() {
return text;

}

@Override
public String toString() {

return "TransformationResult(" + text + ")";
}

}

public static class JobFailed implements Serializable {
private final String reason;
private final TransformationJob job;

public JobFailed(String reason, TransformationJob job) {
this.reason = reason;

6.2. Cluster Usage 261

Akka Java Documentation, Release 2.3.16

this.job = job;
}

public String getReason() {
return reason;

}

public TransformationJob getJob() {
return job;

}

@Override
public String toString() {

return "JobFailed(" + reason + ")";
}

}

public static final String BACKEND_REGISTRATION = "BackendRegistration";

}

The backend worker that performs the transformation job:

public class TransformationBackend extends UntypedActor {

Cluster cluster = Cluster.get(getContext().system());

//subscribe to cluster changes, MemberUp
@Override
public void preStart() {
cluster.subscribe(getSelf(), MemberUp.class);

}

//re-subscribe when restart
@Override
public void postStop() {
cluster.unsubscribe(getSelf());

}

@Override
public void onReceive(Object message) {
if (message instanceof TransformationJob) {

TransformationJob job = (TransformationJob) message;
getSender().tell(new TransformationResult(job.getText().toUpperCase()),

getSelf());

} else if (message instanceof CurrentClusterState) {
CurrentClusterState state = (CurrentClusterState) message;
for (Member member : state.getMembers()) {

if (member.status().equals(MemberStatus.up())) {
register(member);

}
}

} else if (message instanceof MemberUp) {
MemberUp mUp = (MemberUp) message;
register(mUp.member());

} else {
unhandled(message);

}
}

6.2. Cluster Usage 262

Akka Java Documentation, Release 2.3.16

void register(Member member) {
if (member.hasRole("frontend"))

getContext().actorSelection(member.address() + "/user/frontend").tell(
BACKEND_REGISTRATION, getSelf());

}
}

Note that the TransformationBackend actor subscribes to cluster events to detect new, potential, frontend
nodes, and send them a registration message so that they know that they can use the backend worker.

The frontend that receives user jobs and delegates to one of the registered backend workers:

public class TransformationFrontend extends UntypedActor {

List<ActorRef> backends = new ArrayList<ActorRef>();
int jobCounter = 0;

@Override
public void onReceive(Object message) {
if ((message instanceof TransformationJob) && backends.isEmpty()) {

TransformationJob job = (TransformationJob) message;
getSender().tell(

new JobFailed("Service unavailable, try again later", job),
getSender());

} else if (message instanceof TransformationJob) {
TransformationJob job = (TransformationJob) message;
jobCounter++;
backends.get(jobCounter % backends.size())

.forward(job, getContext());

} else if (message.equals(BACKEND_REGISTRATION)) {
getContext().watch(getSender());
backends.add(getSender());

} else if (message instanceof Terminated) {
Terminated terminated = (Terminated) message;
backends.remove(terminated.getActor());

} else {
unhandled(message);

}
}

}

Note that the TransformationFrontend actor watch the registered backend to be able to remove it from
its list of available backend workers. Death watch uses the cluster failure detector for nodes in the cluster, i.e.
it detects network failures and JVM crashes, in addition to graceful termination of watched actor. Death watch
generates the Terminated message to the watching actor when the unreachable cluster node has been downed
and removed.

The Typesafe Activator tutorial named Akka Cluster Samples with Java. contains the full source code and instruc-
tions of how to run the Worker Dial-in Example.

6.2.7 Node Roles

Not all nodes of a cluster need to perform the same function: there might be one sub-set which runs the web
front-end, one which runs the data access layer and one for the number-crunching. Deployment of actors—for
example by cluster-aware routers—can take node roles into account to achieve this distribution of responsibilities.

The roles of a node is defined in the configuration property named akka.cluster.roles and it is typically

6.2. Cluster Usage 263

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-cluster-java

Akka Java Documentation, Release 2.3.16

defined in the start script as a system property or environment variable.

The roles of the nodes is part of the membership information in MemberEvent that you can subscribe to.

6.2.8 How To Startup when Cluster Size Reached

A common use case is to start actors after the cluster has been initialized, members have joined, and the cluster
has reached a certain size.

With a configuration option you can define required number of members before the leader changes member status
of ‘Joining’ members to ‘Up’.

akka.cluster.min-nr-of-members = 3

In a similar way you can define required number of members of a certain role before the leader changes member
status of ‘Joining’ members to ‘Up’.

akka.cluster.role {
frontend.min-nr-of-members = 1
backend.min-nr-of-members = 2

}

You can start the actors in a registerOnMemberUp callback, which will be invoked when the current member
status is changed to ‘Up’, i.e. the cluster has at least the defined number of members.

Cluster.get(system).registerOnMemberUp(new Runnable() {
@Override
public void run() {
system.actorOf(Props.create(FactorialFrontend.class, upToN, true),

"factorialFrontend");
}

});

This callback can be used for other things than starting actors.

6.2.9 Cluster Singleton

For some use cases it is convenient and sometimes also mandatory to ensure that you have exactly one actor of a
certain type running somewhere in the cluster.

This can be implemented by subscribing to member events, but there are several corner cases to consider. There-
fore, this specific use case is made easily accessible by the Cluster Singleton in the contrib module.

6.2.10 Cluster Sharding

Distributes actors across several nodes in the cluster and supports interaction with the actors using their logical
identifier, but without having to care about their physical location in the cluster.

See Cluster Sharding in the contrib module.

6.2.11 Distributed Publish Subscribe

Publish-subscribe messaging between actors in the cluster, and point-to-point messaging using the logical path of
the actors, i.e. the sender does not have to know on which node the destination actor is running.

See Distributed Publish Subscribe in Cluster in the contrib module.

6.2. Cluster Usage 264

Akka Java Documentation, Release 2.3.16

6.2.12 Cluster Client

Communication from an actor system that is not part of the cluster to actors running somewhere in the cluster.
The client does not have to know on which node the destination actor is running.

See Cluster Client in the contrib module.

6.2.13 Failure Detector

In a cluster each node is monitored by a few (default maximum 5) other nodes, and when any of these detects the
node as unreachable that information will spread to the rest of the cluster through the gossip. In other words,
only one node needs to mark a node unreachable to have the rest of the cluster mark that node unreachable.

The failure detector will also detect if the node becomes reachable again. When all nodes that monitored the
unreachable node detects it as reachable again the cluster, after gossip dissemination, will consider it as
reachable.

If system messages cannot be delivered to a node it will be quarantined and then it cannot come back from
unreachable. This can happen if the there are too many unacknowledged system messages (e.g. watch,
Terminated, remote actor deployment, failures of actors supervised by remote parent). Then the node needs to be
moved to the down or removed states and the actor system must be restarted before it can join the cluster again.

The nodes in the cluster monitor each other by sending heartbeats to detect if a node is unreachable from the rest
of the cluster. The heartbeat arrival times is interpreted by an implementation of The Phi Accrual Failure Detector.

The suspicion level of failure is given by a value called phi. The basic idea of the phi failure detector is to express
the value of phi on a scale that is dynamically adjusted to reflect current network conditions.

The value of phi is calculated as:

phi = -log10(1 - F(timeSinceLastHeartbeat))

where F is the cumulative distribution function of a normal distribution with mean and standard deviation estimated
from historical heartbeat inter-arrival times.

In the Configuration you can adjust the akka.cluster.failure-detector.threshold to define when
a phi value is considered to be a failure.

A low threshold is prone to generate many false positives but ensures a quick detection in the event of a real
crash. Conversely, a high threshold generates fewer mistakes but needs more time to detect actual crashes.
The default threshold is 8 and is appropriate for most situations. However in cloud environments, such as
Amazon EC2, the value could be increased to 12 in order to account for network issues that sometimes occur on
such platforms.

The following chart illustrates how phi increase with increasing time since the previous heartbeat.

6.2. Cluster Usage 265

http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Java Documentation, Release 2.3.16

Phi is calculated from the mean and standard deviation of historical inter arrival times. The previous chart is an
example for standard deviation of 200 ms. If the heartbeats arrive with less deviation the curve becomes steeper,
i.e. it is possible to determine failure more quickly. The curve looks like this for a standard deviation of 100 ms.

To be able to survive sudden abnormalities, such as garbage collection pauses
and transient network failures the failure detector is configured with a margin,
akka.cluster.failure-detector.acceptable-heartbeat-pause. You may want to
adjust the Configuration of this depending on you environment. This is how the curve looks like for
acceptable-heartbeat-pause configured to 3 seconds.

6.2. Cluster Usage 266

Akka Java Documentation, Release 2.3.16

Death watch uses the cluster failure detector for nodes in the cluster, i.e. it detects network failures and JVM
crashes, in addition to graceful termination of watched actor. Death watch generates the Terminated message
to the watching actor when the unreachable cluster node has been downed and removed.

If you encounter suspicious false positives when the system is under load you should define a separate dispatcher
for the cluster actors as described in Cluster Dispatcher.

6.2.14 Cluster Aware Routers

All routers can be made aware of member nodes in the cluster, i.e. deploying new routees or looking up routees
on nodes in the cluster. When a node becomes unreachable or leaves the cluster the routees of that node are
automatically unregistered from the router. When new nodes join the cluster additional routees are added to the
router, according to the configuration. Routees are also added when a node becomes reachable again, after having
been unreachable.

There are two distinct types of routers.

• Group - router that sends messages to the specified path using actor selection The routees can be shared
between routers running on different nodes in the cluster. One example of a use case for this type of router
is a service running on some backend nodes in the cluster and used by routers running on front-end nodes
in the cluster.

• Pool - router that creates routees as child actors and deploys them on remote nodes. Each router will
have its own routee instances. For example, if you start a router on 3 nodes in a 10 nodes cluster you will
have 30 routee actors in total if the router is configured to use one inctance per node. The routees created by
the different routers will not be shared between the routers. One example of a use case for this type of router
is a single master that coordinate jobs and delegates the actual work to routees running on other nodes in
the cluster.

Router with Group of Routees

When using a Group you must start the routee actors on the cluster member nodes. That is not done by the router.
The configuration for a group looks like this:

6.2. Cluster Usage 267

Akka Java Documentation, Release 2.3.16

akka.actor.deployment {
/statsService/workerRouter {

router = consistent-hashing-group
nr-of-instances = 100
routees.paths = ["/user/statsWorker"]
cluster {

enabled = on
allow-local-routees = on
use-role = compute

}
}

}

Note: The routee actors should be started as early as possible when starting the actor system, because the router
will try to use them as soon as the member status is changed to ‘Up’.

The relative actor paths defined in routees.paths are used as for selecting the actors to which the messages
will be forwarded to by the router. Messages will be forwarded to the routees using ActorSelection, so the same
delivery semantics should be expected. It is possible to limit the lookup of routees to member nodes tagged with
a certain role by specifying use-role.

nr-of-instances defines total number of routees in the cluster. Setting nr-of-instances to a high value
will result in new routees added to the router when nodes join the cluster.

The same type of router could also have been defined in code:

int totalInstances = 100;
Iterable<String> routeesPaths = Collections

.singletonList("/user/statsWorker");
boolean allowLocalRoutees = true;
String useRole = "compute";
ActorRef workerRouter = getContext().actorOf(

new ClusterRouterGroup(new ConsistentHashingGroup(routeesPaths),
new ClusterRouterGroupSettings(totalInstances, routeesPaths,

allowLocalRoutees, useRole)).props(), "workerRouter2");

See Configuration section for further descriptions of the settings.

Router Example with Group of Routees

Let’s take a look at how to use a cluster aware router with a group of routees, i.e. router sending to the paths of
the routees.

The example application provides a service to calculate statistics for a text. When some text is sent to the service
it splits it into words, and delegates the task to count number of characters in each word to a separate worker, a
routee of a router. The character count for each word is sent back to an aggregator that calculates the average
number of characters per word when all results have been collected.

Messages:

public interface StatsMessages {

public static class StatsJob implements Serializable {
private final String text;

public StatsJob(String text) {
this.text = text;

}

public String getText() {
return text;

6.2. Cluster Usage 268

Akka Java Documentation, Release 2.3.16

}
}

public static class StatsResult implements Serializable {
private final double meanWordLength;

public StatsResult(double meanWordLength) {
this.meanWordLength = meanWordLength;

}

public double getMeanWordLength() {
return meanWordLength;

}

@Override
public String toString() {

return "meanWordLength: " + meanWordLength;
}

}

public static class JobFailed implements Serializable {
private final String reason;

public JobFailed(String reason) {
this.reason = reason;

}

public String getReason() {
return reason;

}

@Override
public String toString() {

return "JobFailed(" + reason + ")";
}

}

}

The worker that counts number of characters in each word:

public class StatsWorker extends UntypedActor {

Map<String, Integer> cache = new HashMap<String, Integer>();

@Override
public void onReceive(Object message) {
if (message instanceof String) {

String word = (String) message;
Integer length = cache.get(word);
if (length == null) {

length = word.length();
cache.put(word, length);

}
getSender().tell(length, getSelf());

} else {
unhandled(message);

}
}

}

6.2. Cluster Usage 269

Akka Java Documentation, Release 2.3.16

The service that receives text from users and splits it up into words, delegates to workers and aggregates:

public class StatsService extends UntypedActor {

// This router is used both with lookup and deploy of routees. If you
// have a router with only lookup of routees you can use Props.empty()
// instead of Props.create(StatsWorker.class).
ActorRef workerRouter = getContext().actorOf(

FromConfig.getInstance().props(Props.create(StatsWorker.class)),
"workerRouter");

@Override
public void onReceive(Object message) {
if (message instanceof StatsJob) {

StatsJob job = (StatsJob) message;
if (job.getText().equals("")) {

unhandled(message);
} else {

final String[] words = job.getText().split(" ");
final ActorRef replyTo = getSender();

// create actor that collects replies from workers
ActorRef aggregator = getContext().actorOf(

Props.create(StatsAggregator.class, words.length, replyTo));

// send each word to a worker
for (String word : words) {
workerRouter.tell(new ConsistentHashableEnvelope(word, word),

aggregator);
}

}

} else {
unhandled(message);

}
}

}

public class StatsAggregator extends UntypedActor {

final int expectedResults;
final ActorRef replyTo;
final List<Integer> results = new ArrayList<Integer>();

public StatsAggregator(int expectedResults, ActorRef replyTo) {
this.expectedResults = expectedResults;
this.replyTo = replyTo;

}

@Override
public void preStart() {
getContext().setReceiveTimeout(Duration.create(3, TimeUnit.SECONDS));

}

@Override
public void onReceive(Object message) {
if (message instanceof Integer) {

Integer wordCount = (Integer) message;
results.add(wordCount);
if (results.size() == expectedResults) {

int sum = 0;
for (int c : results)
sum += c;

6.2. Cluster Usage 270

Akka Java Documentation, Release 2.3.16

double meanWordLength = ((double) sum) / results.size();
replyTo.tell(new StatsResult(meanWordLength), getSelf());
getContext().stop(getSelf());

}

} else if (message == ReceiveTimeout.getInstance()) {
replyTo.tell(new JobFailed("Service unavailable, try again later"),

getSelf());
getContext().stop(getSelf());

} else {
unhandled(message);

}
}

}

Note, nothing cluster specific so far, just plain actors.

All nodes start StatsService and StatsWorker actors. Remember, routees are the workers in this case.
The router is configured with routees.paths:

akka.actor.deployment {
/statsService/workerRouter {
router = consistent-hashing-group
nr-of-instances = 100
routees.paths = ["/user/statsWorker"]
cluster {

enabled = on
allow-local-routees = on
use-role = compute

}
}

}

This means that user requests can be sent to StatsService on any node and it will use StatsWorker on all
nodes.

The Typesafe Activator tutorial named Akka Cluster Samples with Java. contains the full source code and instruc-
tions of how to run the Router Example with Group of Routees.

Router with Pool of Remote Deployed Routees

When using a Pool with routees created and deployed on the cluster member nodes the configuration for a router
looks like this:

akka.actor.deployment {
/singleton/statsService/workerRouter {

router = consistent-hashing-pool
nr-of-instances = 100
cluster {

enabled = on
max-nr-of-instances-per-node = 3
allow-local-routees = on
use-role = compute

}
}

}

It is possible to limit the deployment of routees to member nodes tagged with a certain role by specifying
use-role.

nr-of-instances defines total number of routees in the cluster, but the number of routees per node,

6.2. Cluster Usage 271

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-cluster-java

Akka Java Documentation, Release 2.3.16

max-nr-of-instances-per-node, will not be exceeded. Setting nr-of-instances to a high value
will result in creating and deploying additional routees when new nodes join the cluster.

The same type of router could also have been defined in code:

int totalInstances = 100;
int maxInstancesPerNode = 3;
boolean allowLocalRoutees = false;
String useRole = "compute";
ActorRef workerRouter = getContext().actorOf(

new ClusterRouterPool(new ConsistentHashingPool(0),
new ClusterRouterPoolSettings(totalInstances, maxInstancesPerNode,

allowLocalRoutees, useRole)).props(Props
.create(StatsWorker.class)), "workerRouter3");

See Configuration section for further descriptions of the settings.

Router Example with Pool of Remote Deployed Routees

Let’s take a look at how to use a cluster aware router on single master node that creates and deploys
workers. To keep track of a single master we use the Cluster Singleton in the contrib module. The
ClusterSingletonManager is started on each node.

system.actorOf(ClusterSingletonManager.defaultProps(
Props.create(StatsService.class), "statsService",
PoisonPill.getInstance(), "compute"), "singleton");

We also need an actor on each node that keeps track of where current single master exists and delegates jobs to
the StatsService. That is provided by the ClusterSingletonProxy.

system.actorOf(ClusterSingletonProxy.defaultProps("/user/singleton/statsService",
"compute"), "statsServiceProxy");

The ClusterSingletonProxy receives text from users and delegates to the current StatsService, the
single master. It listens to cluster events to lookup the StatsService on the oldest node.

All nodes start ClusterSingletonProxy and the ClusterSingletonManager. The router is now
configured like this:

akka.actor.deployment {
/singleton/statsService/workerRouter {
router = consistent-hashing-pool
nr-of-instances = 100
cluster {

enabled = on
max-nr-of-instances-per-node = 3
allow-local-routees = on
use-role = compute

}
}

}

The Typesafe Activator tutorial named Akka Cluster Samples with Java. contains the full source code and instruc-
tions of how to run the Router Example with Pool of Remote Deployed Routees.

6.2.15 Cluster Metrics

The member nodes of the cluster collects system health metrics and publishes that to other nodes and to registered
subscribers. This information is primarily used for load-balancing routers.

6.2. Cluster Usage 272

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-cluster-java

Akka Java Documentation, Release 2.3.16

Hyperic Sigar

The built-in metrics is gathered from JMX MBeans, and optionally you can use Hyperic Sigar for a wider
and more accurate range of metrics compared to what can be retrieved from ordinary MBeans. Sigar is us-
ing a native OS library. To enable usage of Sigar you need to add the directory of the native library to
-Djava.libarary.path=<path_of_sigar_libs> add the following dependency:

<dependency>
<groupId>org.fusesource</groupId>
<artifactId>sigar</artifactId>
<version>1.6.4</version>

</dependency>

Download the native Sigar libraries from Maven Central

Adaptive Load Balancing

The AdaptiveLoadBalancingPool / AdaptiveLoadBalancingGroup performs load balancing of
messages to cluster nodes based on the cluster metrics data. It uses random selection of routees with proba-
bilities derived from the remaining capacity of the corresponding node. It can be configured to use a specific
MetricsSelector to produce the probabilities, a.k.a. weights:

• heap / HeapMetricsSelector - Used and max JVM heap memory. Weights based on remaining heap
capacity; (max - used) / max

• load / SystemLoadAverageMetricsSelector - System load average for the past 1 minute, corre-
sponding value can be found in top of Linux systems. The system is possibly nearing a bottleneck if the
system load average is nearing number of cpus/cores. Weights based on remaining load capacity; 1 - (load
/ processors)

• cpu / CpuMetricsSelector - CPU utilization in percentage, sum of User + Sys + Nice + Wait. Weights
based on remaining cpu capacity; 1 - utilization

• mix / MixMetricsSelector - Combines heap, cpu and load. Weights based on mean of remaining
capacity of the combined selectors.

• Any custom implementation of akka.cluster.routing.MetricsSelector

The collected metrics values are smoothed with exponential weighted moving average. In the Configuration you
can adjust how quickly past data is decayed compared to new data.

Let’s take a look at this router in action. What can be more demanding than calculating factorials?

The backend worker that performs the factorial calculation:

public class FactorialBackend extends UntypedActor {

@Override
public void onReceive(Object message) {
if (message instanceof Integer) {

final Integer n = (Integer) message;
Future<BigInteger> f = future(new Callable<BigInteger>() {

public BigInteger call() {
return factorial(n);

}
}, getContext().dispatcher());

Future<FactorialResult> result = f.map(
new Mapper<BigInteger, FactorialResult>() {
public FactorialResult apply(BigInteger factorial) {
return new FactorialResult(n, factorial);

}
}, getContext().dispatcher());

6.2. Cluster Usage 273

http://www.hyperic.com/products/sigar
http://repo1.maven.org/maven2/org/fusesource/sigar/1.6.4/
http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

Akka Java Documentation, Release 2.3.16

pipe(result, getContext().dispatcher()).to(getSender());

} else {
unhandled(message);

}
}

BigInteger factorial(int n) {
BigInteger acc = BigInteger.ONE;
for (int i = 1; i <= n; ++i) {

acc = acc.multiply(BigInteger.valueOf(i));
}
return acc;

}
}

The frontend that receives user jobs and delegates to the backends via the router:

public class FactorialFrontend extends UntypedActor {
final int upToN;
final boolean repeat;

LoggingAdapter log = Logging.getLogger(getContext().system(), this);

ActorRef backend = getContext().actorOf(FromConfig.getInstance().props(),
"factorialBackendRouter");

public FactorialFrontend(int upToN, boolean repeat) {
this.upToN = upToN;
this.repeat = repeat;

}

@Override
public void preStart() {
sendJobs();
getContext().setReceiveTimeout(Duration.create(10, TimeUnit.SECONDS));

}

@Override
public void onReceive(Object message) {
if (message instanceof FactorialResult) {

FactorialResult result = (FactorialResult) message;
if (result.n == upToN) {

log.debug("{}! = {}", result.n, result.factorial);
if (repeat)
sendJobs();

else
getContext().stop(getSelf());

}

} else if (message instanceof ReceiveTimeout) {
log.info("Timeout");
sendJobs();

} else {
unhandled(message);

}
}

void sendJobs() {
log.info("Starting batch of factorials up to [{}]", upToN);
for (int n = 1; n <= upToN; n++) {

backend.tell(n, getSelf());

6.2. Cluster Usage 274

Akka Java Documentation, Release 2.3.16

}
}

}

As you can see, the router is defined in the same way as other routers, and in this case it is configured as follows:

akka.actor.deployment {
/factorialFrontend/factorialBackendRouter = {
router = adaptive-group
metrics-selector = heap
metrics-selector = load
metrics-selector = cpu
metrics-selector = mix
nr-of-instances = 100
routees.paths = ["/user/factorialBackend"]
cluster {

enabled = on
use-role = backend
allow-local-routees = off

}
}

}

It is only router type adaptive and the metrics-selector that is specific to this router, other things work
in the same way as other routers.

The same type of router could also have been defined in code:

int totalInstances = 100;
Iterable<String> routeesPaths = Arrays.asList("/user/factorialBackend", "");
boolean allowLocalRoutees = true;
String useRole = "backend";
ActorRef backend = getContext().actorOf(

new ClusterRouterGroup(new AdaptiveLoadBalancingGroup(
HeapMetricsSelector.getInstance(), Collections.<String> emptyList()),
new ClusterRouterGroupSettings(totalInstances, routeesPaths,

allowLocalRoutees, useRole)).props(), "factorialBackendRouter2");

int totalInstances = 100;
int maxInstancesPerNode = 3;
boolean allowLocalRoutees = false;
String useRole = "backend";
ActorRef backend = getContext().actorOf(

new ClusterRouterPool(new AdaptiveLoadBalancingPool(
SystemLoadAverageMetricsSelector.getInstance(), 0),
new ClusterRouterPoolSettings(totalInstances, maxInstancesPerNode,

allowLocalRoutees, useRole)).props(Props
.create(FactorialBackend.class)), "factorialBackendRouter3");

The Typesafe Activator tutorial named Akka Cluster Samples with Java. contains the full source code and instruc-
tions of how to run the Adaptive Load Balancing sample.

Subscribe to Metrics Events

It is possible to subscribe to the metrics events directly to implement other functionality.

import akka.actor.UntypedActor;
import akka.cluster.Cluster;
import akka.cluster.ClusterEvent.ClusterMetricsChanged;
import akka.cluster.ClusterEvent.CurrentClusterState;
import akka.cluster.NodeMetrics;
import akka.cluster.StandardMetrics;

6.2. Cluster Usage 275

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-cluster-java

Akka Java Documentation, Release 2.3.16

import akka.cluster.StandardMetrics.HeapMemory;
import akka.cluster.StandardMetrics.Cpu;
import akka.event.Logging;
import akka.event.LoggingAdapter;

public class MetricsListener extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

Cluster cluster = Cluster.get(getContext().system());

//subscribe to ClusterMetricsChanged
@Override
public void preStart() {
cluster.subscribe(getSelf(), ClusterMetricsChanged.class);

}

//re-subscribe when restart
@Override
public void postStop() {
cluster.unsubscribe(getSelf());

}

@Override
public void onReceive(Object message) {
if (message instanceof ClusterMetricsChanged) {

ClusterMetricsChanged clusterMetrics = (ClusterMetricsChanged) message;
for (NodeMetrics nodeMetrics : clusterMetrics.getNodeMetrics()) {

if (nodeMetrics.address().equals(cluster.selfAddress())) {
logHeap(nodeMetrics);
logCpu(nodeMetrics);

}
}

} else if (message instanceof CurrentClusterState) {
// ignore

} else {
unhandled(message);

}
}

void logHeap(NodeMetrics nodeMetrics) {
HeapMemory heap = StandardMetrics.extractHeapMemory(nodeMetrics);
if (heap != null) {

log.info("Used heap: {} MB", ((double) heap.used()) / 1024 / 1024);
}

}

void logCpu(NodeMetrics nodeMetrics) {
Cpu cpu = StandardMetrics.extractCpu(nodeMetrics);
if (cpu != null && cpu.systemLoadAverage().isDefined()) {

log.info("Load: {} ({} processors)", cpu.systemLoadAverage().get(),
cpu.processors());

}
}

}

6.2. Cluster Usage 276

Akka Java Documentation, Release 2.3.16

Custom Metrics Collector

You can plug-in your own metrics collector instead of akka.cluster.SigarMetricsCollector or
akka.cluster.JmxMetricsCollector. Look at those two implementations for inspiration. The im-
plementation class can be defined in the Configuration.

6.2.16 JMX

Information and management of the cluster is available as JMX MBeans with the root name akka.Cluster.
The JMX information can be displayed with an ordinary JMX console such as JConsole or JVisualVM.

From JMX you can:

• see what members that are part of the cluster

• see status of this node

• join this node to another node in cluster

• mark any node in the cluster as down

• tell any node in the cluster to leave

Member nodes are identified by their address, in format akka.<protocol>://<actor-system-
name>@<hostname>:<port>.

6.2.17 Command Line Management

The cluster can be managed with the script bin/akka-cluster provided in the Akka distribution.

Run it without parameters to see instructions about how to use the script:

Usage: bin/akka-cluster <node-hostname> <jmx-port> <command> ...

Supported commands are:
join <node-url> - Sends request a JOIN node with the specified URL

leave <node-url> - Sends a request for node with URL to LEAVE the cluster
down <node-url> - Sends a request for marking node with URL as DOWN
member-status - Asks the member node for its current status

members - Asks the cluster for addresses of current members
unreachable - Asks the cluster for addresses of unreachable members

cluster-status - Asks the cluster for its current status (member ring,
unavailable nodes, meta data etc.)

leader - Asks the cluster who the current leader is
is-singleton - Checks if the cluster is a singleton cluster (single

node cluster)
is-available - Checks if the member node is available

Where the <node-url> should be on the format of
'akka.<protocol>://<actor-system-name>@<hostname>:<port>'

Examples: bin/akka-cluster localhost 9999 is-available
bin/akka-cluster localhost 9999 join akka.tcp://MySystem@darkstar:2552
bin/akka-cluster localhost 9999 cluster-status

To be able to use the script you must enable remote monitoring and management when starting the JVMs of the
cluster nodes, as described in Monitoring and Management Using JMX Technology

Example of system properties to enable remote monitoring and management:

java -Dcom.sun.management.jmxremote.port=9999 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

6.2. Cluster Usage 277

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Akka Java Documentation, Release 2.3.16

6.2.18 Configuration

There are several configuration properties for the cluster. We refer to the reference configuration for more infor-
mation.

Cluster Info Logging

You can silence the logging of cluster events at info level with configuration property:

akka.cluster.log-info = off

Cluster Dispatcher

Under the hood the cluster extension is implemented with actors and it can be necessary to create a bulkhead
for those actors to avoid disturbance from other actors. Especially the heartbeating actors that is used for failure
detection can generate false positives if they are not given a chance to run at regular intervals. For this purpose
you can define a separate dispatcher to be used for the cluster actors:

akka.cluster.use-dispatcher = cluster-dispatcher

cluster-dispatcher {
type = "Dispatcher"
executor = "fork-join-executor"
fork-join-executor {
parallelism-min = 5
parallelism-max = 5

}
}

Warning: Don’t use a dispatcher with less than 5 threads, because otherwise there is a risk of deadlock when
initializing the Cluster extension. This limitation does not exist in in Akka 2.4.x.

6.3 Remoting

For an introduction of remoting capabilities of Akka please see Location Transparency.

Note: As explained in that chapter Akka remoting is designed for communication in a peer-to-peer fashion and
it has limitations for client-server setups. In particular Akka Remoting does not work with Network Address
Translation and Load Balancers, among others.

6.3.1 Preparing your ActorSystem for Remoting

The Akka remoting is a separate jar file. Make sure that you have the following dependency in your project:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-remote_2.10</artifactId>
<version>2.3.16</version>

</dependency>

To enable remote capabilities in your Akka project you should, at a minimum, add the following changes to your
application.conf file:

6.3. Remoting 278

Akka Java Documentation, Release 2.3.16

akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {
enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "127.0.0.1"
port = 2552

}
}

}

As you can see in the example above there are four things you need to add to get started:

• Change provider from akka.actor.LocalActorRefProvider to
akka.remote.RemoteActorRefProvider

• Add host name - the machine you want to run the actor system on; this host name is exactly what is passed
to remote systems in order to identify this system and consequently used for connecting back to this system
if need be, hence set it to a reachable IP address or resolvable name in case you want to communicate across
the network.

• Add port number - the port the actor system should listen on, set to 0 to have it chosen automatically

Note: The port number needs to be unique for each actor system on the same machine even if the actor systems
have different names. This is because each actor system has its own network subsystem listening for connections
and handling messages as not to interfere with other actor systems.

The example above only illustrates the bare minimum of properties you have to add to enable remoting. All
settings are described in Remote Configuration.

6.3.2 Looking up Remote Actors

actorSelection(path) will obtain an ActorSelection to an Actor on a remote node:

ActorSelection selection =
context.actorSelection("akka.tcp://app@10.0.0.1:2552/user/serviceA/worker");

As you can see from the example above the following pattern is used to find an actor on a remote node:

akka.<protocol>://<actorsystemname>@<hostname>:<port>/<actor path>

Once you obtained a selection to the actor you can interact with it they same way you would with a local actor,
e.g.:

selection.tell("Pretty awesome feature", getSelf());

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
getSender reference of the reply from the actor. There is a built-in Identify message that all Actors will un-
derstand and automatically reply to with a ActorIdentity message containing the ActorRef. This can also
be done with the resolveOne method of the ActorSelection, which returns a Future of the matching
ActorRef.

Note: For more details on how actor addresses and paths are formed and used, please refer to Actor References,
Paths and Addresses.

6.3. Remoting 279

Akka Java Documentation, Release 2.3.16

6.3.3 Creating Actors Remotely

If you want to use the creation functionality in Akka remoting you have to further amend the
application.conf file in the following way (only showing deployment section):

akka {
actor {
deployment {

/sampleActor {
remote = "akka.tcp://sampleActorSystem@127.0.0.1:2553"

}
}

}
}

The configuration above instructs Akka to react when an actor with path /sampleActor is created, i.e. us-
ing system.actorOf(new Props(...), "sampleActor"). This specific actor will not be directly
instantiated, but instead the remote daemon of the remote system will be asked to create the actor, which in this
sample corresponds to sampleActorSystem@127.0.0.1:2553.

Once you have configured the properties above you would do the following in code:

ActorRef actor = system.actorOf(Props.create(SampleActor.class), "sampleActor");
actor.tell("Pretty slick", ActorRef.noSender());

The actor class SampleActor has to be available to the runtimes using it, i.e. the classloader of the actor systems
has to have a JAR containing the class.

Note: In order to ensure serializability of Props when passing constructor arguments to the actor being created,
do not make the factory a non-static inner class: this will inherently capture a reference to its enclosing object,
which in most cases is not serializable. It is best to make a static inner class which implements Creator.

Serializability of all Props can be tested by setting the configuration item
akka.actor.serialize-creators=on. Only Props whose deploy has LocalScope are exempt
from this check.

Note: You can use asterisks as wildcard matches for the actor path sections, so you could specify:
/*/sampleActor and that would match all sampleActor on that level in the hierarchy. You can also use
wildcard in the last position to match all actors at a certain level: /someParent/*. Non-wildcard matches
always have higher priority to match than wildcards, so: /foo/bar is considered more specific than /foo/*
and only the highest priority match is used. Please note that it cannot be used to partially match section, like this:
/foo*/bar, /f*o/bar etc.

Programmatic Remote Deployment

To allow dynamically deployed systems, it is also possible to include deployment configuration in the Props
which are used to create an actor: this information is the equivalent of a deployment section from the configuration
file, and if both are given, the external configuration takes precedence.

With these imports:

import akka.actor.ActorRef;
import akka.actor.Address;
import akka.actor.AddressFromURIString;
import akka.actor.Deploy;
import akka.actor.Props;
import akka.actor.ActorSystem;
import akka.remote.RemoteScope;

6.3. Remoting 280

Akka Java Documentation, Release 2.3.16

and a remote address like this:

Address addr = new Address("akka.tcp", "sys", "host", 1234);
addr = AddressFromURIString.parse("akka.tcp://sys@host:1234"); // the same

you can advise the system to create a child on that remote node like so:

ActorRef ref = system.actorOf(Props.create(SampleActor.class).withDeploy(
new Deploy(new RemoteScope(addr))));

6.3.4 Lifecycle and Failure Recovery Model

Each link with a remote system can be in one of the four states as illustrated above. Before any communication
happens with a remote system at a given Address the state of the association is Idle. The first time a message
is attempted to be sent to the remote system or an inbound connection is accepted the state of the link transitions
to Active denoting that the two systems has messages to send or receive and no failures were encountered so
far. When a communication failure happens and the connection is lost between the two systems the link becomes
Gated.

6.3. Remoting 281

Akka Java Documentation, Release 2.3.16

In this state the system will not attempt to connect to the remote host and all outbound mes-
sages will be dropped. The time while the link is in the Gated state is controlled by the setting
akka.remote.retry-gate-closed-for: after this time elapses the link state transitions to Idle again.
Gate is one-sided in the sense that whenever a successful inbound connection is accepted from a remote system
during Gate it automatically transitions to Active and communication resumes immediately.

In the face of communication failures that are unrecoverable because the state of the participating systems are
inconsistent, the remote system becomes Quarantined. Unlike Gate, quarantining is permanent and lasts
until one of the systems is restarted. After a restart communication can be resumed again and the link can become
Active again.

6.3.5 Watching Remote Actors

Watching a remote actor is not different than watching a local actor, as described in Lifecycle Monitoring aka
DeathWatch.

Warning: Caveat: Watching an ActorRef acquired with actorFor does not trigger Terminated for
lost connections. actorFor is deprecated in favor of actorSelection. Acquire the ActorRef to watch
with Identify and ActorIdentity as described in Identifying Actors via Actor Selection.

Failure Detector

Under the hood remote death watch uses heartbeat messages and a failure detector to generate Terminated
message from network failures and JVM crashes, in addition to graceful termination of watched actor.

The heartbeat arrival times is interpreted by an implementation of The Phi Accrual Failure Detector.

The suspicion level of failure is given by a value called phi. The basic idea of the phi failure detector is to express
the value of phi on a scale that is dynamically adjusted to reflect current network conditions.

The value of phi is calculated as:

phi = -log10(1 - F(timeSinceLastHeartbeat))

where F is the cumulative distribution function of a normal distribution with mean and standard deviation estimated
from historical heartbeat inter-arrival times.

In the Remote Configuration you can adjust the akka.remote.watch-failure-detector.threshold
to define when a phi value is considered to be a failure.

A low threshold is prone to generate many false positives but ensures a quick detection in the event of a real
crash. Conversely, a high threshold generates fewer mistakes but needs more time to detect actual crashes.
The default threshold is 10 and is appropriate for most situations. However in cloud environments, such as
Amazon EC2, the value could be increased to 12 in order to account for network issues that sometimes occur on
such platforms.

The following chart illustrates how phi increase with increasing time since the previous heartbeat.

6.3. Remoting 282

http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Java Documentation, Release 2.3.16

Phi is calculated from the mean and standard deviation of historical inter arrival times. The previous chart is an
example for standard deviation of 200 ms. If the heartbeats arrive with less deviation the curve becomes steeper,
i.e. it is possible to determine failure more quickly. The curve looks like this for a standard deviation of 100 ms.

To be able to survive sudden abnormalities, such as garbage collection pauses
and transient network failures the failure detector is configured with a margin,
akka.remote.watch-failure-detector.acceptable-heartbeat-pause. You may want
to adjust the Remote Configuration of this depending on you environment. This is how the curve looks like for
acceptable-heartbeat-pause configured to 3 seconds.

6.3. Remoting 283

Akka Java Documentation, Release 2.3.16

6.3.6 Serialization

When using remoting for actors you must ensure that the props and messages used for those actors are serial-
izable. Failing to do so will cause the system to behave in an unintended way.

For more information please see Serialization

6.3.7 Routers with Remote Destinations

It is absolutely feasible to combine remoting with Routing.

A pool of remote deployed routees can be configured as:

akka.actor.deployment {
/parent/remotePool {
router = round-robin-pool
nr-of-instances = 10
target.nodes = ["akka.tcp://app@10.0.0.2:2552", "akka://app@10.0.0.3:2552"]

}
}

This configuration setting will clone the actor defined in the Props of the remotePool 10 times and deploy it
evenly distributed across the two given target nodes.

A group of remote actors can be configured as:

akka.actor.deployment {
/parent/remoteGroup {
router = round-robin-group
routees.paths = [

"akka.tcp://app@10.0.0.1:2552/user/workers/w1",
"akka.tcp://app@10.0.0.2:2552/user/workers/w1",
"akka.tcp://app@10.0.0.3:2552/user/workers/w1"]

}
}

6.3. Remoting 284

Akka Java Documentation, Release 2.3.16

This configuration setting will send messages to the defined remote actor paths. It requires that you create the
destination actors on the remote nodes with matching paths. That is not done by the router.

6.3.8 Remoting Sample

There is a more extensive remote example that comes with Typesafe Activator. The tutorial named Akka Remote
Samples with Java demonstrates both remote deployment and look-up of remote actors.

Pluggable transport support

Akka can be configured to use various transports to communicate with remote systems. The core component of
this feature is the akka.remote.transport.Transport SPI. Transport implementations must extend this
trait. Transports can be loaded by setting the akka.remote.enabled-transports configuration key to
point to one or more configuration sections containing driver descriptions.

An example of setting up the default Netty based SSL driver as default:

akka {
remote {
enabled-transports = [akka.remote.netty.ssl]

netty.ssl.security {
key-store = "mykeystore"
trust-store = "mytruststore"
key-store-password = "changeme"
key-password = "changeme"
trust-store-password = "changeme"
protocol = "TLSv1"
random-number-generator = "AES128CounterSecureRNG"
enabled-algorithms = [TLS_RSA_WITH_AES_128_CBC_SHA]

}
}

}

An example of setting up a custom transport implementation:

akka {
remote {
applied-transports = ["akka.remote.mytransport"]

mytransport {
The transport-class configuration entry is required, and
it must contain the fully qualified name of the transport
implementation
transport-class = "my.package.MyTransport"

It is possible to decorate Transports with additional services.
Adapters should be registered in the "adapters" sections to
be able to apply them to transports
applied-adapters = []

Driver specific configuration options has to be in the same
section:
some-config = foo
another-config = bar

}

6.3. Remoting 285

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-remote-java
http://www.typesafe.com/activator/template/akka-sample-remote-java

Akka Java Documentation, Release 2.3.16

Remote Events

It is possible to listen to events that occur in Akka Remote, and to subscribe/unsubscribe to these events you
simply register as listener to the below described types in on the ActorSystem.eventStream.

Note: To subscribe to any remote event, subscribe to RemotingLifecycleEvent. To subscribe to events
related only to the lifecycle of associations, subscribe to akka.remote.AssociationEvent.

Note: The use of term “Association” instead of “Connection” reflects that the remoting subsystem may use con-
nectionless transports, but an association similar to transport layer connections is maintained between endpoints
by the Akka protocol.

By default an event listener is registered which logs all of the events described below. This default was chosen to
help setting up a system, but it is quite common to switch this logging off once that phase of the project is finished.

Note: In order to switch off the logging, set akka.remote.log-remote-lifecycle-events = off
in your application.conf.

To be notified when an association is over (“disconnected”) listen to DisassociatedEvent which holds the
direction of the association (inbound or outbound) and the addresses of the involved parties.

To be notified when an association is successfully established (“connected”) listen to AssociatedEventwhich
holds the direction of the association (inbound or outbound) and the addresses of the involved parties.

To intercept errors directly related to associations, listen to AssociationErrorEvent which holds the direc-
tion of the association (inbound or outbound), the addresses of the involved parties and the Throwable cause.

To be notified when the remoting subsystem is ready to accept associations, listen to RemotingListenEvent
which contains the addresses the remoting listens on.

To be notified when the remoting subsystem has been shut down, listen to RemotingShutdownEvent.

To intercept generic remoting related errors, listen to RemotingErrorEvent which holds the Throwable
cause.

6.3.9 Remote Security

Akka provides a couple of ways to enhance security between remote nodes (client/server):

• Untrusted Mode

• Security Cookie Handshake

Untrusted Mode

As soon as an actor system can connect to another remotely, it may in principle send any possible message to any
actor contained within that remote system. One example may be sending a PoisonPill to the system guardian,
shutting that system down. This is not always desired, and it can be disabled with the following setting:

akka.remote.untrusted-mode = on

This disallows sending of system messages (actor life-cycle commands, DeathWatch, etc.) and any message
extending PossiblyHarmful to the system on which this flag is set. Should a client send them nonetheless
they are dropped and logged (at DEBUG level in order to reduce the possibilities for a denial of service attack).
PossiblyHarmful covers the predefined messages like PoisonPill and Kill, but it can also be added as
a marker trait to user-defined messages.

6.3. Remoting 286

Akka Java Documentation, Release 2.3.16

Messages sent with actor selection are by default discarded in untrusted mode, but permission to receive actor
selection messages can be granted to specific actors defined in configuration:

akka.remote.trusted-selection-paths = ["/user/receptionist", "/user/namingService"]

The actual message must still not be of type PossiblyHarmful.

In summary, the following operations are ignored by a system configured in untrusted mode when incoming via
the remoting layer:

• remote deployment (which also means no remote supervision)

• remote DeathWatch

• system.stop(), PoisonPill, Kill

• sending any message which extends from the PossiblyHarmful marker interface, which includes
Terminated

• messages sent with actor selection, unless destination defined in trusted-selection-paths.

Note: Enabling the untrusted mode does not remove the capability of the client to freely choose the target of
its message sends, which means that messages not prohibited by the above rules can be sent to any actor in the
remote system. It is good practice for a client-facing system to only contain a well-defined set of entry point actors,
which then forward requests (possibly after performing validation) to another actor system containing the actual
worker actors. If messaging between these two server-side systems is done using local ActorRef (they can be
exchanged safely between actor systems within the same JVM), you can restrict the messages on this interface by
marking them PossiblyHarmful so that a client cannot forge them.

Secure Cookie Handshake

Akka remoting also allows you to specify a secure cookie that will be exchanged and ensured to be identical in
the connection handshake between the client and the server. If they are not identical then the client will be refused
to connect to the server.

The secure cookie can be any kind of string. But the recommended approach is to generate a cryptographically se-
cure cookie using this script $AKKA_HOME/scripts/generate_config_with_secure_cookie.sh
or from code using the akka.util.Crypt.generateSecureCookie() utility method.

You have to ensure that both the connecting client and the server have the same secure cookie as well as the
require-cookie option turned on.

Here is an example config:

akka.remote {
secure-cookie = "090A030E0F0A05010900000A0C0E0C0B03050D05"
require-cookie = on

}

SSL

SSL can be used as the remote transport by adding akka.remote.netty.ssl to the enabled-transport
configuration section. See a description of the settings in the Remote Configuration section.

The SSL support is implemented with Java Secure Socket Extension, please consult the offical Java Secure Socket
Extension documentation and related resources for troubleshooting.

Note: When using SHA1PRNG on Linux it’s recommended specify
-Djava.security.egd=file:/dev/./urandom as argument to the JVM to prevent blocking. It

6.3. Remoting 287

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Akka Java Documentation, Release 2.3.16

is NOT as secure because it reuses the seed. Use ‘/dev/./urandom’, not ‘/dev/urandom’ as that doesn’t work
according to Bug ID: 6202721.

6.3.10 Remote Configuration

There are lots of configuration properties that are related to remoting in Akka. We refer to the reference configu-
ration for more information.

Note: Setting properties like the listening IP and port number programmatically is best done by using something
like the following:

ConfigFactory.parseString("akka.remote.netty.tcp.hostname=\"1.2.3.4\"")
.withFallback(ConfigFactory.load());

6.4 Serialization

Akka has a built-in Extension for serialization, and it is both possible to use the built-in serializers and to write
your own.

The serialization mechanism is both used by Akka internally to serialize messages, and available for ad-hoc
serialization of whatever you might need it for.

6.4.1 Usage

Configuration

For Akka to know which Serializer to use for what, you need edit your Config-
uration, in the “akka.actor.serializers”-section you bind names to implementations of the
akka.serialization.Serializer you wish to use, like this:

akka {
actor {
serializers {

java = "akka.serialization.JavaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
myown = "docs.serialization.MyOwnSerializer"

}
}

}

After you’ve bound names to different implementations of Serializer you need to wire which classes should
be serialized using which Serializer, this is done in the “akka.actor.serialization-bindings”-section:

akka {
actor {
serializers {

java = "akka.serialization.JavaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
myown = "docs.serialization.MyOwnSerializer"

}

serialization-bindings {
"java.lang.String" = java
"docs.serialization.Customer" = java
"com.google.protobuf.Message" = proto

6.4. Serialization 288

http://bugs.sun.com/view_bug.do?bug_id=6202721

Akka Java Documentation, Release 2.3.16

"docs.serialization.MyOwnSerializable" = myown
"java.lang.Boolean" = myown

}
}

}

You only need to specify the name of an interface or abstract base class of the messages. In case of ambigu-
ity, i.e. the message implements several of the configured classes, the most specific configured class will be
used, i.e. the one of which all other candidates are superclasses. If this condition cannot be met, because e.g.
java.io.Serializable and MyOwnSerializable both apply and neither is a subtype of the other, a
warning will be issued.

Akka provides serializers for java.io.Serializable and protobuf
com.google.protobuf.GeneratedMessage by default (the latter only if depending on
the akka-remote module), so normally you don’t need to add configuration for that; since
com.google.protobuf.GeneratedMessage implements java.io.Serializable, protobuf
messages will always by serialized using the protobuf protocol unless specifically overridden. In order to disable
a default serializer, map its marker type to “none”:

akka.actor.serialization-bindings {
"java.io.Serializable" = none

}

Verification

If you want to verify that your messages are serializable you can enable the following config option:

akka {
actor {
serialize-messages = on

}
}

Warning: We only recommend using the config option turned on when you’re running tests. It is completely
pointless to have it turned on in other scenarios.

If you want to verify that your Props are serializable you can enable the following config option:

akka {
actor {
serialize-creators = on

}
}

Warning: We only recommend using the config option turned on when you’re running tests. It is completely
pointless to have it turned on in other scenarios.

Programmatic

If you want to programmatically serialize/deserialize using Akka Serialization, here’s some examples:

import akka.actor.*;
import akka.serialization.*;

ActorSystem system = ActorSystem.create("example");

// Get the Serialization Extension
Serialization serialization = SerializationExtension.get(system);

6.4. Serialization 289

http://code.google.com/p/protobuf/

Akka Java Documentation, Release 2.3.16

// Have something to serialize
String original = "woohoo";

// Find the Serializer for it
Serializer serializer = serialization.findSerializerFor(original);

// Turn it into bytes
byte[] bytes = serializer.toBinary(original);

// Turn it back into an object,
// the nulls are for the class manifest and for the classloader
String back = (String) serializer.fromBinary(bytes);

// Voilá!
assertEquals(original, back);

For more information, have a look at the ScalaDoc for akka.serialization._

6.4.2 Customization

So, lets say that you want to create your own Serializer, you saw the
docs.serialization.MyOwnSerializer in the config example above?

Creating new Serializers

First you need to create a class definition of your Serializer, which is done by extending
akka.serialization.JSerializer, like this:

import akka.actor.*;
import akka.serialization.*;

public class MyOwnSerializer extends JSerializer {

// This is whether "fromBinary" requires a "clazz" or not
@Override public boolean includeManifest() {
return false;

}

// Pick a unique identifier for your Serializer,
// you've got a couple of billions to choose from,
// 0 - 16 is reserved by Akka itself
@Override public int identifier() {
return 1234567;

}

// "toBinary" serializes the given object to an Array of Bytes
@Override public byte[] toBinary(Object obj) {
// Put the code that serializes the object here
//

}

// "fromBinary" deserializes the given array,
// using the type hint (if any, see "includeManifest" above)
@Override public Object fromBinaryJava(byte[] bytes,

Class<?> clazz) {
// Put your code that deserializes here
//

}
}

6.4. Serialization 290

Akka Java Documentation, Release 2.3.16

Then you only need to fill in the blanks, bind it to a name in your Configuration and then list which classes that
should be serialized using it.

Serializing ActorRefs

All ActorRefs are serializable using JavaSerializer, but in case you are writing your own serializer, you might
want to know how to serialize and deserialize them properly. In the general case, the local address to be
used depends on the type of remote address which shall be the recipient of the serialized information. Use
Serialization.serializedActorPath(actorRef) like this:

import akka.actor.*;
import akka.serialization.*;

// Serialize
// (beneath toBinary)
String identifier = Serialization.serializedActorPath(theActorRef);

// Then just serialize the identifier however you like

// Deserialize
// (beneath fromBinary)
final ActorRef deserializedActorRef = extendedSystem.provider().resolveActorRef(

identifier);
// Then just use the ActorRef

This assumes that serialization happens in the context of sending a message through the remote transport. There
are other uses of serialization, though, e.g. storing actor references outside of an actor application (database, etc.).
In this case, it is important to keep in mind that the address part of an actor’s path determines how that actor is
communicated with. Storing a local actor path might be the right choice if the retrieval happens in the same logical
context, but it is not enough when deserializing it on a different network host: for that it would need to include
the system’s remote transport address. An actor system is not limited to having just one remote transport per
se, which makes this question a bit more interesting. To find out the appropriate address to use when sending to
remoteAddr you can use ActorRefProvider.getExternalAddressFor(remoteAddr) like this:

public class ExternalAddressExt implements Extension {
private final ExtendedActorSystem system;

public ExternalAddressExt(ExtendedActorSystem system) {
this.system = system;

}

public Address getAddressFor(Address remoteAddress) {
final scala.Option<Address> optAddr = system.provider()

.getExternalAddressFor(remoteAddress);
if (optAddr.isDefined()) {

return optAddr.get();
} else {

throw new UnsupportedOperationException(
"cannot send to remote address " + remoteAddress);

}
}

}

public class ExternalAddress extends
AbstractExtensionId<ExternalAddressExt> implements ExtensionIdProvider {
public static final ExternalAddress ID = new ExternalAddress();

public ExternalAddress lookup() {
return ID;

}

public ExternalAddressExt createExtension(ExtendedActorSystem system) {

6.4. Serialization 291

Akka Java Documentation, Release 2.3.16

return new ExternalAddressExt(system);
}

}

public class ExternalAddressExample {
public String serializeTo(ActorRef ref, Address remote) {
return ref.path().toSerializationFormatWithAddress(

ExternalAddress.ID.get(system).getAddressFor(remote));
}

}

Note: ActorPath.toSerializationFormatWithAddress differs from toString if the address
does not already have host and port components, i.e. it only inserts address information for local addresses.

toSerializationFormatWithAddress also adds the unique id of the actor, which will change when the
actor is stopped and then created again with the same name. Sending messages to a reference pointing the old
actor will not be delivered to the new actor. If you do not want this behavior, e.g. in case of long term storage of
the reference, you can use toStringWithAddress, which does not include the unique id.

This requires that you know at least which type of address will be supported by the system which will deserialize
the resulting actor reference; if you have no concrete address handy you can create a dummy one for the right pro-
tocol using new Address(protocol, "", "", 0) (assuming that the actual transport used is as lenient
as Akka’s RemoteActorRefProvider).

There is also a default remote address which is the one used by cluster support (and typical systems have just this
one); you can get it like this:

public class DefaultAddressExt implements Extension {
private final ExtendedActorSystem system;

public DefaultAddressExt(ExtendedActorSystem system) {
this.system = system;

}

public Address getAddress() {
return system.provider().getDefaultAddress();

}
}

public class DefaultAddress extends
AbstractExtensionId<DefaultAddressExt> implements ExtensionIdProvider {

public static final DefaultAddress ID = new DefaultAddress();

public DefaultAddress lookup() {
return ID;

}

public DefaultAddressExt createExtension(ExtendedActorSystem system) {
return new DefaultAddressExt(system);

}
}

Deep serialization of Actors

The recommended approach to do deep serialization of internal actor state is to use Akka Persistence.

6.4. Serialization 292

Akka Java Documentation, Release 2.3.16

6.4.3 A Word About Java Serialization

When using Java serialization without employing the JavaSerializer for the task, you must make sure to
supply a valid ExtendedActorSystem in the dynamic variable JavaSerializer.currentSystem.
This is used when reading in the representation of an ActorRef for turning the string representation into a real
reference. DynamicVariable is a thread-local variable, so be sure to have it set while deserializing anything
which might contain actor references.

6.4.4 External Akka Serializers

Akka-protostuff by Roman Levenstein

Akka-quickser by Roman Levenstein

Akka-kryo by Roman Levenstein

6.5 I/O

6.5.1 Introduction

The akka.io package has been developed in collaboration between the Akka and spray.io teams. Its design
combines experiences from the spray-io module with improvements that were jointly developed for more
general consumption as an actor-based service.

The guiding design goal for this I/O implementation was to reach extreme scalability, make no compromises
in providing an API correctly matching the underlying transport mechanism and to be fully event-driven, non-
blocking and asynchronous. The API is meant to be a solid foundation for the implementation of network protocols
and building higher abstractions; it is not meant to be a full-service high-level NIO wrapper for end users.

6.5.2 Terminology, Concepts

The I/O API is completely actor based, meaning that all operations are implemented with message passing instead
of direct method calls. Every I/O driver (TCP, UDP) has a special actor, called a manager that serves as an entry
point for the API. I/O is broken into several drivers. The manager for a particular driver is accessible by querying
an ActorSystem. For example the following code looks up the TCP manager and returns its ActorRef:

final ActorRef tcpManager = Tcp.get(getContext().system()).manager();

The manager receives I/O command messages and instantiates worker actors in response. The worker actors
present themselves to the API user in the reply to the command that was sent. For example after a Connect
command sent to the TCP manager the manager creates an actor representing the TCP connection. All operations
related to the given TCP connections can be invoked by sending messages to the connection actor which announces
itself by sending a Connected message.

DeathWatch and Resource Management

I/O worker actors receive commands and also send out events. They usually need a user-side counterpart actor
listening for these events (such events could be inbound connections, incoming bytes or acknowledgements for
writes). These worker actors watch their listener counterparts. If the listener stops then the worker will automati-
cally release any resources that it holds. This design makes the API more robust against resource leaks.

Thanks to the completely actor based approach of the I/O API the opposite direction works as well: a user actor
responsible for handling a connection can watch the connection actor to be notified if it unexpectedly terminates.

6.5. I/O 293

https://github.com/romix/akka-protostuff-serialization
https://github.com/romix/akka-quickser-serialization
https://github.com/romix/akka-kryo-serialization
http://spray.io

Akka Java Documentation, Release 2.3.16

Write models (Ack, Nack)

I/O devices have a maximum throughput which limits the frequency and size of writes. When an application tries
to push more data than a device can handle, the driver has to buffer bytes until the device is able to write them.
With buffering it is possible to handle short bursts of intensive writes — but no buffer is infinite. “Flow control”
is needed to avoid overwhelming device buffers.

Akka supports two types of flow control:

• Ack-based, where the driver notifies the writer when writes have succeeded.

• Nack-based, where the driver notifies the writer when writes have failed.

Each of these models is available in both the TCP and the UDP implementations of Akka I/O.

Individual writes can be acknowledged by providing an ack object in the write message (Write in the case of
TCP and Send for UDP). When the write is complete the worker will send the ack object to the writing actor. This
can be used to implement ack-based flow control; sending new data only when old data has been acknowledged.

If a write (or any other command) fails, the driver notifies the actor that sent the command with a special message
(CommandFailed in the case of UDP and TCP). This message will also notify the writer of a failed write,
serving as a nack for that write. Please note, that in a nack-based flow-control setting the writer has to be prepared
for the fact that the failed write might not be the most recent write it sent. For example, the failure notification for
a write W1 might arrive after additional write commands W2 and W3 have been sent. If the writer wants to resend
any nacked messages it may need to keep a buffer of pending messages.

Warning: An acknowledged write does not mean acknowledged delivery or storage; receiving an ack for a
write simply signals that the I/O driver has successfully processed the write. The Ack/Nack protocol described
here is a means of flow control not error handling. In other words, data may still be lost, even if every write is
acknowledged.

ByteString

To maintain isolation, actors should communicate with immutable objects only. ByteString is an immutable
container for bytes. It is used by Akka’s I/O system as an efficient, immutable alternative the traditional byte
containers used for I/O on the JVM, such as byte[] and ByteBuffer.

ByteString is a rope-like data structure that is immutable and provides fast concatenation and slicing op-
erations (perfect for I/O). When two ByteStrings are concatenated together they are both stored within the
resulting ByteString instead of copying both to a new array. Operations such as drop and take return
ByteStrings that still reference the original array, but just change the offset and length that is visible. Great
care has also been taken to make sure that the internal array cannot be modified. Whenever a potentially unsafe
array is used to create a new ByteString a defensive copy is created. If you require a ByteString that only
blocks a much memory as necessary for it’s content, use the compact method to get a CompactByteString
instance. If the ByteString represented only a slice of the original array, this will result in copying all bytes in
that slice.

ByteString inherits all methods from IndexedSeq, and it also has some new ones. For more information,
look up the akka.util.ByteString class and it’s companion object in the ScalaDoc.

ByteString also comes with its own optimized builder and iterator classes ByteStringBuilder and
ByteIterator which provide extra features in addition to those of normal builders and iterators.

Compatibility with java.io

A ByteStringBuilder can be wrapped in a java.io.OutputStream via the asOutputStream
method. Likewise, ByteIterator can we wrapped in a java.io.InputStream via asInputStream.
Using these, akka.io applications can integrate legacy code based on java.io streams.

6.5. I/O 294

http://en.wikipedia.org/wiki/Rope_(computer_science)

Akka Java Documentation, Release 2.3.16

6.5.3 Architecture in-depth

For further details on the design and internal architecture see I/O Layer Design.

6.6 Using TCP

The code snippets through-out this section assume the following imports:

import java.net.InetSocketAddress;
import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.actor.UntypedActor;
import akka.io.Tcp;
import akka.io.Tcp.Bound;
import akka.io.Tcp.CommandFailed;
import akka.io.Tcp.Connected;
import akka.io.Tcp.ConnectionClosed;
import akka.io.Tcp.Received;
import akka.io.TcpMessage;
import akka.japi.Procedure;
import akka.util.ByteString;

All of the Akka I/O APIs are accessed through manager objects. When using an I/O API, the first step is to acquire
a reference to the appropriate manager. The code below shows how to acquire a reference to the Tcp manager.

final ActorRef tcpManager = Tcp.get(getContext().system()).manager();

The manager is an actor that handles the underlying low level I/O resources (selectors, channels) and instantiates
workers for specific tasks, such as listening to incoming connections.

6.6.1 Connecting

public class Client extends UntypedActor {

final InetSocketAddress remote;
final ActorRef listener;

public Client(InetSocketAddress remote, ActorRef listener) {
this.remote = remote;
this.listener = listener;

final ActorRef tcp = Tcp.get(getContext().system()).manager();
tcp.tell(TcpMessage.connect(remote), getSelf());

}

@Override
public void onReceive(Object msg) throws Exception {
if (msg instanceof CommandFailed) {

listener.tell("failed", getSelf());
getContext().stop(getSelf());

} else if (msg instanceof Connected) {
listener.tell(msg, getSelf());
getSender().tell(TcpMessage.register(getSelf()), getSelf());
getContext().become(connected(getSender()));

}
}

private Procedure<Object> connected(final ActorRef connection) {

6.6. Using TCP 295

Akka Java Documentation, Release 2.3.16

return new Procedure<Object>() {
@Override
public void apply(Object msg) throws Exception {

if (msg instanceof ByteString) {
connection.tell(TcpMessage.write((ByteString) msg), getSelf());

} else if (msg instanceof CommandFailed) {
// OS kernel socket buffer was full

} else if (msg instanceof Received) {
listener.tell(((Received) msg).data(), getSelf());

} else if (msg.equals("close")) {
connection.tell(TcpMessage.close(), getSelf());

} else if (msg instanceof ConnectionClosed) {
getContext().stop(getSelf());

}
}

};
}

}

The first step of connecting to a remote address is sending a Connect message to the TCP manager; in addition
to the simplest form shown above there is also the possibility to specify a local InetSocketAddress to bind
to and a list of socket options to apply.

Note: The SO_NODELAY (TCP_NODELAY on Windows) socket option defaults to true in Akka, indepen-
dently of the OS default settings. This setting disables Nagle’s algorithm, considerably improving latency for
most applications. This setting could be overridden by passing SO.TcpNoDelay(false) in the list of socket
options of the Connect message.

The TCP manager will then reply either with a CommandFailed or it will spawn an internal actor representing
the new connection. This new actor will then send a Connected message to the original sender of the Connect
message.

In order to activate the new connection a Register message must be sent to the connection actor, informing
that one about who shall receive data from the socket. Before this step is done the connection cannot be used, and
there is an internal timeout after which the connection actor will shut itself down if no Register message is
received.

The connection actor watches the registered handler and closes the connection when that one terminates, thereby
cleaning up all internal resources associated with that connection.

The actor in the example above uses become to switch from unconnected to connected operation, demonstrating
the commands and events which are observed in that state. For a discussion on CommandFailed see Throttling
Reads and Writes below. ConnectionClosed is a trait, which marks the different connection close events.
The last line handles all connection close events in the same way. It is possible to listen for more fine-grained
connection close events, see Closing Connections below.

6.6.2 Accepting connections

public class Server extends UntypedActor {

final ActorRef manager;

public Server(ActorRef manager) {
this.manager = manager;

6.6. Using TCP 296

Akka Java Documentation, Release 2.3.16

}

@Override
public void preStart() throws Exception {
final ActorRef tcp = Tcp.get(getContext().system()).manager();
tcp.tell(TcpMessage.bind(getSelf(),

new InetSocketAddress("localhost", 0), 100), getSelf());
}

@Override
public void onReceive(Object msg) throws Exception {
if (msg instanceof Bound) {

manager.tell(msg, getSelf());

} else if (msg instanceof CommandFailed) {
getContext().stop(getSelf());

} else if (msg instanceof Connected) {
final Connected conn = (Connected) msg;
manager.tell(conn, getSelf());
final ActorRef handler = getContext().actorOf(

Props.create(SimplisticHandler.class));
getSender().tell(TcpMessage.register(handler), getSelf());

}
}

}

To create a TCP server and listen for inbound connections, a Bind command has to be sent to the TCP manager.
This will instruct the TCP manager to listen for TCP connections on a particular InetSocketAddress; the
port may be specified as 0 in order to bind to a random port.

The actor sending the Bind message will receive a Bound message signalling that the server is ready to accept
incoming connections; this message also contains the InetSocketAddress to which the socket was actually
bound (i.e. resolved IP address and correct port number).

From this point forward the process of handling connections is the same as for outgoing connections. The example
demonstrates that handling the reads from a certain connection can be delegated to another actor by naming it as
the handler when sending the Register message. Writes can be sent from any actor in the system to the
connection actor (i.e. the actor which sent the Connected message). The simplistic handler is defined as:

public class SimplisticHandler extends UntypedActor {
@Override
public void onReceive(Object msg) throws Exception {
if (msg instanceof Received) {

final ByteString data = ((Received) msg).data();
System.out.println(data);
getSender().tell(TcpMessage.write(data), getSelf());

} else if (msg instanceof ConnectionClosed) {
getContext().stop(getSelf());

}
}

}

For a more complete sample which also takes into account the possibility of failures when sending please see
Throttling Reads and Writes below.

The only difference to outgoing connections is that the internal actor managing the listen port—the sender of the
Bound message—watches the actor which was named as the recipient for Connected messages in the Bind
message. When that actor terminates the listen port will be closed and all resources associated with it will be
released; existing connections will not be terminated at this point.

6.6. Using TCP 297

Akka Java Documentation, Release 2.3.16

6.6.3 Closing connections

A connection can be closed by sending one of the commands Close, ConfirmedClose or Abort to the
connection actor.

Closewill close the connection by sending a FINmessage, but without waiting for confirmation from the remote
endpoint. Pending writes will be flushed. If the close is successful, the listener will be notified with Closed.

ConfirmedClose will close the sending direction of the connection by sending a FIN message, but data will
continue to be received until the remote endpoint closes the connection, too. Pending writes will be flushed. If the
close is successful, the listener will be notified with ConfirmedClosed.

Abort will immediately terminate the connection by sending a RST message to the remote endpoint. Pending
writes will be not flushed. If the close is successful, the listener will be notified with Aborted.

PeerClosed will be sent to the listener if the connection has been closed by the remote endpoint. Per default,
the connection will then automatically be closed from this endpoint as well. To support half-closed connections
set the keepOpenOnPeerClosed member of the Register message to true in which case the connection
stays open until it receives one of the above close commands.

ErrorClosed will be sent to the listener whenever an error happened that forced the connection to be closed.

All close notifications are sub-types of ConnectionClosed so listeners who do not need fine-grained close
events may handle all close events in the same way.

6.6.4 Writing to a connection

Once a connection has been established data can be sent to it from any actor in the form of a
Tcp.WriteCommand. Tcp.WriteCommand is an abstract class with three concrete implementations:

Tcp.Write The simplest WriteCommand implementation which wraps a ByteString instance and an “ack”
event. A ByteString (as explained in this section) models one or more chunks of immutable in-memory
data with a maximum (total) size of 2 GB (2^31 bytes).

Tcp.WriteFile If you want to send “raw” data from a file you can do so efficiently with the Tcp.WriteFile
command. This allows you do designate a (contiguous) chunk of on-disk bytes for sending across the
connection without the need to first load them into the JVM memory. As such Tcp.WriteFile can
“hold” more than 2GB of data and an “ack” event if required.

Tcp.CompoundWrite Sometimes you might want to group (or interleave) several Tcp.Write and/or
Tcp.WriteFile commands into one atomic write command which gets written to the connection in
one go. The Tcp.CompoundWrite allows you to do just that and offers three benefits:

1. As explained in the following section the TCP connection actor can only handle one single write
command at a time. By combining several writes into one CompoundWrite you can have them be
sent across the connection with minimum overhead and without the need to spoon feed them to the
connection actor via an ACK-based message protocol.

2. Because a WriteCommand is atomic you can be sure that no other actor can “inject” other writes
into your series of writes if you combine them into one single CompoundWrite. In scenarios where
several actors write to the same connection this can be an important feature which can be somewhat
hard to achieve otherwise.

3. The “sub writes” of a CompoundWrite are regular Write or WriteFile commands that them-
selves can request “ack” events. These ACKs are sent out as soon as the respective “sub write” has
been completed. This allows you to attach more than one ACK to a Write or WriteFile (by com-
bining it with an empty write that itself requests an ACK) or to have the connection actor acknowledge
the progress of transmitting the CompoundWrite by sending out intermediate ACKs at arbitrary
points.

6.6. Using TCP 298

Akka Java Documentation, Release 2.3.16

6.6.5 Throttling Reads and Writes

The basic model of the TCP connection actor is that it has no internal buffering (i.e. it can only process one write
at a time, meaning it can buffer one write until it has been passed on to the O/S kernel in full). Congestion needs
to be handled at the user level, for both writes and reads.

For back-pressuring writes there are three modes of operation

• ACK-based: every Write command carries an arbitrary object, and if this object is not Tcp.NoAck then
it will be returned to the sender of the Write upon successfully writing all contained data to the socket. If
no other write is initiated before having received this acknowledgement then no failures can happen due to
buffer overrun.

• NACK-based: every write which arrives while a previous write is not yet completed will be replied to with
a CommandFailed message containing the failed write. Just relying on this mechanism requires the
implemented protocol to tolerate skipping writes (e.g. if each write is a valid message on its own and it
is not required that all are delivered). This mode is enabled by setting the useResumeWriting flag to
false within the Register message during connection activation.

• NACK-based with write suspending: this mode is very similar to the NACK-based one, but once a single
write has failed no further writes will succeed until a ResumeWriting message is received. This message
will be answered with a WritingResumed message once the last accepted write has completed. If the
actor driving the connection implements buffering and resends the NACK’ed messages after having awaited
the WritingResumed signal then every message is delivered exactly once to the network socket.

These write models (with the exception of the second which is rather specialised) are demonstrated in complete
examples below. The full and contiguous source is available on github.

For back-pressuring reads there are two modes of operation

• Push-reading: in this mode the connection actor sends the registered reader actor incoming data as soon as
available as Received events. Whenever the reader actor wants to signal back-pressure to the remote TCP
endpoint it can send a SuspendReading message to the connection actor to indicate that it wants to sus-
pend the reception of new data. No Received events will arrive until a corresponding ResumeReading
is sent indicating that the receiver actor is ready again.

• Pull-reading: after sending a Received event the connection actor automatically suspends accepting data
from the socket until the reader actor signals with a ResumeReading message that it is ready to process
more input data. Hence new data is “pulled” from the connection by sending ResumeReading messages.

Note: It should be obvious that all these flow control schemes only work between one writer/reader and one
connection actor; as soon as multiple actors send write commands to a single connection no consistent result can
be achieved.

6.6.6 ACK-Based Write Back-Pressure

For proper function of the following example it is important to configure the connection to remain half-open when
the remote side closed its writing end: this allows the example EchoHandler to write all outstanding data back
to the client before fully closing the connection. This is enabled using a flag upon connection activation (observe
the Register message):

connection.tell(TcpMessage.register(handler,
true, // <-- keepOpenOnPeerClosed flag
true), getSelf());

With this preparation let us dive into the handler itself:

public class SimpleEchoHandler extends UntypedActor {

final LoggingAdapter log = Logging
.getLogger(getContext().system(), getSelf());

6.6. Using TCP 299

http://github.com/akka/akka/tree/v2.3.16/akka-docs/rst/java/code/docs/io/japi

Akka Java Documentation, Release 2.3.16

final ActorRef connection;
final InetSocketAddress remote;

public static final long maxStored = 100000000;
public static final long highWatermark = maxStored * 5 / 10;
public static final long lowWatermark = maxStored * 2 / 10;

public SimpleEchoHandler(ActorRef connection, InetSocketAddress remote) {
this.connection = connection;
this.remote = remote;

// sign death pact: this actor stops when the connection is closed
getContext().watch(connection);

}

@Override
public void onReceive(Object msg) throws Exception {
if (msg instanceof Received) {

final ByteString data = ((Received) msg).data();
buffer(data);
connection.tell(TcpMessage.write(data, ACK), getSelf());
// now switch behavior to “waiting for acknowledgement”
getContext().become(buffering, false);

} else if (msg instanceof ConnectionClosed) {
getContext().stop(getSelf());

}
}

private final Procedure<Object> buffering = new Procedure<Object>() {
@Override
public void apply(Object msg) throws Exception {

if (msg instanceof Received) {
buffer(((Received) msg).data());

} else if (msg == ACK) {
acknowledge();

} else if (msg instanceof ConnectionClosed) {
if (((ConnectionClosed) msg).isPeerClosed()) {
closing = true;

} else {
// could also be ErrorClosed, in which case we just give up
getContext().stop(getSelf());

}
}

}
};

// storage omitted ...
}

The principle is simple: when having written a chunk always wait for the Ack to come back before sending the
next chunk. While waiting we switch behavior such that new incoming data are buffered. The helper functions
used are a bit lengthy but not complicated:

protected void buffer(ByteString data) {
storage.add(data);
stored += data.size();

if (stored > maxStored) {
log.warning("drop connection to [{}] (buffer overrun)", remote);

6.6. Using TCP 300

Akka Java Documentation, Release 2.3.16

getContext().stop(getSelf());

} else if (stored > highWatermark) {
log.debug("suspending reading");
connection.tell(TcpMessage.suspendReading(), getSelf());
suspended = true;

}
}

protected void acknowledge() {
final ByteString acked = storage.remove();
stored -= acked.size();
transferred += acked.size();

if (suspended && stored < lowWatermark) {
log.debug("resuming reading");
connection.tell(TcpMessage.resumeReading(), getSelf());
suspended = false;

}

if (storage.isEmpty()) {
if (closing) {

getContext().stop(getSelf());
} else {

getContext().unbecome();
}

} else {
connection.tell(TcpMessage.write(storage.peek(), ACK), getSelf());

}
}

The most interesting part is probably the last: an Ack removes the oldest data chunk from the buffer, and if that
was the last chunk then we either close the connection (if the peer closed its half already) or return to the idle
behavior; otherwise we just send the next buffered chunk and stay waiting for the next Ack.

Back-pressure can be propagated also across the reading side back to the writer on the other end of the connection
by sending the SuspendReading command to the connection actor. This will lead to no data being read from
the socket anymore (although this does happen after a delay because it takes some time until the connection actor
processes this command, hence appropriate head-room in the buffer should be present), which in turn will lead
to the O/S kernel buffer filling up on our end, then the TCP window mechanism will stop the remote side from
writing, filling up its write buffer, until finally the writer on the other side cannot push any data into the socket
anymore. This is how end-to-end back-pressure is realized across a TCP connection.

6.6.7 NACK-Based Write Back-Pressure with Suspending

public class EchoHandler extends UntypedActor {

final LoggingAdapter log = Logging
.getLogger(getContext().system(), getSelf());

final ActorRef connection;
final InetSocketAddress remote;

public static final long MAX_STORED = 100000000;
public static final long HIGH_WATERMARK = MAX_STORED * 5 / 10;
public static final long LOW_WATERMARK = MAX_STORED * 2 / 10;

private static class Ack implements Event {
public final int ack;
public Ack(int ack) {

this.ack = ack;

6.6. Using TCP 301

Akka Java Documentation, Release 2.3.16

}
}

public EchoHandler(ActorRef connection, InetSocketAddress remote) {
this.connection = connection;
this.remote = remote;

// sign death pact: this actor stops when the connection is closed
getContext().watch(connection);

// start out in optimistic write-through mode
getContext().become(writing);

}

private final Procedure<Object> writing = new Procedure<Object>() {
@Override
public void apply(Object msg) throws Exception {

if (msg instanceof Received) {
final ByteString data = ((Received) msg).data();
connection.tell(TcpMessage.write(data, new Ack(currentOffset())), getSelf());
buffer(data);

} else if (msg instanceof Integer) {
acknowledge((Integer) msg);

} else if (msg instanceof CommandFailed) {
final Write w = (Write) ((CommandFailed) msg).cmd();
connection.tell(TcpMessage.resumeWriting(), getSelf());
getContext().become(buffering((Ack) w.ack()));

} else if (msg instanceof ConnectionClosed) {
final ConnectionClosed cl = (ConnectionClosed) msg;
if (cl.isPeerClosed()) {
if (storage.isEmpty()) {
getContext().stop(getSelf());

} else {
getContext().become(closing);

}
}

}
}

};

// buffering ...

// closing ...

// storage omitted ...
}

The principle here is to keep writing until a CommandFailed is received, using acknowledgements only to
prune the resend buffer. When a such a failure was received, transition into a different state for handling and
handle resending of all queued data:

protected Procedure<Object> buffering(final Ack nack) {
return new Procedure<Object>() {

private int toAck = 10;
private boolean peerClosed = false;

@Override
public void apply(Object msg) throws Exception {

if (msg instanceof Received) {

6.6. Using TCP 302

Akka Java Documentation, Release 2.3.16

buffer(((Received) msg).data());

} else if (msg instanceof WritingResumed) {
writeFirst();

} else if (msg instanceof ConnectionClosed) {
if (((ConnectionClosed) msg).isPeerClosed())
peerClosed = true;

else
getContext().stop(getSelf());

} else if (msg instanceof Integer) {
final int ack = (Integer) msg;
acknowledge(ack);

if (ack >= nack.ack) {
// otherwise it was the ack of the last successful write

if (storage.isEmpty()) {
if (peerClosed)
getContext().stop(getSelf());

else
getContext().become(writing);

} else {
if (toAck > 0) {
// stay in ACK-based mode for a short while
writeFirst();
--toAck;

} else {
// then return to NACK-based again
writeAll();
if (peerClosed)
getContext().become(closing);

else
getContext().become(writing);

}
}

}
}

}
};

}

It should be noted that all writes which are currently buffered have also been sent to the connection actor upon
entering this state, which means that the ResumeWriting message is enqueued after those writes, leading to
the reception of all outstanding CommandFailed messages (which are ignored in this state) before receiving
the WritingResumed signal. That latter message is sent by the connection actor only once the internally
queued write has been fully completed, meaning that a subsequent write will not fail. This is exploited by the
EchoHandler to switch to an ACK-based approach for the first ten writes after a failure before resuming the
optimistic write-through behavior.

protected Procedure<Object> closing = new Procedure<Object>() {
@Override
public void apply(Object msg) throws Exception {
if (msg instanceof CommandFailed) {

// the command can only have been a Write
connection.tell(TcpMessage.resumeWriting(), getSelf());
getContext().become(closeResend, false);

} else if (msg instanceof Integer) {
acknowledge((Integer) msg);
if (storage.isEmpty())

getContext().stop(getSelf());

6.6. Using TCP 303

Akka Java Documentation, Release 2.3.16

}
}

};

protected Procedure<Object> closeResend = new Procedure<Object>() {
@Override
public void apply(Object msg) throws Exception {
if (msg instanceof WritingResumed) {

writeAll();
getContext().unbecome();

} else if (msg instanceof Integer) {
acknowledge((Integer) msg);

}
}

};

Closing the connection while still sending all data is a bit more involved than in the ACK-based approach: the
idea is to always send all outstanding messages and acknowledge all successful writes, and if a failure happens
then switch behavior to await the WritingResumed event and start over.

The helper functions are very similar to the ACK-based case:

protected void buffer(ByteString data) {
storage.add(data);
stored += data.size();

if (stored > MAX_STORED) {
log.warning("drop connection to [{}] (buffer overrun)", remote);
getContext().stop(getSelf());

} else if (stored > HIGH_WATERMARK) {
log.debug("suspending reading at {}", currentOffset());
connection.tell(TcpMessage.suspendReading(), getSelf());
suspended = true;

}
}

protected void acknowledge(int ack) {
assert ack == storageOffset;
assert !storage.isEmpty();

final ByteString acked = storage.remove();
stored -= acked.size();
transferred += acked.size();
storageOffset += 1;

if (suspended && stored < LOW_WATERMARK) {
log.debug("resuming reading");
connection.tell(TcpMessage.resumeReading(), getSelf());
suspended = false;

}
}

6.6.8 Read Back-Pressure with Pull Mode

When using push based reading, data coming from the socket is sent to the actor as soon as it is available. In the
case of the previous Echo server example this meant that we needed to maintain a buffer of incoming data to keep
it around since the rate of writing might be slower than the rate of the arrival of new data.

With the Pull mode this buffer can be completely eliminated as the following snippet demonstrates:

6.6. Using TCP 304

Akka Java Documentation, Release 2.3.16

@Override
public void preStart() throws Exception {

connection.tell(TcpMessage.resumeReading(), getSelf());
}

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof Tcp.Received) {
ByteString data = ((Tcp.Received) message).data();
connection.tell(TcpMessage.write(data, new Ack()), getSelf());

} else if (message instanceof Ack) {
connection.tell(TcpMessage.resumeReading(), getSelf());

}
}

The idea here is that reading is not resumed until the previous write has been completely acknowledged by the
connection actor. Every pull mode connection actor starts from suspended state. To start the flow of data we send
a ResumeReading in the preStart method to tell the connection actor that we are ready to receive the first
chunk of data. Since we only resume reading when the previous data chunk has been completely written there is
no need for maintaining a buffer.

To enable pull reading on an outbound connection the pullMode parameter of the Connect should be set to
true:

final List<Inet.SocketOption> options = new ArrayList<Inet.SocketOption>();
tcp.tell(

TcpMessage.connect(new InetSocketAddress("localhost", 3000), null, options, null, true),
getSelf()

);

Pull Mode Reading for Inbound Connections

The previous section demonstrated how to enable pull reading mode for outbound connections but it is possible
to create a listener actor with this mode of reading by setting the pullMode parameter of the Bind command to
true:

tcp = Tcp.get(getContext().system()).manager();
final List<Inet.SocketOption> options = new ArrayList<Inet.SocketOption>();
tcp.tell(

TcpMessage.bind(getSelf(), new InetSocketAddress("localhost", 0), 100, options, true),
getSelf()

);

One of the effects of this setting is that all connections accepted by this listener actor will use pull mode reading.

Another effect of this setting is that in addition of setting all inbound connections to pull mode, accepting connec-
tions becomes pull based, too. This means that after handling one (or more) Connected events the listener actor
has to be resumed by sending it a ResumeAccepting message.

Listener actors with pull mode start suspended so to start accepting connections a ResumeAccepting command
has to be sent to the listener actor after binding was successful:

public void onReceive(Object message) throws Exception {
if (message instanceof Tcp.Bound) {

listener = getSender();
// Accept connections one by one
listener.tell(TcpMessage.resumeAccepting(1), getSelf());

} else if (message instanceof Tcp.Connected) {
ActorRef handler = getContext().actorOf(Props.create(PullEcho.class, getSender()));
getSender().tell(TcpMessage.register(handler), getSelf());
// Resume accepting connections
listener.tell(TcpMessage.resumeAccepting(1), getSelf());

6.6. Using TCP 305

Akka Java Documentation, Release 2.3.16

}
}

As shown in the example after handling an incoming connection we need to resume accepting again. The
ResumeAccepting message accepts a batchSize parameter that specifies how many new connections are
accepted before a next ResumeAccepting message is needed to resume handling of new connections.

6.7 Using UDP

UDP is a connectionless datagram protocol which offers two different ways of communication on the JDK level:

• sockets which are free to send datagrams to any destination and receive datagrams from any origin

• sockets which are restricted to communication with one specific remote socket address

In the low-level API the distinction is made—confusingly—by whether or not connect has been called on the
socket (even when connect has been called the protocol is still connectionless). These two forms of UDP usage
are offered using distinct IO extensions described below.

6.7.1 Unconnected UDP

Simple Send

public static class SimpleSender extends UntypedActor {
final InetSocketAddress remote;

public SimpleSender(InetSocketAddress remote) {
this.remote = remote;

// request creation of a SimpleSender
final ActorRef mgr = Udp.get(getContext().system()).getManager();
mgr.tell(UdpMessage.simpleSender(), getSelf());

}

@Override
public void onReceive(Object msg) {
if (msg instanceof Udp.SimpleSenderReady) {

getContext().become(ready(getSender()));
} else unhandled(msg);

}

private Procedure<Object> ready(final ActorRef send) {
return new Procedure<Object>() {

@Override
public void apply(Object msg) throws Exception {

if (msg instanceof String) {
final String str = (String) msg;
send.tell(UdpMessage.send(ByteString.fromString(str), remote), getSelf());

} else unhandled(msg);
}

};
}

}

The simplest form of UDP usage is to just send datagrams without the need of getting a reply. To this end a “simple
sender” facility is provided as demonstrated above. The UDP extension is queried using the simpleSender
message, which is answered by a SimpleSenderReady notification. The sender of this message is the newly
created sender actor which from this point onward can be used to send datagrams to arbitrary destinations; in this
example it will just send any UTF-8 encoded String it receives to a predefined remote address.

6.7. Using UDP 306

Akka Java Documentation, Release 2.3.16

Note: The simple sender will not shut itself down because it cannot know when you are done with it. You will
need to send it a PoisonPill when you want to close the ephemeral port the sender is bound to.

Bind (and Send)

public static class Listener extends UntypedActor {
final ActorRef nextActor;

public Listener(ActorRef nextActor) {
this.nextActor = nextActor;

// request creation of a bound listen socket
final ActorRef mgr = Udp.get(getContext().system()).getManager();
mgr.tell(

UdpMessage.bind(getSelf(), new InetSocketAddress("localhost", 0)),
getSelf());

}

@Override
public void onReceive(Object msg) {
if (msg instanceof Udp.Bound) {

final Udp.Bound b = (Udp.Bound) msg;
getContext().become(ready(getSender()));

} else unhandled(msg);
}

private Procedure<Object> ready(final ActorRef socket) {
return new Procedure<Object>() {

@Override
public void apply(Object msg) throws Exception {

if (msg instanceof Udp.Received) {
final Udp.Received r = (Udp.Received) msg;
// echo server example: send back the data
socket.tell(UdpMessage.send(r.data(), r.sender()), getSelf());
// or do some processing and forward it on
final Object processed = // parse data etc., e.g. using PipelineStage
nextActor.tell(processed, getSelf());

} else if (msg.equals(UdpMessage.unbind())) {
socket.tell(msg, getSelf());

} else if (msg instanceof Udp.Unbound) {
getContext().stop(getSelf());

} else unhandled(msg);
}

};
}

}

If you want to implement a UDP server which listens on a socket for incoming datagrams then you need to use the
bind command as shown above. The local address specified may have a zero port in which case the operating
system will automatically choose a free port and assign it to the new socket. Which port was actually bound can
be found out by inspecting the Bound message.

The sender of the Bound message is the actor which manages the new socket. Sending datagrams is achieved by
using the send message type and the socket can be closed by sending a unbind command, in which case the
socket actor will reply with a Unbound notification.

Received datagrams are sent to the actor designated in the bind message, whereas the Bound message will be

6.7. Using UDP 307

Akka Java Documentation, Release 2.3.16

sent to the sender of the bind.

6.7.2 Connected UDP

The service provided by the connection based UDP API is similar to the bind-and-send service we saw earlier, but
the main difference is that a connection is only able to send to the remoteAddress it was connected to, and
will receive datagrams only from that address.

public static class Connected extends UntypedActor {
final InetSocketAddress remote;

public Connected(InetSocketAddress remote) {
this.remote = remote;

// create a restricted a.k.a. “connected” socket
final ActorRef mgr = UdpConnected.get(getContext().system()).getManager();
mgr.tell(UdpConnectedMessage.connect(getSelf(), remote), getSelf());

}

@Override
public void onReceive(Object msg) {
if (msg instanceof UdpConnected.Connected) {

getContext().become(ready(getSender()));
} else unhandled(msg);

}

private Procedure<Object> ready(final ActorRef connection) {
return new Procedure<Object>() {

@Override
public void apply(Object msg) throws Exception {

if (msg instanceof UdpConnected.Received) {
final UdpConnected.Received r = (UdpConnected.Received) msg;
// process data, send it on, etc.
// #connected
if (r.data().utf8String().equals("hello")) {

connection.tell(
UdpConnectedMessage.send(ByteString.fromString("world")),
getSelf());

}
// #connected

} else if (msg instanceof String) {
final String str = (String) msg;
connection

.tell(UdpConnectedMessage.send(ByteString.fromString(str)),
getSelf());

} else if (msg.equals(UdpConnectedMessage.disconnect())) {
connection.tell(msg, getSelf());

} else if (msg instanceof UdpConnected.Disconnected) {
getContext().stop(getSelf());

} else unhandled(msg);
}

};
}

}

Consequently the example shown here looks quite similar to the previous one, the biggest difference is the absence
of remote address information in send and Received messages.

6.7. Using UDP 308

Akka Java Documentation, Release 2.3.16

Note: There is a small performance benefit in using connection based UDP API over the connectionless one. If
there is a SecurityManager enabled on the system, every connectionless message send has to go through a security
check, while in the case of connection-based UDP the security check is cached after connect, thus writes do not
suffer an additional performance penalty.

6.8 ZeroMQ

Akka provides a ZeroMQ module which abstracts a ZeroMQ connection and therefore allows interaction between
Akka actors to take place over ZeroMQ connections. The messages can be of a proprietary format or they can be
defined using Protobuf. The socket actor is fault-tolerant by default and when you use the newSocket method to
create new sockets it will properly reinitialize the socket.

ZeroMQ is very opinionated when it comes to multi-threading so configuration option akka.zeromq.socket-
dispatcher always needs to be configured to a PinnedDispatcher, because the actual ZeroMQ socket can only
be accessed by the thread that created it.

The ZeroMQ module for Akka is written against an API introduced in JZMQ, which uses JNI to interact with
the native ZeroMQ library. Instead of using JZMQ, the module uses ZeroMQ binding for Scala that uses the
native ZeroMQ library through JNA. In other words, the only native library that this module requires is the native
ZeroMQ library. The benefit of the scala library is that you don’t need to compile and manage native dependencies
at the cost of some runtime performance. The scala-bindings are compatible with the JNI bindings so they are a
drop-in replacement, in case you really need to get that extra bit of performance out.

Note: The currently used version of zeromq-scala-bindings is only compatible with zeromq 2; zeromq
3 is not supported.

6.8.1 Connection

ZeroMQ supports multiple connectivity patterns, each aimed to meet a different set of requirements. Cur-
rently, this module supports publisher-subscriber connections and connections based on dealers and routers.
For connecting or accepting connections, a socket must be created. Sockets are always created using the
akka.zeromq.ZeroMQExtension, for example:

import akka.zeromq.Bind;
import akka.zeromq.ZeroMQExtension;

ActorRef pubSocket = ZeroMQExtension.get(system).newPubSocket(
new Bind("tcp://127.0.0.1:1233"));

Above examples will create a ZeroMQ Publisher socket that is Bound to the port 21231 on localhost.

Similarly you can create a subscription socket, with a listener, that subscribes to all messages from the publisher
using:

import akka.zeromq.Connect;
import akka.zeromq.Listener;
import akka.zeromq.Subscribe;

ActorRef listener = system.actorOf(Props.create(ListenerActor.class));
ActorRef subSocket = ZeroMQExtension.get(system).newSubSocket(

new Connect("tcp://127.0.0.1:1233"),
new Listener(listener), Subscribe.all());

public class ListenerActor extends UntypedActor {
public void onReceive(Object message) throws Exception {

6.8. ZeroMQ 309

Akka Java Documentation, Release 2.3.16

//...
}

}

The following sub-sections describe the supported connection patterns and how they can be used in an Akka
environment. However, for a comprehensive discussion of connection patterns, please refer to ZeroMQ – The
Guide.

Publisher-Subscriber Connection

In a publisher-subscriber (pub-sub) connection, the publisher accepts one or more subscribers. Each subscriber
shall subscribe to one or more topics, whereas the publisher publishes messages to a set of topics. Also, a sub-
scriber can subscribe to all available topics. In an Akka environment, pub-sub connections shall be used when an
actor sends messages to one or more actors that do not interact with the actor that sent the message.

When you’re using zeromq pub/sub you should be aware that it needs multicast - check your cloud - to work
properly and that the filtering of events for topics happens client side, so all events are always broadcasted to every
subscriber.

An actor is subscribed to a topic as follows:

ActorRef subTopicSocket = ZeroMQExtension.get(system).newSubSocket(
new Connect("tcp://127.0.0.1:1233"),
new Listener(listener), new Subscribe("foo.bar"));

It is a prefix match so it is subscribed to all topics starting with foo.bar. Note that if the given string is empty
or Subscribe.all() is used, the actor is subscribed to all topics.

To unsubscribe from a topic you do the following:

import akka.zeromq.Unsubscribe;

subTopicSocket.tell(new Unsubscribe("foo.bar"), ActorRef.noSender());

To publish messages to a topic you must use two Frames with the topic in the first frame.

import akka.util.ByteString;
import akka.zeromq.ZMQMessage;

pubSocket.tell(ZMQMessage.withFrames(ByteString.fromString("foo.bar"),
ByteString.fromArray(payload)), ActorRef.noSender());

Pub-Sub in Action

The following example illustrates one publisher with two subscribers.

The publisher monitors current heap usage and system load and periodically publishes Heap events on the
"health.heap" topic and Load events on the "health.load" topic.

import akka.actor.ActorRef;
import akka.actor.UntypedActor;
import akka.actor.Props;
import akka.event.Logging;
import akka.event.LoggingAdapter;
import org.junit.*;
import scala.concurrent.duration.Duration;
import akka.serialization.SerializationExtension;
import akka.serialization.Serialization;
import java.io.Serializable;
import java.lang.management.ManagementFactory;

6.8. ZeroMQ 310

http://zguide.zeromq.org/page:all
http://zguide.zeromq.org/page:all

Akka Java Documentation, Release 2.3.16

public final Object TICK = "TICK";

public class Heap implements Serializable {
private static final long serialVersionUID = 1L;
public final long timestamp;
public final long used;
public final long max;

public Heap(long timestamp, long used, long max) {
this.timestamp = timestamp;
this.used = used;
this.max = max;

}
}

public class Load implements Serializable {
private static final long serialVersionUID = 1L;
public final long timestamp;
public final double loadAverage;

public Load(long timestamp, double loadAverage) {
this.timestamp = timestamp;
this.loadAverage = loadAverage;

}
}

public class HealthProbe extends UntypedActor {

ActorRef pubSocket = ZeroMQExtension.get(getContext().system()).newPubSocket(
new Bind("tcp://127.0.0.1:1237"));

MemoryMXBean memory = ManagementFactory.getMemoryMXBean();
OperatingSystemMXBean os = ManagementFactory.getOperatingSystemMXBean();
Serialization ser = SerializationExtension.get(getContext().system());

@Override
public void preStart() {
getContext().system().scheduler()

.schedule(Duration.create(1, "second"), Duration.create(1, "second"),
getSelf(), TICK, getContext().dispatcher(), ActorRef.noSender());

}

@Override
public void postRestart(Throwable reason) {
// don't call preStart, only schedule once

}

@Override
public void onReceive(Object message) {
if (message.equals(TICK)) {

MemoryUsage currentHeap = memory.getHeapMemoryUsage();
long timestamp = System.currentTimeMillis();

// use akka SerializationExtension to convert to bytes
ByteString heapTopic = ByteString.fromString("health.heap", "UTF-8");
ByteString heapPayload = ByteString.fromArray(

ser.serialize(
new Heap(timestamp,

currentHeap.getUsed(),
currentHeap.getMax())

).get());
// the first frame is the topic, second is the message
pubSocket.tell(ZMQMessage.withFrames(heapTopic, heapPayload), getSelf());

6.8. ZeroMQ 311

Akka Java Documentation, Release 2.3.16

// use akka SerializationExtension to convert to bytes
ByteString loadTopic = ByteString.fromString("health.load", "UTF-8");
ByteString loadPayload = ByteString.fromArray(

ser.serialize(new Load(timestamp, os.getSystemLoadAverage())).get()
);
// the first frame is the topic, second is the message
pubSocket.tell(ZMQMessage.withFrames(loadTopic, loadPayload), getSelf());

} else {
unhandled(message);

}
}

}

system.actorOf(Props.create(HealthProbe.class), "health");

Let’s add one subscriber that logs the information. It subscribes to all topics starting with "health", i.e. both
Heap and Load events.

public class Logger extends UntypedActor {

ActorRef subSocket = ZeroMQExtension.get(getContext().system()).newSubSocket(
new Connect("tcp://127.0.0.1:1237"),

new Listener(getSelf()), new Subscribe("health"));
Serialization ser = SerializationExtension.get(getContext().system());
SimpleDateFormat timestampFormat = new SimpleDateFormat("HH:mm:ss.SSS");
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

@Override
public void onReceive(Object message) {
if (message instanceof ZMQMessage) {

ZMQMessage m = (ZMQMessage) message;
String topic = m.frame(0).utf8String();
// the first frame is the topic, second is the message
if ("health.heap".equals(topic)) {

Heap heap = ser.deserialize(m.frame(1).toArray(), Heap.class).get();
log.info("Used heap {} bytes, at {}", heap.used,
timestampFormat.format(new Date(heap.timestamp)));

} else if ("health.load".equals(topic)) {
Load load = ser.deserialize(m.frame(1).toArray(), Load.class).get();
log.info("Load average {}, at {}", load.loadAverage,
timestampFormat.format(new Date(load.timestamp)));

}
} else {

unhandled(message);
}

}

}

system.actorOf(Props.create(Logger.class), "logger");

Another subscriber keep track of used heap and warns if too much heap is used. It only subscribes to Heap events.

public class HeapAlerter extends UntypedActor {

ActorRef subSocket = ZeroMQExtension.get(getContext().system()).newSubSocket(
new Connect("tcp://127.0.0.1:1237"),
new Listener(getSelf()), new Subscribe("health.heap"));

Serialization ser = SerializationExtension.get(getContext().system());
LoggingAdapter log = Logging.getLogger(getContext().system(), this);
int count = 0;

6.8. ZeroMQ 312

Akka Java Documentation, Release 2.3.16

@Override
public void onReceive(Object message) {
if (message instanceof ZMQMessage) {

ZMQMessage m = (ZMQMessage) message;
String topic = m.frame(0).utf8String();
// the first frame is the topic, second is the message
if ("health.heap".equals(topic)) {

Heap heap = ser.<Heap>deserialize(m.frame(1).toArray(), Heap.class).get();
if (((double) heap.used / heap.max) > 0.9) {
count += 1;

} else {
count = 0;

}
if (count > 10) {
log.warning("Need more memory, using {} %",

(100.0 * heap.used / heap.max));
}

}
} else {

unhandled(message);
}

}

}

system.actorOf(Props.create(HeapAlerter.class), "alerter");

Router-Dealer Connection

While Pub/Sub is nice the real advantage of zeromq is that it is a “lego-box” for reliable messaging. And because
there are so many integrations the multi-language support is fantastic. When you’re using ZeroMQ to integrate
many systems you’ll probably need to build your own ZeroMQ devices. This is where the router and dealer socket
types come in handy. With those socket types you can build your own reliable pub sub broker that uses TCP/IP
and does publisher side filtering of events.

To create a Router socket that has a high watermark configured, you would do:

ActorRef highWatermarkSocket = ZeroMQExtension.get(system).newRouterSocket(
new SocketOption[] { new Listener(listener),

new Bind("tcp://127.0.0.1:1233"), new HighWatermark(50000) });

The akka-zeromq module accepts most if not all the available configuration options for a zeromq socket.

Push-Pull Connection

Akka ZeroMQ module supports Push-Pull connections.

You can create a Push connection through the:

ActorRef newPushSocket(SocketOption[] socketParameters);

You can create a Pull connection through the:

ActorRef newPullSocket(SocketOption[] socketParameters);

More documentation and examples will follow soon.

Rep-Req Connection

Akka ZeroMQ module supports Rep-Req connections.

6.8. ZeroMQ 313

Akka Java Documentation, Release 2.3.16

You can create a Rep connection through the:

ActorRef newRepSocket(SocketOption[] socketParameters);

You can create a Req connection through the:

ActorRef newReqSocket(SocketOption[] socketParameters);

More documentation and examples will follow soon.

6.8.2 Configuration

There are several configuration properties for the zeromq module, please refer to the reference configuration.

6.9 Camel

6.9.1 Introduction

The akka-camel module allows Untyped Actors to receive and send messages over a great variety of protocols and
APIs. In addition to the native Scala and Java actor API, actors can now exchange messages with other systems
over large number of protocols and APIs such as HTTP, SOAP, TCP, FTP, SMTP or JMS, to mention a few. At
the moment, approximately 80 protocols and APIs are supported.

Apache Camel

The akka-camel module is based on Apache Camel, a powerful and light-weight integration framework for the
JVM. For an introduction to Apache Camel you may want to read this Apache Camel article. Camel comes with
a large number of components that provide bindings to different protocols and APIs. The camel-extra project
provides further components.

Consumer

Here’s an example of using Camel’s integration components in Akka.

import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;

public class MyEndpoint extends UntypedConsumerActor{
private String uri;

public String getEndpointUri() {
return uri;

}

public void onReceive(Object message) throws Exception {
if (message instanceof CamelMessage) {

/* ... */
} else

unhandled(message);
}

// Extra constructor to change the default uri,
// for instance to "jetty:http://localhost:8877/example"
public MyEndpoint(String uri) {
this.uri = uri;

}

6.9. Camel 314

http://camel.apache.org/
http://architects.dzone.com/articles/apache-camel-integration
http://camel.apache.org/components.html
http://code.google.com/p/camel-extra/

Akka Java Documentation, Release 2.3.16

public MyEndpoint() {
this.uri = "mina2:tcp://localhost:6200?textline=true";

}
}

The above example exposes an actor over a TCP endpoint via Apache Camel’s Mina component. The actor
implements the getEndpointUri method to define an endpoint from which it can receive messages. After starting
the actor, TCP clients can immediately send messages to and receive responses from that actor. If the message
exchange should go over HTTP (via Camel’s Jetty component), the actor’s getEndpointUri method should return
a different URI, for instance “jetty:http://localhost:8877/example”. In the above case an extra constructor is added
that can set the endpoint URI, which would result in the getEndpointUri returning the URI that was set using this
constructor.

Producer

Actors can also trigger message exchanges with external systems i.e. produce to Camel endpoints.

import akka.camel.javaapi.UntypedProducerActor;

public class Orders extends UntypedProducerActor {
public String getEndpointUri() {
return "jms:queue:Orders";

}
}

In the above example, any message sent to this actor will be sent to the JMS queue Orders. Producer actors
may choose from the same set of Camel components as Consumer actors do. Below an example of how to send a
message to the Orders producer.

ActorSystem system = ActorSystem.create("some-system");
Props props = Props.create(Orders.class);
ActorRef producer = system.actorOf(props, "jmsproducer");
producer.tell("<order amount=\"100\" currency=\"PLN\" itemId=\"12345\"/>",

ActorRef.noSender());

CamelMessage

The number of Camel components is constantly increasing. The akka-camel module can support these in a plug-
and-play manner. Just add them to your application’s classpath, define a component-specific endpoint URI and
use it to exchange messages over the component-specific protocols or APIs. This is possible because Camel com-
ponents bind protocol-specific message formats to a Camel-specific normalized message format. The normalized
message format hides protocol-specific details from Akka and makes it therefore very easy to support a large
number of protocols through a uniform Camel component interface. The akka-camel module further converts
mutable Camel messages into immutable representations which are used by Consumer and Producer actors for
pattern matching, transformation, serialization or storage. In the above example of the Orders Producer, the XML
message is put in the body of a newly created Camel Message with an empty set of headers. You can also create a
CamelMessage yourself with the appropriate body and headers as you see fit.

CamelExtension

The akka-camel module is implemented as an Akka Extension, the CamelExtension object. Extensions will
only be loaded once per ActorSystem, which will be managed by Akka. The CamelExtension object
provides access to the Camel interface. The Camel interface in turn provides access to two important Apache
Camel objects, the CamelContext and the ProducerTemplate. Below you can see how you can get access to these
Apache Camel objects.

6.9. Camel 315

http://camel.apache.org/mina.html
http://camel.apache.org/jetty.html
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Message.java
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/Camel.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/Camel.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java

Akka Java Documentation, Release 2.3.16

ActorSystem system = ActorSystem.create("some-system");
Camel camel = CamelExtension.get(system);
CamelContext camelContext = camel.context();
ProducerTemplate producerTemplate = camel.template();

One CamelExtension is only loaded once for every one ActorSystem, which makes it safe to call the
CamelExtension at any point in your code to get to the Apache Camel objects associated with it. There is
one CamelContext and one ProducerTemplate for every one ActorSystem that uses a CamelExtension.
By Default, a new CamelContext is created when the CamelExtension starts. If you want to inject your own
context instead, you can implement the ContextProvider interface and add the FQCN of your implementation in the
config, as the value of the “akka.camel.context-provider”. This interface define a single method getContext()
used to load the CamelContext.

Below an example on how to add the ActiveMQ component to the CamelContext, which is required when you
would like to use the ActiveMQ component.

ActorSystem system = ActorSystem.create("some-system");
Camel camel = CamelExtension.get(system);
CamelContext camelContext = camel.context();
// camelContext.addComponent("activemq", ActiveMQComponent.activeMQComponent(
// "vm://localhost?broker.persistent=false"));

The CamelContext joins the lifecycle of the ActorSystem and CamelExtension it is associated with;
the CamelContext is started when the CamelExtension is created, and it is shut down when the associated
ActorSystem is shut down. The same is true for the ProducerTemplate.

The CamelExtension is used by both Producer and Consumer actors to interact with Apache Camel inter-
nally. You can access the CamelExtension inside a Producer or a Consumer using the camel method, or
get straight at the CamelContext using the getCamelContext method or to the ProducerTemplate using the
getProducerTemplate method. Actors are created and started asynchronously. When a Consumer actor is created,
the Consumer is published at its Camel endpoint (more precisely, the route is added to the CamelContext from
the Endpoint to the actor). When a Producer actor is created, a SendProcessor and Endpoint are created so that
the Producer can send messages to it. Publication is done asynchronously; setting up an endpoint may still be in
progress after you have requested the actor to be created. Some Camel components can take a while to startup,
and in some cases you might want to know when the endpoints are activated and ready to be used. The Camel
interface allows you to find out when the endpoint is activated or deactivated.

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.camel.Camel;
import akka.camel.CamelExtension;
import akka.camel.javaapi.UntypedConsumerActor;
import akka.testkit.JavaTestKit;
import akka.testkit.TestKit;
import akka.util.Timeout;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import static java.util.concurrent.TimeUnit.SECONDS;

// ..
ActorSystem system = ActorSystem.create("some-system");
Props props = Props.create(MyConsumer.class);
ActorRef producer = system.actorOf(props,"myproducer");
Camel camel = CamelExtension.get(system);
// get a future reference to the activation of the endpoint of the Consumer Actor
Timeout timeout = new Timeout(Duration.create(10, SECONDS));
Future<ActorRef> activationFuture = camel.activationFutureFor(producer,

timeout, system.dispatcher());

The above code shows that you can get a Future to the activation of the route from the endpoint to the actor,
or you can wait in a blocking fashion on the activation of the route. An ActivationTimeoutException is
thrown if the endpoint could not be activated within the specified timeout. Deactivation works in a similar fashion:

6.9. Camel 316

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/ContextProvider.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Endpoint.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/processor/SendProcessor.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Endpoint.java
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/Camel.scala

Akka Java Documentation, Release 2.3.16

// ..
system.stop(producer);
// get a future reference to the deactivation of the endpoint of the Consumer Actor
Future<ActorRef> deactivationFuture = camel.deactivationFutureFor(producer,

timeout, system.dispatcher());

Deactivation of a Consumer or a Producer actor happens when the actor is terminated. For a Consumer, the route
to the actor is stopped. For a Producer, the SendProcessor is stopped. A DeActivationTimeoutException
is thrown if the associated camel objects could not be deactivated within the specified timeout.

6.9.2 Consumer Actors

For objects to receive messages, they must inherit from the UntypedConsumerActor class. For example, the
following actor class (Consumer1) implements the getEndpointUri method, which is declared in the Untyped-
ConsumerActor class, in order to receive messages from the file:data/input/actor Camel endpoint.

import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;

public class Consumer1 extends UntypedConsumerActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public String getEndpointUri() {
return "file:data/input/actor";

}

public void onReceive(Object message) {
if (message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
String body = camelMessage.getBodyAs(String.class, getCamelContext());
log.info("Received message: {}", body);

} else
unhandled(message);

}
}

Whenever a file is put into the data/input/actor directory, its content is picked up by the Camel file component and
sent as message to the actor. Messages consumed by actors from Camel endpoints are of type CamelMessage.
These are immutable representations of Camel messages.

Here’s another example that sets the endpointUri to jetty:http://localhost:8877/camel/default.
It causes Camel’s Jetty component to start an embedded Jetty server, accepting HTTP connections from localhost
on port 8877.

import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;

public class Consumer2 extends UntypedConsumerActor {
public String getEndpointUri() {
return "jetty:http://localhost:8877/camel/default";

}

public void onReceive(Object message) {
if (message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
String body = camelMessage.getBodyAs(String.class, getCamelContext());
getSender().tell(String.format("Received message: %s",body), getSelf());

} else
unhandled(message);

6.9. Camel 317

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/processor/SendProcessor.java
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedConsumer.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedConsumer.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedConsumer.scala
http://camel.apache.org/file2.html
http://camel.apache.org/jetty.html
http://www.eclipse.org/jetty/

Akka Java Documentation, Release 2.3.16

}
}

After starting the actor, clients can send messages to that actor by POSTing to
http://localhost:8877/camel/default. The actor sends a response by using the getSender().tell
method. For returning a message body and headers to the HTTP client the response type should be CamelMes-
sage. For any other response type, a new CamelMessage object is created by akka-camel with the actor response
as message body.

Delivery acknowledgements

With in-out message exchanges, clients usually know that a message exchange is done when they receive a re-
ply from a consumer actor. The reply message can be a CamelMessage (or any object which is then internally
converted to a CamelMessage) on success, and a Failure message on failure.

With in-only message exchanges, by default, an exchange is done when a message is added to the consumer actor’s
mailbox. Any failure or exception that occurs during processing of that message by the consumer actor cannot
be reported back to the endpoint in this case. To allow consumer actors to positively or negatively acknowledge
the receipt of a message from an in-only message exchange, they need to override the autoAck method to
return false. In this case, consumer actors must reply either with a special akka.camel.Ack message (positive
acknowledgement) or a akka.actor.Status.Failure (negative acknowledgement).

import akka.actor.Status;
import akka.camel.Ack;
import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;

public class Consumer3 extends UntypedConsumerActor{

@Override
public boolean autoAck() {
return false;

}

public String getEndpointUri() {
return "jms:queue:test";

}

public void onReceive(Object message) {
if (message instanceof CamelMessage) {

getSender().tell(Ack.getInstance(), getSelf());
// on success
// ..
Exception someException = new Exception("e1");
// on failure
getSender().tell(new Status.Failure(someException), getSelf());

} else
unhandled(message);

}
}

Consumer timeout

Camel Exchanges (and their corresponding endpoints) that support two-way communications need to wait for a
response from an actor before returning it to the initiating client. For some endpoint types, timeout values can be
defined in an endpoint-specific way which is described in the documentation of the individual Camel components.
Another option is to configure timeouts on the level of consumer actors.

Two-way communications between a Camel endpoint and an actor are initiated by sending the request message to
the actor with the ask pattern and the actor replies to the endpoint when the response is ready. The ask request to

6.9. Camel 318

http://camel.apache.org/components.html
http://github.com/akka/akka/tree/v2.3.16/akka-actor/src/main/scala/akka/pattern/Patterns.scala

Akka Java Documentation, Release 2.3.16

the actor can timeout, which will result in the Exchange failing with a TimeoutException set on the failure of the
Exchange. The timeout on the consumer actor can be overridden with the replyTimeout, as shown below.

import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;
import scala.concurrent.duration.Duration;
import scala.concurrent.duration.FiniteDuration;

import java.util.concurrent.TimeUnit;

public class Consumer4 extends UntypedConsumerActor {
private final static FiniteDuration timeout =
Duration.create(500, TimeUnit.MILLISECONDS);

@Override
public FiniteDuration replyTimeout() {
return timeout;

}

public String getEndpointUri() {
return "jetty:http://localhost:8877/camel/default";

}

public void onReceive(Object message) {
if (message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
String body = camelMessage.getBodyAs(String.class, getCamelContext());
getSender().tell(String.format("Hello %s",body), getSelf());

} else
unhandled(message);

}
}

6.9.3 Producer Actors

For sending messages to Camel endpoints, actors need to inherit from the UntypedProducerActor class and im-
plement the getEndpointUri method.

import akka.camel.javaapi.UntypedProducerActor;

public class Producer1 extends UntypedProducerActor {
public String getEndpointUri() {
return "http://localhost:8080/news";

}
}

Producer1 inherits a default implementation of the onReceive method from the UntypedProducerActor
class. To customize a producer actor’s default behavior you must override the UntypedProducerAc-
tor.onTransformResponse and UntypedProducerActor.onTransformOutgoingMessage methods. This is explained
later in more detail. Producer Actors cannot override the UntypedProducerActor.onReceive method.

Any message sent to a Producer actor will be sent to the associated Camel endpoint, in the above example to
http://localhost:8080/news. The UntypedProducerActor always sends messages asynchronously. Re-
sponse messages (if supported by the configured endpoint) will, by default, be returned to the original sender. The
following example uses the ask pattern to send a message to a Producer actor and waits for a response.

ActorSystem system = ActorSystem.create("some-system");
Props props = Props.create(FirstProducer.class);
ActorRef producer = system.actorOf(props,"myproducer");
Future<Object> future = Patterns.ask(producer, "some request", 1000);

The future contains the response CamelMessage, or an AkkaCamelException when an error occurred, which

6.9. Camel 319

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Exchange.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Exchange.java
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala

Akka Java Documentation, Release 2.3.16

contains the headers of the response.

Custom Processing

Instead of replying to the initial sender, producer actors can implement custom response processing by overriding
the onRouteResponse method. In the following example, the response message is forwarded to a target actor
instead of being replied to the original sender.

import akka.actor.UntypedActor;
import akka.camel.CamelMessage;

public class ResponseReceiver extends UntypedActor{
public void onReceive(Object message) {

if(message instanceof CamelMessage) {
// do something with the forwarded response

}
}

}

import akka.actor.ActorRef;
import akka.camel.javaapi.UntypedProducerActor;

public class Forwarder extends UntypedProducerActor {
private String uri;
private ActorRef target;

public Forwarder(String uri, ActorRef target) {
this.uri = uri;
this.target = target;

}

public String getEndpointUri() {
return uri;

}

@Override
public void onRouteResponse(Object message) {
target.forward(message, getContext());

}
}

ActorSystem system = ActorSystem.create("some-system");
Props receiverProps = Props.create(ResponseReceiver.class);
final ActorRef receiver = system.actorOf(receiverProps,"responseReceiver");
ActorRef forwardResponse = system.actorOf(Props.create(

Forwarder.class, "http://localhost:8080/news/akka", receiver));
// the Forwarder sends out a request to the web page and forwards the response to
// the ResponseReceiver
forwardResponse.tell("some request", ActorRef.noSender());

Before producing messages to endpoints, producer actors can pre-process them by overriding the UntypedProduc-
erActor.onTransformOutgoingMessage method.

import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedProducerActor;
import akka.dispatch.Mapper;
import akka.japi.Function;

public class Transformer extends UntypedProducerActor{
private String uri;

public Transformer(String uri) {

6.9. Camel 320

http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala

Akka Java Documentation, Release 2.3.16

this.uri = uri;
}

public String getEndpointUri() {
return uri;

}

private CamelMessage upperCase(CamelMessage msg) {
return msg.mapBody(new Mapper<String,String>() {

@Override
public String apply(String body) {

return body.toUpperCase();
}

});
}

@Override
public Object onTransformOutgoingMessage(Object message) {
if(message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
return upperCase(camelMessage);

} else {
return message;

}
}

}

Producer configuration options

The interaction of producer actors with Camel endpoints can be configured to be one-way or two-way (by initiating
in-only or in-out message exchanges, respectively). By default, the producer initiates an in-out message exchange
with the endpoint. For initiating an in-only exchange, producer actors have to override the isOneway method to
return true.

import akka.camel.javaapi.UntypedProducerActor;

public class OnewaySender extends UntypedProducerActor{
private String uri;

public OnewaySender(String uri) {
this.uri = uri;

}
public String getEndpointUri() {
return uri;

}

@Override
public boolean isOneway() {
return true;

}
}

Message correlation

To correlate request with response messages, applications can set the Message.MessageExchangeId message
header.

ActorSystem system = ActorSystem.create("some-system");
Props props = Props.create(Orders.class);
ActorRef producer = system.actorOf(props,"jmsproducer");

6.9. Camel 321

Akka Java Documentation, Release 2.3.16

Map<String,Object> headers = new HashMap<String, Object>();
headers.put(CamelMessage.MessageExchangeId(),"123");
producer.tell(new CamelMessage("<order amount=\"100\" currency=\"PLN\" " +

"itemId=\"12345\"/>",headers), ActorRef.noSender());

ProducerTemplate

The UntypedProducerActor class is a very convenient way for actors to produce messages to Camel endpoints.
Actors may also use a Camel ProducerTemplate for producing messages to endpoints.

import akka.actor.UntypedActor;
import akka.camel.Camel;
import akka.camel.CamelExtension;
import org.apache.camel.ProducerTemplate;

public class MyActor extends UntypedActor {
public void onReceive(Object message) {
Camel camel = CamelExtension.get(getContext().system());
ProducerTemplate template = camel.template();
template.sendBody("direct:news", message);

}
}

For initiating a a two-way message exchange, one of the ProducerTemplate.request* methods must be
used.

import akka.actor.UntypedActor;
import akka.camel.Camel;
import akka.camel.CamelExtension;
import org.apache.camel.ProducerTemplate;

public class RequestBodyActor extends UntypedActor {
public void onReceive(Object message) {
Camel camel = CamelExtension.get(getContext().system());
ProducerTemplate template = camel.template();
getSender().tell(template.requestBody("direct:news", message), getSelf());

}
}

6.9.4 Asynchronous routing

In-out message exchanges between endpoints and actors are designed to be asynchronous. This is the case for
both, consumer and producer actors.

• A consumer endpoint sends request messages to its consumer actor using the tell method and the actor
returns responses with getSender().tell once they are ready.

• A producer actor sends request messages to its endpoint using Camel’s asynchronous routing engine. Asyn-
chronous responses are wrapped and added to the producer actor’s mailbox for later processing. By default,
response messages are returned to the initial sender but this can be overridden by Producer implementations
(see also description of the onRouteResponse method in Custom Processing).

However, asynchronous two-way message exchanges, without allocating a thread for the full duration of exchange,
cannot be generically supported by Camel’s asynchronous routing engine alone. This must be supported by the
individual Camel components (from which endpoints are created) as well. They must be able to suspend any work
started for request processing (thereby freeing threads to do other work) and resume processing when the response
is ready. This is currently the case for a subset of components such as the Jetty component. All other Camel
components can still be used, of course, but they will cause allocation of a thread for the duration of an in-out
message exchange. There’s also Examples that implements both, an asynchronous consumer and an asynchronous
producer, with the jetty component.

6.9. Camel 322

http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/javaapi/UntypedProducerActor.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
http://camel.apache.org/components.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/jetty.html

Akka Java Documentation, Release 2.3.16

If the used Camel component is blocking it might be necessary to use a separate dispatcher for the producer. The
Camel processor is invoked by a child actor of the producer and the dispatcher can be defined in the deployment
section of the configuration. For example, if your producer actor has path /user/integration/output the
dispatcher of the child actor can be defined with:

akka.actor.deployment {
/integration/output/* {
dispatcher = my-dispatcher

}
}

6.9.5 Custom Camel routes

In all the examples so far, routes to consumer actors have been automatically constructed by akka-camel, when the
actor was started. Although the default route construction templates, used by akka-camel internally, are sufficient
for most use cases, some applications may require more specialized routes to actors. The akka-camel module
provides two mechanisms for customizing routes to actors, which will be explained in this section. These are:

• Usage of Akka Camel components to access actors. Any Camel route can use these components to access
Akka actors.

• Intercepting route construction to actors. This option gives you the ability to change routes that have already
been added to Camel. Consumer actors have a hook into the route definition process which can be used to
change the route.

Akka Camel components

Akka actors can be accessed from Camel routes using the actor Camel component. This component can be used
to access any Akka actor (not only consumer actors) from Camel routes, as described in the following sections.

Access to actors

To access actors from custom Camel routes, the actor Camel component should be used. It fully supports Camel’s
asynchronous routing engine.

This component accepts the following endpoint URI format:

• [<actor-path>]?<options>

where <actor-path> is the ActorPath to the actor. The <options> are name-value pairs separated by &
(i.e. name1=value1&name2=value2&...).

URI options

The following URI options are supported:

Name Type Default Description
replyTimeout Duration false The reply timeout, specified in the same way that you use the

duration in akka, for instance 10 seconds except that in the url it
is handy to use a + between the amount and the unit, like for example
200+millis
See also Consumer timeout.

autoAck Boolean true If set to true, in-only message exchanges are auto-acknowledged
when the message is added to the actor’s mailbox. If set to false,
actors must acknowledge the receipt of the message.
See also Delivery acknowledgements.

Here’s an actor endpoint URI example containing an actor path:

6.9. Camel 323

http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/internal/component/ActorComponent.scala
http://github.com/akka/akka/tree/v2.3.16/akka-camel/src/main/scala/akka/camel/internal/component/ActorComponent.scala
http://camel.apache.org/asynchronous-routing-engine.html

Akka Java Documentation, Release 2.3.16

akka://some-system/user/myconsumer?autoAck=false&replyTimeout=100+millis

In the following example, a custom route to an actor is created, using the actor’s path.

import akka.actor.UntypedActor;
import akka.camel.CamelMessage;
import akka.dispatch.Mapper;
import akka.japi.Function;

public class Responder extends UntypedActor{

public void onReceive(Object message) {
if (message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
getSender().tell(createResponse(camelMessage), getSelf());

} else
unhandled(message);

}

private CamelMessage createResponse(CamelMessage msg) {
return msg.mapBody(new Mapper<String,String>() {

@Override
public String apply(String body) {

return String.format("received %s", body);
}

});
}

}

import akka.actor.ActorRef;
import akka.camel.internal.component.CamelPath;
import org.apache.camel.builder.RouteBuilder;

public class CustomRouteBuilder extends RouteBuilder{
private String uri;

public CustomRouteBuilder(ActorRef responder) {
uri = CamelPath.toUri(responder);

}

public void configure() throws Exception {
from("jetty:http://localhost:8877/camel/custom").to(uri);

}
}

ActorSystem system = ActorSystem.create("some-system");
Camel camel = CamelExtension.get(system);
ActorRef responder = system.actorOf(Props.create(Responder.class), "TestResponder");
camel.context().addRoutes(new CustomRouteBuilder(responder));

The CamelPath.toCamelUri converts the ActorRef to the Camel actor component URI format which points to the
actor endpoint as described above. When a message is received on the jetty endpoint, it is routed to the Responder
actor, which in return replies back to the client of the HTTP request.

Intercepting route construction

The previous section, Akka Camel components, explained how to setup a route to an actor manually. It was the
application’s responsibility to define the route and add it to the current CamelContext. This section explains a
more convenient way to define custom routes: akka-camel is still setting up the routes to consumer actors (and
adds these routes to the current CamelContext) but applications can define extensions to these routes. Extensions
can be defined with Camel’s Java DSL or Scala DSL. For example, an extension could be a custom error handler
that redelivers messages from an endpoint to an actor’s bounded mailbox when the mailbox was full.

6.9. Camel 324

http://camel.apache.org/dsl.html
http://camel.apache.org/scala-dsl.html

Akka Java Documentation, Release 2.3.16

The following examples demonstrate how to extend a route to a consumer actor for handling exceptions thrown
by that actor.

import akka.actor.Status;
import akka.camel.CamelMessage;
import akka.camel.javaapi.UntypedConsumerActor;
import akka.dispatch.Mapper;
import org.apache.camel.builder.Builder;
import org.apache.camel.model.ProcessorDefinition;
import org.apache.camel.model.RouteDefinition;
import scala.Option;

public class ErrorThrowingConsumer extends UntypedConsumerActor{
private String uri;

private static Mapper<RouteDefinition, ProcessorDefinition<?>> mapper =
new Mapper<RouteDefinition, ProcessorDefinition<?>>() {

public ProcessorDefinition<?> apply(RouteDefinition rd) {
// Catch any exception and handle it by returning the exception message
// as response
return rd.onException(Exception.class).handled(true).
transform(Builder.exceptionMessage()).end();

}
};

public ErrorThrowingConsumer(String uri){
this.uri = uri;

}

public String getEndpointUri() {
return uri;

}

public void onReceive(Object message) throws Exception{
if (message instanceof CamelMessage) {

CamelMessage camelMessage = (CamelMessage) message;
String body = camelMessage.getBodyAs(String.class, getCamelContext());
throw new Exception(String.format("error: %s",body));

} else
unhandled(message);

}

@Override
public Mapper<RouteDefinition,
ProcessorDefinition<?>> getRouteDefinitionHandler() {
return mapper;

}

@Override
public void preRestart(Throwable reason, Option<Object> message) {
getSender().tell(new Status.Failure(reason), getSelf());

}
}

The above ErrorThrowingConsumer sends the Failure back to the sender in preRestart because the Exception that
is thrown in the actor would otherwise just crash the actor, by default the actor would be restarted, and the response
would never reach the client of the Consumer.

The akka-camel module creates a RouteDefinition instance by calling from(endpointUri) on a Camel RouteBuilder
(where endpointUri is the endpoint URI of the consumer actor) and passes that instance as argument to the route
definition handler *). The route definition handler then extends the route and returns a ProcessorDefinition (in the
above example, the ProcessorDefinition returned by the end method. See the org.apache.camel.model package for
details). After executing the route definition handler, akka-camel finally calls a to(targetActorUri) on the returned

6.9. Camel 325

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/model/

Akka Java Documentation, Release 2.3.16

ProcessorDefinition to complete the route to the consumer actor (where targetActorUri is the actor component
URI as described in Access to actors). If the actor cannot be found, a ActorNotRegisteredException is thrown.

*) Before passing the RouteDefinition instance to the route definition handler, akka-camel may make some further
modifications to it.

6.9.6 Examples

The Typesafe Activator tutorial named Akka Camel Samples with Java contains 3 samples:

• Asynchronous routing and transformation - This example demonstrates how to implement consumer and
producer actors that support Asynchronous routing with their Camel endpoints.

• Custom Camel route - Demonstrates the combined usage of a Producer and a Consumer actor as well
as the inclusion of a custom Camel route.

• Quartz Scheduler Example - Showing how simple is to implement a cron-style scheduler by using the Camel
Quartz component

6.9.7 Configuration

There are several configuration properties for the Camel module, please refer to the reference configuration.

6.9.8 Additional Resources

For an introduction to akka-camel 2, see also the Peter Gabryanczyk’s talk Migrating akka-camel module to Akka
2.x.

For an introduction to akka-camel 1, see also the Appendix E - Akka and Camel (pdf) of the book Camel in Action.

Other, more advanced external articles (for version 1) are:

• Akka Consumer Actors: New Features and Best Practices

• Akka Producer Actors: New Features and Best Practices

6.9. Camel 326

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-camel-java
http://skillsmatter.com/podcast/scala/akka-2-x
http://skillsmatter.com/podcast/scala/akka-2-x
http://www.manning.com/ibsen/appEsample.pdf
http://www.manning.com/ibsen/
http://krasserm.blogspot.com/2011/02/akka-consumer-actors-new-features-and.html
http://krasserm.blogspot.com/2011/02/akka-producer-actor-new-features-and.html

CHAPTER

SEVEN

UTILITIES

7.1 Event Bus

Originally conceived as a way to send messages to groups of actors, the EventBus has been generalized into a
set of abstract base classes implementing a simple interface:

/**
* Attempts to register the subscriber to the specified Classifier

* @return true if successful and false if not (because it was already

* subscribed to that Classifier, or otherwise)

*/
public boolean subscribe(Subscriber subscriber, Classifier to);

/**
* Attempts to deregister the subscriber from the specified Classifier

* @return true if successful and false if not (because it wasn't subscribed

* to that Classifier, or otherwise)

*/
public boolean unsubscribe(Subscriber subscriber, Classifier from);

/**
* Attempts to deregister the subscriber from all Classifiers it may be subscribed to

*/
public void unsubscribe(Subscriber subscriber);

/**
* Publishes the specified Event to this bus

*/
public void publish(Event event);

Note: Please note that the EventBus does not preserve the sender of the published messages. If you need a
reference to the original sender you have to provide it inside the message.

This mechanism is used in different places within Akka, e.g. the Event Stream. Implementations can make use of
the specific building blocks presented below.

An event bus must define the following three type parameters:

• Event (E) is the type of all events published on that bus

• Subscriber (S) is the type of subscribers allowed to register on that event bus

• Classifier (C) defines the classifier to be used in selecting subscribers for dispatching events

The traits below are still generic in these types, but they need to be defined for any concrete implementation.

327

Akka Java Documentation, Release 2.3.16

7.1.1 Classifiers

The classifiers presented here are part of the Akka distribution, but rolling your own in case you do not find a
perfect match is not difficult, check the implementation of the existing ones on github

Lookup Classification

The simplest classification is just to extract an arbitrary classifier from each event and maintaining a set of
subscribers for each possible classifier. This can be compared to tuning in on a radio station. The trait
LookupClassification is still generic in that it abstracts over how to compare subscribers and how ex-
actly to classify.

The necessary methods to be implemented are illustrated with the following example:

import akka.event.japi.LookupEventBus;

public class MsgEnvelope {
public final String topic;
public final Object payload;

public MsgEnvelope(String topic, Object payload) {
this.topic = topic;
this.payload = payload;

}
}

/**
* Publishes the payload of the MsgEnvelope when the topic of the

* MsgEnvelope equals the String specified when subscribing.

*/
public class LookupBusImpl extends LookupEventBus<MsgEnvelope, ActorRef, String> {

// is used for extracting the classifier from the incoming events
@Override public String classify(MsgEnvelope event) {

return event.topic;
}

// will be invoked for each event for all subscribers which registered themselves
// for the event’s classifier
@Override public void publish(MsgEnvelope event, ActorRef subscriber) {

subscriber.tell(event.payload, ActorRef.noSender());
}

// must define a full order over the subscribers, expressed as expected from
// `java.lang.Comparable.compare`
@Override public int compareSubscribers(ActorRef a, ActorRef b) {

return a.compareTo(b);
}

// determines the initial size of the index data structure
// used internally (i.e. the expected number of different classifiers)
@Override public int mapSize() {

return 128;
}

}

A test for this implementation may look like this:

LookupBusImpl lookupBus = new LookupBusImpl();
lookupBus.subscribe(getTestActor(), "greetings");
lookupBus.publish(new MsgEnvelope("time", System.currentTimeMillis()));

7.1. Event Bus 328

http://github.com/akka/akka/tree/v2.3.16/akka-actor/src/main/scala/akka/event/EventBus.scala

Akka Java Documentation, Release 2.3.16

lookupBus.publish(new MsgEnvelope("greetings", "hello"));
expectMsgEquals("hello");

This classifier is efficient in case no subscribers exist for a particular event.

Subchannel Classification

If classifiers form a hierarchy and it is desired that subscription be possible not only at the leaf nodes, this clas-
sification may be just the right one. It can be compared to tuning in on (possibly multiple) radio channels by
genre. This classification has been developed for the case where the classifier is just the JVM class of the event
and subscribers may be interested in subscribing to all subclasses of a certain class, but it may be used with any
classifier hierarchy.

The necessary methods to be implemented are illustrated with the following example:

import akka.event.japi.SubchannelEventBus;
import akka.util.Subclassification;

public class StartsWithSubclassification implements Subclassification<String> {
@Override public boolean isEqual(String x, String y) {

return x.equals(y);
}

@Override public boolean isSubclass(String x, String y) {
return x.startsWith(y);

}
}

/**
* Publishes the payload of the MsgEnvelope when the topic of the

* MsgEnvelope starts with the String specified when subscribing.

*/
public class SubchannelBusImpl extends SubchannelEventBus<MsgEnvelope, ActorRef, String> {

// Subclassification is an object providing `isEqual` and `isSubclass`
// to be consumed by the other methods of this classifier
@Override public Subclassification<String> subclassification() {

return new StartsWithSubclassification();
}

// is used for extracting the classifier from the incoming events
@Override public String classify(MsgEnvelope event) {

return event.topic;
}

// will be invoked for each event for all subscribers which registered themselves
// for the event’s classifier
@Override public void publish(MsgEnvelope event, ActorRef subscriber) {

subscriber.tell(event.payload, ActorRef.noSender());
}

}

A test for this implementation may look like this:

SubchannelBusImpl subchannelBus = new SubchannelBusImpl();
subchannelBus.subscribe(getTestActor(), "abc");
subchannelBus.publish(new MsgEnvelope("xyzabc", "x"));
subchannelBus.publish(new MsgEnvelope("bcdef", "b"));
subchannelBus.publish(new MsgEnvelope("abc", "c"));
expectMsgEquals("c");

7.1. Event Bus 329

Akka Java Documentation, Release 2.3.16

subchannelBus.publish(new MsgEnvelope("abcdef", "d"));
expectMsgEquals("d");

This classifier is also efficient in case no subscribers are found for an event, but it uses conventional locking to
synchronize an internal classifier cache, hence it is not well-suited to use cases in which subscriptions change
with very high frequency (keep in mind that “opening” a classifier by sending the first message will also have to
re-check all previous subscriptions).

Scanning Classification

The previous classifier was built for multi-classifier subscriptions which are strictly hierarchical, this classifier is
useful if there are overlapping classifiers which cover various parts of the event space without forming a hierarchy.
It can be compared to tuning in on (possibly multiple) radio stations by geographical reachability (for old-school
radio-wave transmission).

The necessary methods to be implemented are illustrated with the following example:

import akka.event.japi.ScanningEventBus;

/**
* Publishes String messages with length less than or equal to the length

* specified when subscribing.

*/
public class ScanningBusImpl extends ScanningEventBus<String, ActorRef, Integer> {

// is needed for determining matching classifiers and storing them in an
// ordered collection
@Override public int compareClassifiers(Integer a, Integer b) {

return a.compareTo(b);
}

// is needed for storing subscribers in an ordered collection
@Override public int compareSubscribers(ActorRef a, ActorRef b) {

return a.compareTo(b);
}

// determines whether a given classifier shall match a given event; it is invoked
// for each subscription for all received events, hence the name of the classifier
@Override public boolean matches(Integer classifier, String event) {

return event.length() <= classifier;
}

// will be invoked for each event for all subscribers which registered themselves
// for the event’s classifier
@Override public void publish(String event, ActorRef subscriber) {

subscriber.tell(event, ActorRef.noSender());
}

}

A test for this implementation may look like this:

ScanningBusImpl scanningBus = new ScanningBusImpl();
scanningBus.subscribe(getTestActor(), 3);
scanningBus.publish("xyzabc");
scanningBus.publish("ab");
expectMsgEquals("ab");
scanningBus.publish("abc");
expectMsgEquals("abc");

This classifier takes always a time which is proportional to the number of subscriptions, independent of how many
actually match.

7.1. Event Bus 330

Akka Java Documentation, Release 2.3.16

Actor Classification

This classification was originally developed specifically for implementing DeathWatch: subscribers as well as
classifiers are of type ActorRef.

The necessary methods to be implemented are illustrated with the following example:

import akka.event.japi.ActorEventBus;

public class Notification {
public final ActorRef ref;
public final int id;

public Notification(ActorRef ref, int id) {
this.ref = ref;
this.id = id;

}
}

public class ActorBusImpl extends ActorEventBus<Notification> {
// is used for extracting the classifier from the incoming events
@Override public ActorRef classify(Notification event) {

return event.ref;
}

// determines the initial size of the index data structure
// used internally (i.e. the expected number of different classifiers)
@Override public int mapSize() {

return 128;
}

}

A test for this implementation may look like this:

ActorRef observer1 = new JavaTestKit(system).getRef();
ActorRef observer2 = new JavaTestKit(system).getRef();
JavaTestKit probe1 = new JavaTestKit(system);
JavaTestKit probe2 = new JavaTestKit(system);
ActorRef subscriber1 = probe1.getRef();
ActorRef subscriber2 = probe2.getRef();
ActorBusImpl actorBus = new ActorBusImpl();
actorBus.subscribe(subscriber1, observer1);
actorBus.subscribe(subscriber2, observer1);
actorBus.subscribe(subscriber2, observer2);
Notification n1 = new Notification(observer1, 100);
actorBus.publish(n1);
probe1.expectMsgEquals(n1);
probe2.expectMsgEquals(n1);
Notification n2 = new Notification(observer2, 101);
actorBus.publish(n2);
probe2.expectMsgEquals(n2);
probe1.expectNoMsg(FiniteDuration.create(500, TimeUnit.MILLISECONDS));

This classifier is still is generic in the event type, and it is efficient for all use cases.

7.1.2 Event Stream

The event stream is the main event bus of each actor system: it is used for carrying log messages and Dead Letters
and may be used by the user code for other purposes as well. It uses Subchannel Classification which enables
registering to related sets of channels (as is used for RemotingLifecycleEvent). The following example
demonstrates how a simple subscription works. Given a simple actor:

7.1. Event Bus 331

Akka Java Documentation, Release 2.3.16

import akka.actor.Props;
import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.UntypedActor;
import akka.actor.DeadLetter;

public class DeadLetterActor extends UntypedActor {
public void onReceive(Object message) {
if (message instanceof DeadLetter) {

System.out.println(message);
}

}
}

it can be subscribed like this:

final ActorSystem system = ActorSystem.create("DeadLetters");
final ActorRef actor = system.actorOf(Props.create(DeadLetterActor.class));
system.eventStream().subscribe(actor, DeadLetter.class);

Default Handlers

Upon start-up the actor system creates and subscribes actors to the event stream for logging: these are the handlers
which are configured for example in application.conf:

akka {
loggers = ["akka.event.Logging$DefaultLogger"]

}

The handlers listed here by fully-qualified class name will be subscribed to all log event classes with priority higher
than or equal to the configured log-level and their subscriptions are kept in sync when changing the log-level at
runtime:

system.eventStream.setLogLevel(Logging.DebugLevel());

This means that log events for a level which will not be logged are typically not dispatched at all (unless manual
subscriptions to the respective event class have been done)

Dead Letters

As described at Stopping actors, messages queued when an actor terminates or sent after its death are re-routed
to the dead letter mailbox, which by default will publish the messages wrapped in DeadLetter. This wrapper
holds the original sender, receiver and message of the envelope which was redirected.

Some internal messages (marked with the DeadLetterSuppression trait) will not end up as dead letters like
normal messages. These are by design safe and expected to sometimes arrive at a terminated actor and since they
are nothing to worry about, they are suppressed from the default dead letters logging mechanism.

However, in case you find yourself in need of debugging these kinds of low level suppressed dead letters, it’s still
possible to subscribe to them explicitly:

system.eventStream().subscribe(actor, SuppressedDeadLetter.class);

or all dead letters (including the suppressed ones):

system.eventStream().subscribe(actor, AllDeadLetters.class);

Other Uses

The event stream is always there and ready to be used, just publish your own events (it accepts Object) and
subscribe listeners to the corresponding JVM classes.

7.1. Event Bus 332

Akka Java Documentation, Release 2.3.16

7.2 Logging

Logging in Akka is not tied to a specific logging backend. By default log messages are printed to STDOUT, but
you can plug-in a SLF4J logger or your own logger. Logging is performed asynchronously to ensure that logging
has minimal performance impact. Logging generally means IO and locks, which can slow down the operations of
your code if it was performed synchronously.

7.2.1 How to Log

Create a LoggingAdapter and use the error, warning, info, or debug methods, as illustrated in this
example:

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.AllDeadLetters;
import akka.actor.SuppressedDeadLetter;
import akka.event.Logging;
import akka.event.LoggingAdapter;

class MyActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

@Override
public void preStart() {
log.debug("Starting");

}

@Override
public void preRestart(Throwable reason, Option<Object> message) {
log.error(reason, "Restarting due to [{}] when processing [{}]",

reason.getMessage(), message.isDefined() ? message.get() : "");
}

public void onReceive(Object message) {
if (message.equals("test")) {

log.info("Received test");
} else {

log.warning("Received unknown message: {}", message);
}

}
}

The first parameter to Logging.getLogger could also be any LoggingBus, specifically
system.eventStream(); in the demonstrated case, the actor system’s address is included in the
akkaSource representation of the log source (see Logging Thread and Akka Source in MDC) while in the
second case this is not automatically done. The second parameter to Logging.getLogger is the source of
this logging channel. The source object is translated to a String according to the following rules:

• if it is an Actor or ActorRef, its path is used

• in case of a String it is used as is

• in case of a class an approximation of its simpleName

• and in all other cases the simpleName of its class

The log message may contain argument placeholders {}, which will be substituted if the log level is enabled.
Giving more arguments as there are placeholders results in a warning being appended to the log statement (i.e.
on the same line with the same severity). You may pass a Java array as the only substitution argument to have its
elements be treated individually:

7.2. Logging 333

Akka Java Documentation, Release 2.3.16

final Object[] args = new Object[] { "The", "brown", "fox", "jumps", 42 };
system.log().debug("five parameters: {}, {}, {}, {}, {}", args);

The Java Class of the log source is also included in the generated LogEvent. In case of a simple string this
is replaced with a “marker” class akka.event.DummyClassForStringSources in order to allow special
treatment of this case, e.g. in the SLF4J event listener which will then use the string instead of the class’ name for
looking up the logger instance to use.

Logging of Dead Letters

By default messages sent to dead letters are logged at info level. Existence of dead letters does not necessarily
indicate a problem, but it might be, and therefore they are logged by default. After a few messages this logging
is turned off, to avoid flooding the logs. You can disable this logging completely or adjust how many dead letters
that are logged. During system shutdown it is likely that you see dead letters, since pending messages in the actor
mailboxes are sent to dead letters. You can also disable logging of dead letters during shutdown.

akka {
log-dead-letters = 10
log-dead-letters-during-shutdown = on

}

To customize the logging further or take other actions for dead letters you can subscribe to the Event Stream.

Auxiliary logging options

Akka has a couple of configuration options for very low level debugging, that makes most sense in for developers
and not for operations.

You almost definitely need to have logging set to DEBUG to use any of the options below:

akka {
loglevel = "DEBUG"

}

This config option is very good if you want to know what config settings are loaded by Akka:

akka {
Log the complete configuration at INFO level when the actor system is started.
This is useful when you are uncertain of what configuration is used.
log-config-on-start = on

}

If you want very detailed logging of all automatically received messages that are processed by Actors:

akka {
actor {
debug {

enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill et.c.)
autoreceive = on

}
}

}

If you want very detailed logging of all lifecycle changes of Actors (restarts, deaths etc):

akka {
actor {
debug {

enable DEBUG logging of actor lifecycle changes
lifecycle = on

}

7.2. Logging 334

Akka Java Documentation, Release 2.3.16

}
}

If you want very detailed logging of all events, transitions and timers of FSM Actors that extend LoggingFSM:

akka {
actor {
debug {

enable DEBUG logging of all LoggingFSMs for events, transitions and timers
fsm = on

}
}

}

If you want to monitor subscriptions (subscribe/unsubscribe) on the ActorSystem.eventStream:

akka {
actor {
debug {

enable DEBUG logging of subscription changes on the eventStream
event-stream = on

}
}

}

Auxiliary remote logging options

If you want to see all messages that are sent through remoting at DEBUG log level: (This is logged as they are
sent by the transport layer, not by the Actor)

akka {
remote {
If this is "on", Akka will log all outbound messages at DEBUG level,
if off then they are not logged
log-sent-messages = on

}
}

If you want to see all messages that are received through remoting at DEBUG log level: (This is logged as they
are received by the transport layer, not by any Actor)

akka {
remote {
If this is "on", Akka will log all inbound messages at DEBUG level,
if off then they are not logged
log-received-messages = on

}
}

If you want to see message types with payload size in bytes larger than a specified limit at INFO log level:

akka {
remote {
Logging of message types with payload size in bytes larger than
this value. Maximum detected size per message type is logged once,
with an increase threshold of 10%.
By default this feature is turned off. Activate it by setting the property to
a value in bytes, such as 1000b. Note that for all messages larger than this
limit there will be extra performance and scalability cost.
log-frame-size-exceeding = 1000b

}
}

7.2. Logging 335

Akka Java Documentation, Release 2.3.16

Also see the logging options for TestKit: Tracing Actor Invocations.

Turn Off Logging

To turn off logging you can configure the log levels to be OFF like this.

akka {
stdout-loglevel = "OFF"
loglevel = "OFF"

}

The stdout-loglevel is only in effect during system startup and shutdown, and setting it to OFF as well,
ensures that nothing gets logged during system startup or shutdown.

7.2.2 Loggers

Logging is performed asynchronously through an event bus. Log events are processed by an event handler actor
and it will receive the log events in the same order as they were emitted.

You can configure which event handlers are created at system start-up and listen to logging events. That is done
using the loggers element in the Configuration. Here you can also define the log level.

akka {
Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

}

The default one logs to STDOUT and is registered by default. It is not intended to be used for production. There
is also an Logging to stdout during startup and shutdown logger available in the ‘akka-slf4j’ module.

Example of creating a listener:

import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.AllDeadLetters;
import akka.actor.SuppressedDeadLetter;
import akka.event.Logging;
import akka.event.LoggingAdapter;

import akka.event.Logging.InitializeLogger;
import akka.event.Logging.Error;
import akka.event.Logging.Warning;
import akka.event.Logging.Info;
import akka.event.Logging.Debug;

class MyEventListener extends UntypedActor {
public void onReceive(Object message) {
if (message instanceof InitializeLogger) {

getSender().tell(Logging.loggerInitialized(), getSelf());
} else if (message instanceof Error) {

// ...
} else if (message instanceof Warning) {

// ...
} else if (message instanceof Info) {

// ...
} else if (message instanceof Debug) {

// ...
}

7.2. Logging 336

Akka Java Documentation, Release 2.3.16

}
}

7.2.3 Logging to stdout during startup and shutdown

While the actor system is starting up and shutting down the configured loggers are not used. Instead log
messages are printed to stdout (System.out). The default log level for this stdout logger is WARNING and it can be
silenced completely by setting akka.stdout-loglevel=OFF.

7.2.4 SLF4J

Akka provides a logger for SL4FJ. This module is available in the ‘akka-slf4j.jar’. It has one single dependency;
the slf4j-api jar. In runtime you also need a SLF4J backend, we recommend Logback:

<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.0.13</version>

</dependency>

You need to enable the Slf4jLogger in the ‘loggers’ element in the Configuration. Here you can also define the
log level of the event bus. More fine grained log levels can be defined in the configuration of the SLF4J backend
(e.g. logback.xml).

akka {
loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = "DEBUG"

}

One gotcha is that the timestamp is attributed in the event handler, not when actually doing the logging.

The SLF4J logger selected for each log event is chosen based on the Class of the log source spec-
ified when creating the LoggingAdapter, unless that was given directly as a string in which case
that string is used (i.e. LoggerFactory.getLogger(Class c) is used in the first case and
LoggerFactory.getLogger(String s) in the second).

Note: Beware that the actor system’s name is appended to a String log source if the LoggingAdapter was
created giving an ActorSystem to the factory. If this is not intended, give a LoggingBus instead as shown
below:

final LoggingAdapter log = Logging.getLogger(system.eventStream(), "my.string");

Logging Thread and Akka Source in MDC

Since the logging is done asynchronously the thread in which the logging was performed is captured in Mapped
Diagnostic Context (MDC) with attribute name sourceThread. With Logback the thread name is available
with %X{sourceThread} specifier within the pattern layout configuration:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%date{ISO8601} %-5level %logger{36} %X{sourceThread} - %msg%n</pattern>

</encoder>
</appender>

7.2. Logging 337

http://www.slf4j.org/
http://logback.qos.ch/

Akka Java Documentation, Release 2.3.16

Note: It will probably be a good idea to use the sourceThread MDC value also in non-Akka parts of the
application in order to have this property consistently available in the logs.

Another helpful facility is that Akka captures the actor’s address when instantiating a logger within it, meaning
that the full instance identification is available for associating log messages e.g. with members of a router. This
information is available in the MDC with attribute name akkaSource:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%date{ISO8601} %-5level %logger{36} %X{akkaSource} - %msg%n</pattern>

</encoder>
</appender>

For more details on what this attribute contains—also for non-actors—please see How to Log.

More accurate timestamps for log output in MDC

Akka’s logging is asynchronous which means that the timestamp of a log entry is taken from when the underlying
logger implementation is called, which can be surprising at first. If you want to more accurately output the
timestamp, use the MDC attribute akkaTimestamp:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%X{akkaTimestamp} %-5level %logger{36} %X{akkaSource} - %msg%n</pattern>

</encoder>
</appender>

MDC values defined by the application

One useful feature available in Slf4j is MDC, Akka has a way for let the application specify custom values, you
just need to get a specialized LoggingAdapter, the DiagnosticLoggingAdapter. In order to get it you
will use the factory receiving an UntypedActor as logSource:

// Within your UntypedActor
final DiagnosticLoggingAdapter log = Logging.getLogger(this);

Once you have the logger, you just need to add the custom values before you log something. This way, the values
will be put in the SLF4J MDC right before appending the log and removed after.

Note: The cleanup (removal) should be done in the actor at the end, otherwise, next message will log with same
mdc values, if it is not set to a new map. Use log.clearMDC().

import akka.event.Logging;
import akka.event.DiagnosticLoggingAdapter;
import java.util.HashMap;
import java.util.Map;

class MdcActor extends UntypedActor {

final DiagnosticLoggingAdapter log = Logging.getLogger(this);

public void onReceive(Object message) {

Map<String, Object> mdc;
mdc = new HashMap<String, Object>();
mdc.put("requestId", 1234);
mdc.put("visitorId", 5678);

7.2. Logging 338

http://logback.qos.ch/manual/mdc.html

Akka Java Documentation, Release 2.3.16

log.setMDC(mdc);

log.info("Starting new request");

log.clearMDC();
}

}

Now, the values will be available in the MDC, so you can use them in the layout pattern:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>

%-5level %logger{36} [req: %X{requestId}, visitor: %X{visitorId}] - %msg%n
</pattern>

</encoder>
</appender>

7.3 Scheduler

Sometimes the need for making things happen in the future arises, and where do you go look then? Look
no further than ActorSystem! There you find the scheduler method that returns an instance of
akka.actor.Scheduler, this instance is unique per ActorSystem and is used internally for scheduling things
to happen at specific points in time.

You can schedule sending of messages to actors and execution of tasks (functions or Runnable). You will get a
Cancellable back that you can call cancel on to cancel the execution of the scheduled operation.

Warning: The default implementation of Scheduler used by Akka is based on job buckets which
are emptied according to a fixed schedule. It does not execute tasks at the exact time, but on every tick,
it will run everything that is (over)due. The accuracy of the default Scheduler can be modified by the
akka.scheduler.tick-duration configuration property.

7.3.1 Some examples

Schedule to send the “foo”-message to the testActor after 50ms:

import akka.actor.Props;
import scala.concurrent.duration.Duration;
import java.util.concurrent.TimeUnit;

system.scheduler().scheduleOnce(Duration.create(50, TimeUnit.MILLISECONDS),
testActor, "foo", system.dispatcher(), null);

Schedule a Runnable, that sends the current time to the testActor, to be executed after 50ms:

system.scheduler().scheduleOnce(Duration.create(50, TimeUnit.MILLISECONDS),
new Runnable() {
@Override
public void run() {

testActor.tell(System.currentTimeMillis(), ActorRef.noSender());
}

}, system.dispatcher());

7.3. Scheduler 339

Akka Java Documentation, Release 2.3.16

Warning: If you schedule Runnable instances you should be extra careful to not pass or close over unstable
references. In practice this means that you should not call methods on the enclosing Actor from within the
Runnable. If you need to schedule an invocation it is better to use the schedule() variant accepting a
message and an ActorRef to schedule a message to self (containing the necessary parameters) and then call
the method when the message is received.

Schedule to send the “Tick”-message to the tickActor after 0ms repeating every 50ms:

import akka.actor.Props;
import scala.concurrent.duration.Duration;
import java.util.concurrent.TimeUnit;
import akka.actor.UntypedActor;
import akka.actor.Cancellable;

class Ticker extends UntypedActor {
@Override
public void onReceive(Object message) {
if (message.equals("Tick")) {

// Do someting
} else {

unhandled(message);
}

}
}

ActorRef tickActor = system.actorOf(Props.create(Ticker.class, this));

//This will schedule to send the Tick-message
//to the tickActor after 0ms repeating every 50ms
Cancellable cancellable = system.scheduler().schedule(Duration.Zero(),
Duration.create(50, TimeUnit.MILLISECONDS), tickActor, "Tick",
system.dispatcher(), null);

//This cancels further Ticks to be sent
cancellable.cancel();

7.3.2 From akka.actor.ActorSystem

/**
* Light-weight scheduler for running asynchronous tasks after some deadline

* in the future. Not terribly precise but cheap.

*/
def scheduler: Scheduler

7.3.3 The Scheduler Interface for Implementors

The actual scheduler implementation is loaded reflectively upon ActorSystem start-up, which means that it is
possible to provide a different one using the akka.scheduler.implementation configuration property.
The referenced class must implement the following interface:

/**
* An Akka scheduler service. This one needs one special behavior: if

* Closeable, it MUST execute all outstanding tasks upon .close() in order

* to properly shutdown all dispatchers.

*
* Furthermore, this timer service MUST throw IllegalStateException if it

* cannot schedule a task. Once scheduled, the task MUST be executed. If

* executed upon close(), the task may execute before its timeout.

*

7.3. Scheduler 340

Akka Java Documentation, Release 2.3.16

* Scheduler implementation are loaded reflectively at ActorSystem start-up

* with the following constructor arguments:

* 1) the system’s com.typesafe.config.Config (from system.settings.config)

* 2) a akka.event.LoggingAdapter

* 3) a java.util.concurrent.ThreadFactory

*/
public abstract class AbstractScheduler extends AbstractSchedulerBase {

/**
* Schedules a function to be run repeatedly with an initial delay and

* a frequency. E.g. if you would like the function to be run after 2

* seconds and thereafter every 100ms you would set delay = Duration(2,

* TimeUnit.SECONDS) and interval = Duration(100, TimeUnit.MILLISECONDS)

*/
@Override
public abstract Cancellable schedule(FiniteDuration initialDelay,

FiniteDuration interval, Runnable runnable, ExecutionContext executor);

/**
* Schedules a Runnable to be run once with a delay, i.e. a time period that

* has to pass before the runnable is executed.

*/
@Override
public abstract Cancellable scheduleOnce(FiniteDuration delay, Runnable runnable,

ExecutionContext executor);

/**
* The maximum supported task frequency of this scheduler, i.e. the inverse

* of the minimum time interval between executions of a recurring task, in Hz.

*/
@Override
public abstract double maxFrequency();

}

7.3.4 The Cancellable interface

Scheduling a task will result in a Cancellable (or throw an IllegalStateException if attempted after
the scheduler’s shutdown). This allows you to cancel something that has been scheduled for execution.

Warning: This does not abort the execution of the task, if it had already been started. Check the return value
of cancel to detect whether the scheduled task was canceled or will (eventually) have run.

/**
* Signifies something that can be cancelled

* There is no strict guarantee that the implementation is thread-safe,

* but it should be good practice to make it so.

*/
trait Cancellable {

/**
* Cancels this Cancellable and returns true if that was successful.

* If this cancellable was (concurrently) cancelled already, then this method

* will return false although isCancelled will return true.

*
* Java & Scala API

*/
def cancel(): Boolean

/**
* Returns true if and only if this Cancellable has been successfully cancelled

*

7.3. Scheduler 341

Akka Java Documentation, Release 2.3.16

* Java & Scala API

*/
def isCancelled: Boolean

}

7.4 Duration

Durations are used throughout the Akka library, wherefore this concept is represented by a special data type,
scala.concurrent.duration.Duration. Values of this type may represent infinite (Duration.Inf,
Duration.MinusInf) or finite durations, or be Duration.Undefined.

7.4.1 Finite vs. Infinite

Since trying to convert an infinite duration into a concrete time unit like seconds will throw an exception, there are
different types available for distinguishing the two kinds at compile time:

• FiniteDuration is guaranteed to be finite, calling toNanos and friends is safe

• Duration can be finite or infinite, so this type should only be used when finite-ness does not matter; this
is a supertype of FiniteDuration

7.4.2 Scala

In Scala durations are constructable using a mini-DSL and support all expected arithmetic operations:

import scala.concurrent.duration._

val fivesec = 5.seconds
val threemillis = 3.millis
val diff = fivesec - threemillis
assert(diff < fivesec)
val fourmillis = threemillis * 4 / 3 // you cannot write it the other way around
val n = threemillis / (1 millisecond)

Note: You may leave out the dot if the expression is clearly delimited (e.g. within parentheses or in an argument
list), but it is recommended to use it if the time unit is the last token on a line, otherwise semi-colon inference
might go wrong, depending on what starts the next line.

7.4.3 Java

Java provides less syntactic sugar, so you have to spell out the operations as method calls instead:

import scala.concurrent.duration.Duration;
import scala.concurrent.duration.Deadline;

final Duration fivesec = Duration.create(5, "seconds");
final Duration threemillis = Duration.create("3 millis");
final Duration diff = fivesec.minus(threemillis);
assert diff.lt(fivesec);
assert Duration.Zero().lt(Duration.Inf());

7.4. Duration 342

Akka Java Documentation, Release 2.3.16

7.4.4 Deadline

Durations have a brother named Deadline, which is a class holding a representation of an absolute point in
time, and support deriving a duration from this by calculating the difference between now and the deadline. This
is useful when you want to keep one overall deadline without having to take care of the book-keeping wrt. the
passing of time yourself:

val deadline = 10.seconds.fromNow
// do something
val rest = deadline.timeLeft

In Java you create these from durations:

final Deadline deadline = Duration.create(10, "seconds").fromNow();
final Duration rest = deadline.timeLeft();

7.5 Circuit Breaker

7.5.1 Why are they used?

A circuit breaker is used to provide stability and prevent cascading failures in distributed systems. These should
be used in conjunction with judicious timeouts at the interfaces between remote systems to prevent the failure of
a single component from bringing down all components.

As an example, we have a web application interacting with a remote third party web service. Let’s say the third
party has oversold their capacity and their database melts down under load. Assume that the database fails in such
a way that it takes a very long time to hand back an error to the third party web service. This in turn makes calls
fail after a long period of time. Back to our web application, the users have noticed that their form submissions
take much longer seeming to hang. Well the users do what they know to do which is use the refresh button, adding
more requests to their already running requests. This eventually causes the failure of the web application due to
resource exhaustion. This will affect all users, even those who are not using functionality dependent on this third
party web service.

Introducing circuit breakers on the web service call would cause the requests to begin to fail-fast, letting the user
know that something is wrong and that they need not refresh their request. This also confines the failure behavior
to only those users that are using functionality dependent on the third party, other users are no longer affected as
there is no resource exhaustion. Circuit breakers can also allow savvy developers to mark portions of the site that
use the functionality unavailable, or perhaps show some cached content as appropriate while the breaker is open.

The Akka library provides an implementation of a circuit breaker called akka.pattern.CircuitBreaker
which has the behavior described below.

7.5.2 What do they do?

• During normal operation, a circuit breaker is in the Closed state:

– Exceptions or calls exceeding the configured callTimeout increment a failure counter

– Successes reset the failure count to zero

– When the failure counter reaches a maxFailures count, the breaker is tripped into Open state

• While in Open state:

– All calls fail-fast with a CircuitBreakerOpenException

– After the configured resetTimeout, the circuit breaker enters a Half-Open state

• In Half-Open state:

– The first call attempted is allowed through without failing fast

7.5. Circuit Breaker 343

Akka Java Documentation, Release 2.3.16

– All other calls fail-fast with an exception just as in Open state

– If the first call succeeds, the breaker is reset back to Closed state

– If the first call fails, the breaker is tripped again into the Open state for another full resetTimeout

• State transition listeners:

– Callbacks can be provided for every state entry via onOpen, onClose, and onHalfOpen

– These are executed in the ExecutionContext provided.

7.5.3 Examples

Initialization

Here’s how a CircuitBreaker would be configured for:

• 5 maximum failures

• a call timeout of 10 seconds

• a reset timeout of 1 minute

Scala

import scala.concurrent.duration._
import akka.pattern.CircuitBreaker
import akka.pattern.pipe
import akka.actor.Actor
import akka.actor.ActorLogging
import scala.concurrent.Future
import akka.event.Logging

class DangerousActor extends Actor with ActorLogging {
import context.dispatcher

val breaker =
new CircuitBreaker(context.system.scheduler,

maxFailures = 5,
callTimeout = 10.seconds,
resetTimeout = 1.minute).onOpen(notifyMeOnOpen())

def notifyMeOnOpen(): Unit =
log.warning("My CircuitBreaker is now open, and will not close for one minute")

7.5. Circuit Breaker 344

Akka Java Documentation, Release 2.3.16

Java

import akka.actor.UntypedActor;
import scala.concurrent.Future;
import akka.event.LoggingAdapter;
import scala.concurrent.duration.Duration;
import akka.pattern.CircuitBreaker;
import akka.event.Logging;

import static akka.pattern.Patterns.pipe;
import static akka.dispatch.Futures.future;

import java.util.concurrent.Callable;

public class DangerousJavaActor extends UntypedActor {

private final CircuitBreaker breaker;
private final LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public DangerousJavaActor() {
this.breaker = new CircuitBreaker(

getContext().dispatcher(), getContext().system().scheduler(),
5, Duration.create(10, "s"), Duration.create(1, "m"))
.onOpen(new Runnable() {

public void run() {
notifyMeOnOpen();

}
});

}

public void notifyMeOnOpen() {
log.warning("My CircuitBreaker is now open, and will not close for one minute");

}

Call Protection

Here’s how the CircuitBreaker would be used to protect an asynchronous call as well as a synchronous one:

Scala

def dangerousCall: String = "This really isn't that dangerous of a call after all"

def receive = {
case "is my middle name" =>
breaker.withCircuitBreaker(Future(dangerousCall)) pipeTo sender()

case "block for me" =>
sender() ! breaker.withSyncCircuitBreaker(dangerousCall)

}

Java

public String dangerousCall() {
return "This really isn't that dangerous of a call after all";

}

@Override
public void onReceive(Object message) {

if (message instanceof String) {

7.5. Circuit Breaker 345

Akka Java Documentation, Release 2.3.16

String m = (String) message;
if ("is my middle name".equals(m)) {

pipe(breaker.callWithCircuitBreaker(
new Callable<Future<String>>() {
public Future<String> call() throws Exception {
return future(

new Callable<String>() {
public String call() {
return dangerousCall();

}
}, getContext().dispatcher());

}
}), getContext().dispatcher()).to(getSender());

}
if ("block for me".equals(m)) {

getSender().tell(breaker
.callWithSyncCircuitBreaker(
new Callable<String>() {
@Override
public String call() throws Exception {
return dangerousCall();

}
}), getSelf());

}
}

}

Note: Using the CircuitBreaker companion object’s apply or create methods will return a
CircuitBreaker where callbacks are executed in the caller’s thread. This can be useful if the asynchronous
Future behavior is unnecessary, for example invoking a synchronous-only API.

7.6 Akka Extensions

If you want to add features to Akka, there is a very elegant, but powerful mechanism for doing so. It’s called Akka
Extensions and is comprised of 2 basic components: an Extension and an ExtensionId.

Extensions will only be loaded once per ActorSystem, which will be managed by Akka. You can choose
to have your Extension loaded on-demand or at ActorSystem creation time through the Akka configuration.
Details on how to make that happens are below, in the “Loading from Configuration” section.

Warning: Since an extension is a way to hook into Akka itself, the implementor of the extension needs to
ensure the thread safety of his/her extension.

7.6.1 Building an Extension

So let’s create a sample extension that just lets us count the number of times something has happened.

First, we define what our Extension should do:

import akka.actor.*;
import java.util.concurrent.atomic.AtomicLong;

public class CountExtensionImpl implements Extension {
//Since this Extension is a shared instance
// per ActorSystem we need to be threadsafe
private final AtomicLong counter = new AtomicLong(0);

7.6. Akka Extensions 346

Akka Java Documentation, Release 2.3.16

//This is the operation this Extension provides
public long increment() {
return counter.incrementAndGet();

}
}

Then we need to create an ExtensionId for our extension so we can grab ahold of it.

import akka.actor.*;
import java.util.concurrent.atomic.AtomicLong;

public class CountExtension extends AbstractExtensionId<CountExtensionImpl>
implements ExtensionIdProvider {
//This will be the identifier of our CountExtension
public final static CountExtension CountExtensionProvider = new CountExtension();

private CountExtension() {}

//The lookup method is required by ExtensionIdProvider,
// so we return ourselves here, this allows us
// to configure our extension to be loaded when
// the ActorSystem starts up
public CountExtension lookup() {
return CountExtension.CountExtensionProvider; //The public static final

}

//This method will be called by Akka
// to instantiate our Extension
public CountExtensionImpl createExtension(ExtendedActorSystem system) {
return new CountExtensionImpl();

}
}

Wicked! Now all we need to do is to actually use it:

// typically you would use static import of the
// CountExtension.CountExtensionProvider field
CountExtension.CountExtensionProvider.get(system).increment();

Or from inside of an Akka Actor:

public class MyActor extends UntypedActor {
public void onReceive(Object msg) {
// typically you would use static import of the
// CountExtension.CountExtensionProvider field
CountExtension.CountExtensionProvider.get(getContext().system()).increment();

}
}

That’s all there is to it!

7.6.2 Loading from Configuration

To be able to load extensions from your Akka configuration you must add FQCNs of implementations of either
ExtensionId or ExtensionIdProvider in the “akka.extensions” section of the config you provide to your
ActorSystem.

akka {
extensions = ["docs.extension.ExtensionDocTest.CountExtension"]

}

7.6. Akka Extensions 347

Akka Java Documentation, Release 2.3.16

7.6.3 Applicability

The sky is the limit! By the way, did you know that Akka’s Typed Actors, Serialization and other
features are implemented as Akka Extensions?

Application specific settings

The Configuration can be used for application specific settings. A good practice is to place those settings in an
Extension.

Sample configuration:

myapp {
db {
uri = "mongodb://example1.com:27017,example2.com:27017"

}
circuit-breaker {
timeout = 30 seconds

}
}

The Extension:

import akka.actor.Extension;
import akka.actor.AbstractExtensionId;
import akka.actor.ExtensionIdProvider;
import akka.actor.ActorSystem;
import akka.actor.ExtendedActorSystem;
import scala.concurrent.duration.Duration;
import com.typesafe.config.Config;
import java.util.concurrent.TimeUnit;

public class SettingsImpl implements Extension {

public final String DB_URI;
public final Duration CIRCUIT_BREAKER_TIMEOUT;

public SettingsImpl(Config config) {
DB_URI = config.getString("myapp.db.uri");
CIRCUIT_BREAKER_TIMEOUT =

Duration.create(config.getDuration("myapp.circuit-breaker.timeout",
TimeUnit.MILLISECONDS), TimeUnit.MILLISECONDS);

}

}

public class Settings extends AbstractExtensionId<SettingsImpl>
implements ExtensionIdProvider {
public final static Settings SettingsProvider = new Settings();

private Settings() {}

public Settings lookup() {
return Settings.SettingsProvider;

}

public SettingsImpl createExtension(ExtendedActorSystem system) {
return new SettingsImpl(system.settings().config());

}
}

Use it:

7.6. Akka Extensions 348

Akka Java Documentation, Release 2.3.16

public class MyActor extends UntypedActor {
// typically you would use static import of the Settings.SettingsProvider field
final SettingsImpl settings =
Settings.SettingsProvider.get(getContext().system());

Connection connection =
connect(settings.DB_URI, settings.CIRCUIT_BREAKER_TIMEOUT);

}

7.7 Microkernel

The purpose of the Akka Microkernel is to offer a bundling mechanism so that you can distribute an Akka appli-
cation as a single payload, without the need to run in a Java Application Server or manually having to create a
launcher script.

Warning: Akka Microkernel will be deprecated and removed. It will be replaced by using an ordinary user
defined main class and packaging with sbt-native-packager or Typesafe ConductR.

To run an application with the microkernel you need to create a Bootable class that handles the startup and shut-
down the application.

The code for the Hello Kernel example (see the HelloKernel class for an example of creating a Bootable):

package sample.kernel.hello.java;

import akka.actor.ActorRef;
import akka.actor.UntypedActor;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.kernel.Bootable;

public class HelloKernel implements Bootable {
final ActorSystem system = ActorSystem.create("hellokernel");

public static class HelloActor extends UntypedActor {
final ActorRef worldActor = getContext().actorOf(

Props.create(WorldActor.class));

public void onReceive(Object message) {
if (message == "start")

worldActor.tell("Hello", getSelf());
else if (message instanceof String)

System.out.println(String.format("Received message '%s'", message));
else

unhandled(message);
}

}

public static class WorldActor extends UntypedActor {
public void onReceive(Object message) {

if (message instanceof String)
getSender().tell(((String) message).toUpperCase() + " world!",

getSelf());
else

unhandled(message);
}

}

public void startup() {
system.actorOf(Props.create(HelloActor.class)).tell("start", null);

7.7. Microkernel 349

https://github.com/sbt/sbt-native-packager
http://typesafe.com/products/conductr

Akka Java Documentation, Release 2.3.16

}

public void shutdown() {
system.shutdown();

}
}

sbt-native-packager is the recommended tool for creating distributions of Akka applications when using sbt.

Define sbt version in project/build.properties file:

sbt.version=0.13.7

Add sbt-native-packager in project/plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "1.0.0-RC1")

Use the package settings and specify the mainClass in build.sbt file:

import NativePackagerHelper._

name := "hello-kernel"

version := "0.1"

val akkaVersion = "2.3.16"

libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-kernel" % akkaVersion,
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-slf4j" % akkaVersion,
"ch.qos.logback" % "logback-classic" % "1.0.7"

)

mainClass in Compile := Some("akka.kernel.Main")

enablePlugins(JavaServerAppPackaging)

mappings in Universal ++= {
// optional example illustrating how to copy additional directory
directory("scripts") ++
// copy configuration files to config directory
contentOf("src/main/resources").toMap.mapValues("config/" + _)

}

// add 'config' directory first in the classpath of the start script,
// an alternative is to set the config file locations via CLI parameters
// when starting the application
scriptClasspath := Seq("../config/") ++ scriptClasspath.value

Note: Use the JavaServerAppPackaging. Don’t use AkkaAppPackaging (previously named
packageArchetype.akka_application, since it doesn’t have the same flexibility and quality as the
JavaServerAppPackaging.

Use sbt task dist package the application.

To start the application (on a unix-based system):

cd target/universal/
unzip hello-kernel-0.1.zip
chmod u+x hello-kernel-0.1/bin/hello-kernel
hello-kernel-0.1/bin/hello-kernel sample.kernel.hello.java.HelloKernel

7.7. Microkernel 350

https://github.com/sbt/sbt-native-packager
https://github.com/sbt/sbt-native-packager

Akka Java Documentation, Release 2.3.16

Use Ctrl-C to interrupt and exit the microkernel.

On a Windows machine you can also use the bin\hello-kernel.bat script.

7.7. Microkernel 351

CHAPTER

EIGHT

HOWTO: COMMON PATTERNS

This section lists common actor patterns which have been found to be useful, elegant or instructive. Anything is
welcome, example topics being message routing strategies, supervision patterns, restart handling, etc. As a special
bonus, additions to this section are marked with the contributor’s name, and it would be nice if every Akka user
who finds a recurring pattern in his or her code could share it for the profit of all. Where applicable it might also
make sense to add to the akka.pattern package for creating an OTP-like library.

You might find some of the patterns described in the Scala chapter of howto-scala useful even though the example
code is written in Scala.

8.1 Scheduling Periodic Messages

This pattern describes how to schedule periodic messages to yourself in two different ways.

The first way is to set up periodic message scheduling in the constructor of the actor, and cancel that scheduled
sending in postStop or else we might have multiple registered message sends to the same actor.

Note: With this approach the scheduled periodic message send will be restarted with the actor on restarts. This
also means that the time period that elapses between two tick messages during a restart may drift off based on
when you restart the scheduled message sends relative to the time that the last message was sent, and how long
the initial delay is. Worst case scenario is interval plus initialDelay.

public class ScheduleInConstructor extends UntypedActor {

private final Cancellable tick = getContext().system().scheduler().schedule(
Duration.create(500, TimeUnit.MILLISECONDS),
Duration.create(1000, TimeUnit.MILLISECONDS),
getSelf(), "tick", getContext().dispatcher(), null);

@Override
public void postStop() {
tick.cancel();

}

@Override
public void onReceive(Object message) throws Exception {
if (message.equals("tick")) {

// do something useful here
}
else {

unhandled(message);
}

}
}

352

http://www.erlang.org/doc/man_index.html

Akka Java Documentation, Release 2.3.16

The second variant sets up an initial one shot message send in the preStart method of the actor, and the
then the actor when it receives this message sets up a new one shot message send. You also have to override
postRestart so we don’t call preStart and schedule the initial message send again.

Note: With this approach we won’t fill up the mailbox with tick messages if the actor is under pressure, but only
schedule a new tick message when we have seen the previous one.

public class ScheduleInReceive extends UntypedActor {

@Override
public void preStart() {
getContext().system().scheduler().scheduleOnce(

Duration.create(500, TimeUnit.MILLISECONDS),
getSelf(), "tick", getContext().dispatcher(), null);

}

// override postRestart so we don't call preStart and schedule a new message
@Override
public void postRestart(Throwable reason) {
}

@Override
public void onReceive(Object message) throws Exception {
if (message.equals("tick")) {

// send another periodic tick after the specified delay
getContext().system().scheduler().scheduleOnce(

Duration.create(1000, TimeUnit.MILLISECONDS),
getSelf(), "tick", getContext().dispatcher(), null);

// do something useful here
}
else {

unhandled(message);
}

}
}

8.2 Single-Use Actor Trees with High-Level Error Reporting

Contributed by: Rick Latrine

A nice way to enter the actor world from java is the use of Patterns.ask(). This method starts a temporary actor to
forward the message and collect the result from the actor to be “asked”. In case of errors within the asked actor
the default supervision handling will take over. The caller of Patterns.ask() will not be notified.

If that caller is interested in such an exception, he must make sure that the asked actor replies with Sta-
tus.Failure(Throwable). Behind the asked actor a complex actor hierarchy might be spawned to accomplish asyn-
chronous work. Then supervision is the established way to control error handling.

Unfortunately the asked actor must know about supervision and must catch the exceptions. Such an actor is
unlikely to be reused in a different actor hierarchy and contains crippled try/catch blocks.

This pattern provides a way to encapsulate supervision and error propagation to the temporary actor. Finally the
promise returned by Patterns.ask() is fulfilled as a failure, including the exception.

Let’s have a look at the example code:

package docs.pattern;

import java.util.concurrent.TimeoutException;

8.2. Single-Use Actor Trees with High-Level Error Reporting 353

Akka Java Documentation, Release 2.3.16

import scala.concurrent.Future;
import scala.concurrent.duration.Duration;

import akka.actor.Actor;
import akka.actor.ActorKilledException;
import akka.actor.ActorRef;
import akka.actor.ActorRefFactory;
import akka.actor.Cancellable;
import akka.actor.OneForOneStrategy;
import akka.actor.Props;
import akka.actor.Scheduler;
import akka.actor.Status;
import akka.actor.SupervisorStrategy;
import akka.actor.SupervisorStrategy.Directive;
import akka.actor.Terminated;
import akka.actor.UntypedActor;
import akka.japi.Function;
import akka.pattern.Patterns;
import akka.util.Timeout;

public class SupervisedAsk {

private static class AskParam {
Props props;
Object message;
Timeout timeout;

AskParam(Props props, Object message, Timeout timeout) {
this.props = props;
this.message = message;
this.timeout = timeout;

}
}

private static class AskTimeout {
}

public static class AskSupervisorCreator extends UntypedActor {

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof AskParam) {
ActorRef supervisor = getContext().actorOf(

Props.create(AskSupervisor.class));
supervisor.forward(message, getContext());

} else {
unhandled(message);

}
}

}

public static class AskSupervisor extends UntypedActor {
private ActorRef targetActor;
private ActorRef caller;
private AskParam askParam;
private Cancellable timeoutMessage;

@Override
public SupervisorStrategy supervisorStrategy() {

return new OneForOneStrategy(0, Duration.Zero(),
new Function<Throwable, Directive>() {

public Directive apply(Throwable cause) {
caller.tell(new Status.Failure(cause), self());

8.2. Single-Use Actor Trees with High-Level Error Reporting 354

Akka Java Documentation, Release 2.3.16

return SupervisorStrategy.stop();
}

});
}

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof AskParam) {
askParam = (AskParam) message;
caller = getSender();
targetActor = getContext().actorOf(askParam.props);
getContext().watch(targetActor);
targetActor.forward(askParam.message, getContext());
Scheduler scheduler = getContext().system().scheduler();
timeoutMessage = scheduler.scheduleOnce(askParam.timeout.duration(),

self(), new AskTimeout(), context().dispatcher(), null);
} else if (message instanceof Terminated) {

Throwable ex = new ActorKilledException("Target actor terminated.");
caller.tell(new Status.Failure(ex), self());
timeoutMessage.cancel();
getContext().stop(self());

} else if (message instanceof AskTimeout) {
Throwable ex = new TimeoutException("Target actor timed out after "

+ askParam.timeout.toString());
caller.tell(new Status.Failure(ex), self());
getContext().stop(self());

} else
unhandled(message);

}
}

public static Future<Object> askOf(ActorRef supervisorCreator, Props props,
Object message, Timeout timeout) {

AskParam param = new AskParam(props, message, timeout);
return Patterns.ask(supervisorCreator, param, timeout);

}

synchronized public static ActorRef createSupervisorCreator(
ActorRefFactory factory) {

return factory.actorOf(Props.create(AskSupervisorCreator.class));
}

}

In the askOf method the SupervisorCreator is sent the user message. The SupervisorCreator creates a Super-
visorActor and forwards the message. This prevents the actor system from overloading due to actor creations.
The SupervisorActor is responsible to create the user actor, forwards the message, handles actor termination and
supervision. Additionally the SupervisorActor stops the user actor if execution time expired.

In case of an exception the supervisor tells the temporary actor which exception was thrown. Afterwards the actor
hierarchy is stopped.

Finally we are able to execute an actor and receive the results or exceptions.

package docs.pattern;

import scala.concurrent.Await;
import scala.concurrent.Future;
import akka.actor.ActorRef;
import akka.actor.ActorRefFactory;
import akka.actor.Props;
import akka.actor.UntypedActor;
import akka.util.Timeout;

8.2. Single-Use Actor Trees with High-Level Error Reporting 355

Akka Java Documentation, Release 2.3.16

public class SupervisedAskSpec {

public Object execute(Class<? extends UntypedActor> someActor,
Object message, Timeout timeout, ActorRefFactory actorSystem)
throws Exception {

// example usage
try {

ActorRef supervisorCreator = SupervisedAsk
.createSupervisorCreator(actorSystem);

Future<Object> finished = SupervisedAsk.askOf(supervisorCreator,
Props.create(someActor), message, timeout);

return Await.result(finished, timeout.duration());
} catch (Exception e) {

// exception propagated by supervision
throw e;

}
}

}

8.3 Template Pattern

Contributed by: N. N.

This is an especially nice pattern, since it does even come with some empty example code:

class JavaTemplate {
public JavaTemplate() {
System.out.println("Hello, Template!");

}
// uninteresting stuff ...

}

Note: Spread the word: this is the easiest way to get famous!

Please keep this pattern at the end of this file.

8.3. Template Pattern 356

CHAPTER

NINE

EXPERIMENTAL MODULES

The following modules of Akka are marked as experimental, which means that they are in early access mode,
which also means that they are not covered by commercial support. The purpose of releasing them early, as
experimental, is to make them easily available and improve based on feedback, or even discover that the module
wasn’t useful.

An experimental module doesn’t have to obey the rule of staying binary compatible between micro releases.
Breaking API changes may be introduced in minor releases without notice as we refine and simplify based on
your feedback. An experimental module may be dropped in minor releases without prior deprecation.

9.1 Multi Node Testing

9.1.1 Multi Node Testing Concepts

When we talk about multi node testing in Akka we mean the process of running coordinated tests on multiple
actor systems in different JVMs. The multi node testing kit consist of three main parts.

• The Test Conductor. that coordinates and controls the nodes under test.

• The Multi Node Spec. that is a convenience wrapper for starting the TestConductor and letting all nodes
connect to it.

• The SbtMultiJvm Plugin. that starts tests in multiple JVMs possibly on multiple machines.

9.1.2 The Test Conductor

The basis for the multi node testing is the TestConductor. It is an Akka Extension that plugs in to the network
stack and it is used to coordinate the nodes participating in the test and provides several features including:

• Node Address Lookup: Finding out the full path to another test node (No need to share configuration
between test nodes)

• Node Barrier Coordination: Waiting for other nodes at named barriers.

• Network Failure Injection: Throttling traffic, dropping packets, unplugging and plugging nodes back in.

This is a schematic overview of the test conductor.

357

Akka Java Documentation, Release 2.3.16

The test conductor server is responsible for coordinating barriers and sending commands to the test conductor
clients that act upon them, e.g. throttling network traffic to/from another client. More information on the possible
operations is availible in the akka.remote.testconductor.Conductor API documentation.

9.1.3 The Multi Node Spec

The Multi Node Spec consists of two parts. The MultiNodeConfig that is responsible for common con-
figuration and enumerating and naming the nodes under test. The MultiNodeSpec that contains a number
of convenience functions for making the test nodes interact with each other. More information on the possible
operations is available in the akka.remote.testkit.MultiNodeSpec API documentation.

The setup of the MultiNodeSpec is configured through java system properties that you set on all JVMs that’s
going to run a node under test. These can easily be set on the JVM command line with -Dproperty=value.

These are the available properties:

• multinode.max-nodes

The maximum number of nodes that a test can have.

• multinode.host

The host name or IP for this node. Must be resolvable using InetAddress.getByName.

• multinode.port

The port number for this node. Defaults to 0 which will use a random port.

• multinode.server-host

The host name or IP for the server node. Must be resolvable using InetAddress.getByName.

• multinode.server-port

The port number for the server node. Defaults to 4711.

• multinode.index

The index of this node in the sequence of roles defined for the test. The index 0 is special and that
machine will be the server. All failure injection and throttling must be done from this node.

9.1. Multi Node Testing 358

Akka Java Documentation, Release 2.3.16

9.1.4 The SbtMultiJvm Plugin

The SbtMultiJvm Plugin has been updated to be able to run multi node tests, by automatically generating the
relevant multinode.* properties. This means that you can easily run multi node tests on a single machine
without any special configuration by just running them as normal multi-jvm tests. These tests can then be run
distributed over multiple machines without any changes simply by using the multi-node additions to the plugin.

Multi Node Specific Additions

The plugin also has a number of new multi-node-* sbt tasks and settings to support run-
ning tests on multiple machines. The necessary test classes and dependencies are packaged
for distribution to other machines with SbtAssembly into a jar file with a name on the format
<projectName>_<scalaVersion>-<projectVersion>-multi-jvm-assembly.jar

Note: To be able to distribute and kick off the tests on multiple machines, it is assumed that both host and target
systems are POSIX like systems with ssh and rsync available.

These are the available sbt multi-node settings:

• multiNodeHosts

A sequence of hosts to use for running the test, on the form user@host:java where host is the
only required part. Will override settings from file.

• multiNodeHostsFileName

A file to use for reading in the hosts to use for running the test. One per line on the same format as
above. Defaults to multi-node-test.hosts in the base project directory.

• multiNodeTargetDirName

A name for the directory on the target machine, where to copy the jar file. Defaults to
multi-node-test in the base directory of the ssh user used to rsync the jar file.

• multiNodeJavaName

The name of the default Java executable on the target machines. Defaults to java.

Here are some examples of how you define hosts:

• localhost

The current user on localhost using the default java.

• user1@host1

User user1 on host host1 with the default java.

• user2@host2:/usr/lib/jvm/java-7-openjdk-amd64/bin/java

User user2 on host host2 using java 7.

• host3:/usr/lib/jvm/java-6-openjdk-amd64/bin/java

The current user on host host3 using java 6.

Running the Multi Node Tests

To run all the multi node test in multi-node mode (i.e. distributing the jar files and kicking off the tests remotely)
from inside sbt, use the multi-node-test task:

multi-node-test

To run all of them in multi-jvm mode (i.e. all JVMs on the local machine) do:

9.1. Multi Node Testing 359

https://github.com/sbt/sbt-assembly

Akka Java Documentation, Release 2.3.16

multi-jvm:test

To run individual tests use the multi-node-test-only task:

multi-node-test-only your.MultiNodeTest

To run individual tests in the multi-jvm mode do:

multi-jvm:test-only your.MultiNodeTest

More than one test name can be listed to run multiple specific tests. Tab completion in sbt makes it easy to
complete the test names.

9.1.5 Preparing Your Project for Multi Node Testing

The multi node testing kit is a separate jar file. Make sure that you have the following dependency in your project:

"com.typesafe.akka" %% "akka-multi-node-testkit" % "2.3.16"

If you are using the latest nightly build you should pick a timestamped Akka version from http://repo.akka.io/
snapshots/com/typesafe/akka/akka-multi-node-testkit_2.10/. We recommend against using SNAPSHOT in order
to obtain stable builds.

9.1.6 A Multi Node Testing Example

First we need some scaffolding to hook up the MultiNodeSpec with your favorite test framework. Lets define
a trait STMultiNodeSpec that uses ScalaTest to start and stop MultiNodeSpec.

package sample.multinode

import org.scalatest.{ BeforeAndAfterAll, WordSpecLike }
import org.scalatest.Matchers
import akka.remote.testkit.MultiNodeSpecCallbacks

/**
* Hooks up MultiNodeSpec with ScalaTest

*/
trait STMultiNodeSpec extends MultiNodeSpecCallbacks

with WordSpecLike with Matchers with BeforeAndAfterAll {

override def beforeAll() = multiNodeSpecBeforeAll()

override def afterAll() = multiNodeSpecAfterAll()
}

Then we need to define a configuration. Lets use two nodes "node1 and "node2" and call it
MultiNodeSampleConfig.

package sample.multinode
import akka.remote.testkit.MultiNodeConfig

object MultiNodeSampleConfig extends MultiNodeConfig {
val node1 = role("node1")
val node2 = role("node2")

}

And then finally to the node test code. That starts the two nodes, and demonstrates a barrier, and a remote actor
message send/receive.

package sample.multinode
import akka.remote.testkit.MultiNodeSpec

9.1. Multi Node Testing 360

http://repo.akka.io/snapshots/com/typesafe/akka/akka-multi-node-testkit_2.10/
http://repo.akka.io/snapshots/com/typesafe/akka/akka-multi-node-testkit_2.10/

Akka Java Documentation, Release 2.3.16

import akka.testkit.ImplicitSender
import akka.actor.{ Props, Actor }

class MultiNodeSampleSpecMultiJvmNode1 extends MultiNodeSample
class MultiNodeSampleSpecMultiJvmNode2 extends MultiNodeSample

object MultiNodeSample {
class Ponger extends Actor {
def receive = {

case "ping" => sender() ! "pong"
}

}
}

class MultiNodeSample extends MultiNodeSpec(MultiNodeSampleConfig)
with STMultiNodeSpec with ImplicitSender {

import MultiNodeSampleConfig._
import MultiNodeSample._

def initialParticipants = roles.size

"A MultiNodeSample" must {

"wait for all nodes to enter a barrier" in {
enterBarrier("startup")

}

"send to and receive from a remote node" in {
runOn(node1) {

enterBarrier("deployed")
val ponger = system.actorSelection(node(node2) / "user" / "ponger")
ponger ! "ping"
expectMsg("pong")

}

runOn(node2) {
system.actorOf(Props[Ponger], "ponger")
enterBarrier("deployed")

}

enterBarrier("finished")
}

}
}

The easiest way to run this example yourself is to download Typesafe Activator and open the tutorial named Akka
Multi-Node Testing Sample with Scala.

9.1.7 Things to Keep in Mind

There are a couple of things to keep in mind when writing multi node tests or else your tests might behave in
surprising ways.

• Don’t issue a shutdown of the first node. The first node is the controller and if it shuts down your test will
break.

• To be able to use blackhole, passThrough, and throttle you must activate the failure injector and
throttler transport adapters by specifying testTransport(on = true) in your MultiNodeConfig.

• Throttling, shutdown and other failure injections can only be done from the first node, which again is the
controller.

9.1. Multi Node Testing 361

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-sample-multi-node-scala
http://www.typesafe.com/activator/template/akka-sample-multi-node-scala

Akka Java Documentation, Release 2.3.16

• Don’t ask for the address of a node using node(address) after the node has been shut down. Grab the
address before shutting down the node.

• Don’t use MultiNodeSpec methods like address lookup, barrier entry et.c. from other threads than the main
test thread. This also means that you shouldn’t use them from inside an actor, a future, or a scheduled task.

9.1.8 Configuration

There are several configuration properties for the Multi-Node Testing module, please refer to the reference config-
uration.

Another reason for marking a module as experimental is that it’s too early to tell if the module has a maintainer
that can take the responsibility of the module over time. These modules live in the akka-contrib subproject:

9.2 External Contributions

This subproject provides a home to modules contributed by external developers which may or may not move into
the officially supported code base over time. The conditions under which this transition can occur include:

• there must be enough interest in the module to warrant inclusion in the standard distribution,

• the module must be actively maintained and

• code quality must be good enough to allow efficient maintenance by the Akka core development team

If a contributions turns out to not “take off” it may be removed again at a later time.

9.2.1 Caveat Emptor

A module in this subproject doesn’t have to obey the rule of staying binary compatible between minor releases.
Breaking API changes may be introduced in minor releases without notice as we refine and simplify based on
your feedback. A module may be dropped in any release without prior deprecation. The Typesafe subscription
does not cover support for these modules.

9.2.2 The Current List of Modules

Reliable Proxy Pattern

Looking at Message Delivery Reliability one might come to the conclusion that Akka actors are made for blue-sky
scenarios: sending messages is the only way for actors to communicate, and then that is not even guaranteed to
work. Is the whole paradigm built on sand? Of course the answer is an emphatic “No!”.

A local message send—within the same JVM instance—is not likely to fail, and if it does the reason was one of

• it was meant to fail (due to consciously choosing a bounded mailbox, which upon overflow will have to
drop messages)

• or it failed due to a catastrophic VM error, e.g. an OutOfMemoryError, a memory access violation
(“segmentation fault”, GPF, etc.), JVM bug—or someone calling System.exit().

In all of these cases, the actor was very likely not in a position to process the message anyway, so this part of the
non-guarantee is not problematic.

It is a lot more likely for an unintended message delivery failure to occur when a message send crosses JVM
boundaries, i.e. an intermediate unreliable network is involved. If someone unplugs an ethernet cable, or a power
failure shuts down a router, messages will be lost while the actors would be able to process them just fine.

9.2. External Contributions 362

Akka Java Documentation, Release 2.3.16

Note: This does not mean that message send semantics are different between local and remote operations, it just
means that in practice there is a difference between how good the “best effort” is.

Introducing the Reliable Proxy

To bridge the disparity between “local” and “remote” sends is the goal of this pattern. When sending from A to
B must be as reliable as in-JVM, regardless of the deployment, then you can interject a reliable tunnel and send
through that instead. The tunnel consists of two end-points, where the ingress point P (the “proxy”) is a child of A
and the egress point E is a child of P, deployed onto the same network node where B lives. Messages sent to P will
be wrapped in an envelope, tagged with a sequence number and sent to E, who verifies that the received envelope
has the right sequence number (the next expected one) and forwards the contained message to B. When B receives
this message, the sender() will be a reference to the sender() of the original message to P. Reliability is added
by E replying to orderly received messages with an ACK, so that P can tick those messages off its resend list. If
ACKs do not come in a timely fashion, P will try to resend until successful.

Exactly what does it guarantee?

Sending via a ReliableProxy makes the message send exactly as reliable as if the represented target were to
live within the same JVM, provided that the remote actor system does not terminate. In effect, both ends (i.e. JVM
and actor system) must be considered as one when evaluating the reliability of this communication channel. The
benefit is that the network in-between is taken out of that equation.

Connecting to the target The proxy tries to connect to the target using the mechanism outlined in
actorSelection-scala. Once connected, if the tunnel terminates the proxy will optionally try to reconnect
to the target using using the same process.

Note that during the reconnection process there is a possibility that a message could be delivered to the target
more than once. Consider the case where a message is delivered to the target and the target system crashes
before the ACK is sent to the sender. After the proxy reconnects to the target it will start resending all of
the messages that it has not received an ACK for, and the message that it never got an ACK for will be redelivered.
Either this possibility should be considered in the design of the target or reconnection should be disabled.

How to use it

Since this implementation does not offer much in the way of configuration, simply instantiate a proxy wrapping a
target ActorPath. From Java it looks like this:

9.2. External Contributions 363

Akka Java Documentation, Release 2.3.16

import akka.contrib.pattern.ReliableProxy;

public class ProxyParent extends UntypedActor {
private final ActorRef proxy;

public ProxyParent(ActorPath targetPath) {
proxy = getContext().actorOf(

ReliableProxy.props(targetPath,
Duration.create(100, TimeUnit.MILLISECONDS)));

}

public void onReceive(Object msg) {
if ("hello".equals(msg)) {

proxy.tell("world!", getSelf());
}

}
}

And from Scala like this:

import akka.contrib.pattern.ReliableProxy

class ProxyParent(targetPath: ActorPath) extends Actor {
val proxy = context.actorOf(ReliableProxy.props(targetPath, 100.millis))

def receive = {
case "hello" ⇒ proxy ! "world!"

}
}

Since the ReliableProxy actor is an fsm-scala, it also offers the capability to subscribe to state transitions.
If you need to know when all enqueued messages have been received by the remote end-point (and consequently
been forwarded to the target), you can subscribe to the FSM notifications and observe a transition from state
ReliableProxy.Active to state ReliableProxy.Idle.

public class ProxyTransitionParent extends UntypedActor {
private final ActorRef proxy;
private ActorRef client = null;

public ProxyTransitionParent(ActorPath targetPath) {
proxy = getContext().actorOf(

ReliableProxy.props(targetPath,
Duration.create(100, TimeUnit.MILLISECONDS)));

proxy.tell(new FSM.SubscribeTransitionCallBack(getSelf()), getSelf());
}

public void onReceive(Object msg) {
if ("hello".equals(msg)) {

proxy.tell("world!", getSelf());
client = getSender();

} else if (msg instanceof FSM.CurrentState<?>) {
// get initial state

} else if (msg instanceof FSM.Transition<?>) {
@SuppressWarnings("unchecked")
final FSM.Transition<ReliableProxy.State> transition =

(FSM.Transition<ReliableProxy.State>) msg;
assert transition.fsmRef().equals(proxy);
if (transition.from().equals(ReliableProxy.active()) &&

transition.to().equals(ReliableProxy.idle())) {
client.tell("done", getSelf());

}
}

9.2. External Contributions 364

Akka Java Documentation, Release 2.3.16

}
}

From Scala it would look like so:

class ProxyTransitionParent(targetPath: ActorPath) extends Actor {
val proxy = context.actorOf(ReliableProxy.props(targetPath, 100.millis))
proxy ! FSM.SubscribeTransitionCallBack(self)

var client: ActorRef = _

def receive = {
case "go" ⇒

proxy ! 42
client = sender()

case FSM.CurrentState(`proxy`, initial) ⇒
case FSM.Transition(`proxy`, from, to) ⇒

if (to == ReliableProxy.Idle)
client ! "done"

}
}

Configuration

• Set akka.reliable-proxy.debug to on to turn on extra debug logging for your ReliableProxy
actors.

• akka.reliable-proxy.default-connect-interval is used only if you create a
ReliableProxy with no reconnections (that is, reconnectAfter == None). The default
value is the value of the configuration property akka.remote.retry-gate-closed-for. For
example, if akka.remote.retry-gate-closed-for is 5 s case the ReliableProxy will send
an Identify message to the target every 5 seconds to try to resolve the ActorPath to an ActorRef
so that messages can be sent to the target.

The Actor Contract

Message it Processes

• FSM.SubscribeTransitionCallBack and FSM.UnsubscribeTransitionCallBack, see
fsm-scala

• ReliableProxy.Unsent, see the API documentation for details.

• any other message is transferred through the reliable tunnel and forwarded to the designated target actor

Messages it Sends

• FSM.CurrentState and FSM.Transition, see fsm-scala

• ReliableProxy.TargetChanged is sent to the FSM transition subscribers if the proxy reconnects to
a new target.

• ReliableProxy.ProxyTerminated is sent to the FSM transition subscribers if the proxy is stopped.

Exceptions it Escalates

• no specific exception types

• any exception encountered by either the local or remote end-point are escalated (only fatal VM errors)

9.2. External Contributions 365

Akka Java Documentation, Release 2.3.16

Arguments it Takes

• target is the ActorPath to the actor to which the tunnel shall reliably deliver messages, B in the above
illustration.

• retryAfter is the timeout for receiving ACK messages from the remote end-point; once it fires, all outstanding
message sends will be retried.

• reconnectAfter is an optional interval between connection attempts. It is also used as the interval between
receiving a Terminated for the tunnel and attempting to reconnect to the target actor.

• maxConnectAttempts is an optional maximum number of attempts to connect to the target while in the
Connecting state.

Throttling Actor Messages

Introduction

Suppose you are writing an application that makes HTTP requests to an external web service and that this web
service has a restriction in place: you may not make more than 10 requests in 1 minute. You will get blocked or
need to pay if you don’t stay under this limit. In such a scenario you will want to employ a message throttler.

This extension module provides a simple implementation of a throttling actor, the TimerBasedThrottler.

How to use it

You can use a TimerBasedThrottler as follows. From Java it looks like this:

// A simple actor that prints whatever it receives
ActorRef printer = system.actorOf(Props.create(Printer.class));
// The throttler for this example, setting the rate
ActorRef throttler = system.actorOf(Props.create(TimerBasedThrottler.class,

new Throttler.Rate(3, Duration.create(1, TimeUnit.SECONDS))));
// Set the target
throttler.tell(new Throttler.SetTarget(printer), null);
// These three messages will be sent to the target immediately
throttler.tell("1", null);
throttler.tell("2", null);
throttler.tell("3", null);
// These two will wait until a second has passed
throttler.tell("4", null);
throttler.tell("5", null);

//A simple actor that prints whatever it receives
public class Printer extends UntypedActor {

@Override
public void onReceive(Object msg) {
System.out.println(msg);

}
}

And from Scala like this:

// A simple actor that prints whatever it receives
class PrintActor extends Actor {

def receive = {
case x ⇒ println(x)

}
}

val printer = system.actorOf(Props[PrintActor])
// The throttler for this example, setting the rate

9.2. External Contributions 366

Akka Java Documentation, Release 2.3.16

val throttler = system.actorOf(Props(classOf[TimerBasedThrottler],
3 msgsPer 1.second))

// Set the target
throttler ! SetTarget(Some(printer))
// These three messages will be sent to the target immediately
throttler ! "1"
throttler ! "2"
throttler ! "3"
// These two will wait until a second has passed
throttler ! "4"
throttler ! "5"

Please refer to the JavaDoc/ScalaDoc documentation for the details.

The guarantees

TimerBasedThrottler uses a timer internally. When the throttler’s rate is 3 msg/s, for example, the throttler
will start a timer that triggers every second and each time will give the throttler exactly three “vouchers”; each
voucher gives the throttler a right to deliver a message. In this way, at most 3 messages will be sent out by the
throttler in each interval.

It should be noted that such timer-based throttlers provide relatively weak guarantees:

• Only start times are taken into account. This may be a problem if, for example, the throttler is used to
throttle requests to an external web service. If a web request takes very long on the server then the rate
observed on the server may be higher.

• A timer-based throttler only makes guarantees for the intervals of its own timer. In our example, no more
than 3 messages are delivered within such intervals. Other intervals on the timeline, however, may contain
more calls.

The two cases are illustrated in the two figures below, each showing a timeline and three intervals of the timer. The
message delivery times chosen by the throttler are indicated by dots, and as you can see, each interval contains
at most 3 point, so the throttler works correctly. Still, there is in each example an interval (the red one) that is
problematic. In the first scenario, this is because the delivery times are merely the start times of longer requests
(indicated by the four bars above the timeline that start at the dots), so that the server observes four requests during
the red interval. In the second scenario, the messages are centered around one of the points in time where the timer
triggers, causing the red interval to contain too many messages.

For some application scenarios, the guarantees provided by a timer-based throttler might be too weak. Charles
Cordingley’s blog post discusses a throttler with stronger guarantees (it solves problem 2 from above). Future
versions of this module may feature throttlers with better guarantees.

Java Logging (JUL)

This extension module provides a logging backend which uses the java.util.logging (j.u.l) API to do the endpoint
logging for akka.event.Logging.

9.2. External Contributions 367

http://www.cordinc.com/blog/2010/04/java-multichannel-asynchronous.html

Akka Java Documentation, Release 2.3.16

Provided with this module is an implementation of akka.event.LoggingAdapter which is independent of any Ac-
torSystem being in place. This means that j.u.l can be used as the backend, via the Akka Logging API, for both
Actor and non-Actor codebases.

To enable j.u.l as the akka.event.Logging backend, use the following Akka config:

loggers = [”akka.contrib.jul.JavaLogger”]

To access the akka.event.Logging API from non-Actor code, mix in akka.contrib.jul.JavaLogging.

This module is preferred over SLF4J with its JDK14 backend, due to integration issues resulting in the incorrect
handling of threadId, className and methodName.

This extension module was contributed by Sam Halliday.

Mailbox with Explicit Acknowledgement

When an Akka actor is processing a message and an exception occurs, the normal behavior is for the actor to drop
that message, and then continue with the next message after it has been restarted. This is in some cases not the
desired solution, e.g. when using failure and supervision to manage a connection to an unreliable resource; the
actor could after the restart go into a buffering mode (i.e. change its behavior) and retry the real processing later,
when the unreliable resource is back online.

One way to do this is by sending all messages through the supervisor and buffering them there, acknowledging
successful processing in the child; another way is to build an explicit acknowledgement mechanism into the
mailbox. The idea with the latter is that a message is reprocessed in case of failure until the mailbox is told that
processing was successful.

The pattern is implemented here. A demonstration of how to use it (although for brevity not a perfect example) is
the following:

class MyActor extends Actor {
def receive = {
case msg ⇒

println(msg)
doStuff(msg) // may fail
PeekMailboxExtension.ack()

}

// business logic elided ...
}

object MyApp extends App {
val system = ActorSystem("MySystem", ConfigFactory.parseString("""
peek-dispatcher {

mailbox-type = "akka.contrib.mailbox.PeekMailboxType"
max-retries = 2

}
"""))

val myActor = system.actorOf(Props[MyActor].withDispatcher("peek-dispatcher"),
name = "myActor")

myActor ! "Hello"
myActor ! "World"
myActor ! PoisonPill

}

Running this application (try it in the Akka sources by saying sbt akka-contrib/test:run) may produce
the following output (note the processing of “World” on lines 2 and 16):

Hello
World
[ERROR] [12/17/2012 16:28:36.581] [MySystem-peek-dispatcher-5] [akka://MySystem/user/myActor] DONTWANNA

9.2. External Contributions 368

http://github.com/akka/akka/tree/v2.3.16/akka-contrib/src/main/scala/akka/contrib/mailbox/PeekMailbox.scala

Akka Java Documentation, Release 2.3.16

java.lang.Exception: DONTWANNA
at akka.contrib.mailbox.MyActor.doStuff(PeekMailbox.scala:105)
at akka.contrib.mailbox.MyActor$$anonfun$receive$1.applyOrElse(PeekMailbox.scala:98)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:425)
at akka.actor.ActorCell.invoke(ActorCell.scala:386)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:230)
at akka.dispatch.Mailbox.run(Mailbox.scala:212)
at akka.dispatch.ForkJoinExecutorConfigurator$MailboxExecutionTask.exec(AbstractDispatcher.scala:502)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:262)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:975)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1478)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)

World

Normally one would want to make processing idempotent (i.e. it does not matter if a message is processed twice)
or context.become a different behavior upon restart; the above example included the println(msg) call
just to demonstrate the re-processing.

Cluster Singleton

For some use cases it is convenient and sometimes also mandatory to ensure that you have exactly one actor of a
certain type running somewhere in the cluster.

Some examples:

• single point of responsibility for certain cluster-wide consistent decisions, or coordination of actions across
the cluster system

• single entry point to an external system

• single master, many workers

• centralized naming service, or routing logic

Using a singleton should not be the first design choice. It has several drawbacks, such as single-point of bottleneck.
Single-point of failure is also a relevant concern, but for some cases this feature takes care of that by making sure
that another singleton instance will eventually be started.

The cluster singleton pattern is implemented by akka.contrib.pattern.ClusterSingletonManager.
It manages one singleton actor instance among all cluster nodes or a group of nodes tagged with a specific role.
ClusterSingletonManager is an actor that is supposed to be started on all nodes, or all nodes with
specified role, in the cluster. The actual singleton actor is started by the ClusterSingletonManager on the
oldest node by creating a child actor from supplied Props. ClusterSingletonManager makes sure that at
most one singleton instance is running at any point in time.

The singleton actor is always running on the oldest member, which can be determined by
Member#isOlderThan. This can change when removing that member from the cluster. Be aware that
there is a short time period when there is no active singleton during the hand-over process.

The cluster failure detector will notice when oldest node becomes unreachable due to things like JVM crash, hard
shut down, or network failure. Then a new oldest node will take over and a new singleton actor is created. For
these failure scenarios there will not be a graceful hand-over, but more than one active singletons is prevented by
all reasonable means. Some corner cases are eventually resolved by configurable timeouts.

You can access the singleton actor by using the provided akka.contrib.pattern.ClusterSingletonProxy,
which will route all messages to the current instance of the singleton. The proxy will keep track of the oldest node
in the cluster and resolve the singleton’s ActorRef by explicitly sending the singleton’s actorSelection
the akka.actor.Identify message and waiting for it to reply. This is performed periodically if the
singleton doesn’t reply within a certain (configurable) time. Given the implementation, there might be periods of
time during which the ActorRef is unavailable, e.g., when a node leaves the cluster. In these cases, the proxy
will stash away all messages until it is able to identify the singleton. It’s worth noting that messages can always
be lost because of the distributed nature of these actors. As always, additional logic should be implemented in the
singleton (acknowledgement) and in the client (retry) actors to ensure at-least-once message delivery.

9.2. External Contributions 369

Akka Java Documentation, Release 2.3.16

Potential problems to be aware of

This pattern may seem to be very tempting to use at first, but it has several drawbacks, some of them are listed
below:

• the cluster singleton may quickly become a performance bottleneck,

• you can not rely on the cluster singleton to be non-stop available - e.g. when node on which the singleton
was running dies, it will take a few seconds for this to be noticed and the singleton be migrated to another
node,

• in the case of a network partition appearing in a Cluster that is using Automatic Downing (automatic-vs-
manual-downing-scala), it may happen that the isolated clusters each decide to spin up their own singleton,
meaning that there might be multiple singletons running in the system, yet the Clusters have no way of
finding out about them (because of the network partition).

Especially the last point is something you should be aware of - in general when using the Cluster Singleton pattern
you should take care of downing nodes yourself and not rely on the timing based auto-down feature.

Warning: Be very careful when using Cluster Singleton together with Automatic Downing, since it
allows the cluster to split up into two separate clusters, which in turn will result in multiple Singletons being
started - one in each separate cluster!

An Example

Assume that we need one single entry point to an external system. An actor that receives messages from a JMS
queue with the strict requirement that only one JMS consumer must exist to be make sure that the messages are
processed in order. That is perhaps not how one would like to design things, but a typical real-world scenario
when integrating with external systems.

On each node in the cluster you need to start the ClusterSingletonManager and supply the Props of the
singleton actor, in this case the JMS queue consumer.

In Scala:

system.actorOf(ClusterSingletonManager.props(
singletonProps = Props(classOf[Consumer], queue, testActor),
singletonName = "consumer",
terminationMessage = End,
role = Some("worker")),
name = "singleton")

Here we limit the singleton to nodes tagged with the "worker" role, but all nodes, independent of role, can be
used by specifying None as role parameter.

The corresponding Java API for the singeltonProps function is
akka.contrib.pattern.ClusterSingletonPropsFactory. The Java API takes a plain String for
the role parameter and null means that all nodes, independent of role, are used.

In Java:

system.actorOf(ClusterSingletonManager.defaultProps(Props.create(Consumer.class, queue, testActor), "consumer",
new End(), "worker"), "singleton");

Note: The singletonProps/singletonPropsFactory is invoked when creating the singleton actor and
it must not use members that are not thread safe, e.g. mutable state in enclosing actor.

Here we use an application specific terminationMessage to be able to close the resources before actually
stopping the singleton actor. Note that PoisonPill is a perfectly fine terminationMessage if you only
need to stop the actor.

9.2. External Contributions 370

Akka Java Documentation, Release 2.3.16

Here is how the singleton actor handles the terminationMessage in this example.

case End ⇒
queue ! UnregisterConsumer

case UnregistrationOk ⇒
context stop self

case Ping ⇒
sender ! Pong

Note that you can send back current state to the ClusterSingletonManager before terminating. This mes-
sage will be sent over to the ClusterSingletonManager at the new oldest node and it will be passed to the
singletonProps factory when creating the new singleton instance.

With the names given above, access to the singleton can be obtained from any cluster node using a properly
configured proxy.

In Scala:

system.actorOf(ClusterSingletonProxy.props(
singletonPath = "/user/singleton/consumer",
role = Some("worker")),
name = "consumerProxy")

In Java:

system.actorOf(ClusterSingletonProxy.defaultProps("user/singleton/consumer", "worker"), "consumerProxy");

A more comprehensive sample is available in the Typesafe Activator tutorial named Distributed workers with
Akka and Scala! and Distributed workers with Akka and Java!.

Cluster Sharding

Cluster sharding is useful when you need to distribute actors across several nodes in the cluster and want to be
able to interact with them using their logical identifier, but without having to care about their physical location in
the cluster, which might also change over time.

It could for example be actors representing Aggregate Roots in Domain-Driven Design terminology. Here we call
these actors “entries”. These actors typically have persistent (durable) state, but this feature is not limited to actors
with persistent state.

Cluster sharding is typically used when you have many stateful actors that together consume more resources (e.g.
memory) than fit on one machine. If you only have a few stateful actors it might be easier to run them on a Cluster
Singleton node.

In this context sharding means that actors with an identifier, so called entries, can be automatically distributed
across multiple nodes in the cluster. Each entry actor runs only at one place, and messages can be sent to the
entry without requiring the sender() to know the location of the destination actor. This is achieved by sending the
messages via a ShardRegion actor provided by this extension, which knows how to route the message with the
entry id to the final destination.

An Example in Java

This is how an entry actor may look like:

public class Counter extends UntypedPersistentActor {

public static enum CounterOp {
INCREMENT, DECREMENT

}

public static class Get {
final public long counterId;

9.2. External Contributions 371

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-distributed-workers
http://www.typesafe.com/activator/template/akka-distributed-workers
http://www.typesafe.com/activator/template/akka-distributed-workers-java

Akka Java Documentation, Release 2.3.16

public Get(long counterId) {
this.counterId = counterId;

}
}

public static class EntryEnvelope {
final public long id;
final public Object payload;

public EntryEnvelope(long id, Object payload) {
this.id = id;
this.payload = payload;

}
}

public static class CounterChanged {
final public int delta;

public CounterChanged(int delta) {
this.delta = delta;

}
}

int count = 0;

// getSelf().path().parent().name() is the type name (utf-8 URL-encoded)
// getSelf().path().name() is the entry identifier (utf-8 URL-encoded)
@Override
public String persistenceId() {
return getSelf().path().parent().name() + "-" + getSelf().path().name();

}

@Override
public void preStart() throws Exception {
super.preStart();
context().setReceiveTimeout(Duration.create(120, TimeUnit.SECONDS));

}

void updateState(CounterChanged event) {
count += event.delta;

}

@Override
public void onReceiveRecover(Object msg) {
if (msg instanceof CounterChanged)

updateState((CounterChanged) msg);
else

unhandled(msg);
}

@Override
public void onReceiveCommand(Object msg) {
if (msg instanceof Get)

getSender().tell(count, getSelf());

else if (msg == CounterOp.INCREMENT)
persist(new CounterChanged(+1), new Procedure<CounterChanged>() {

public void apply(CounterChanged evt) {
updateState(evt);

}
});

9.2. External Contributions 372

Akka Java Documentation, Release 2.3.16

else if (msg == CounterOp.DECREMENT)
persist(new CounterChanged(-1), new Procedure<CounterChanged>() {

public void apply(CounterChanged evt) {
updateState(evt);

}
});

else if (msg.equals(ReceiveTimeout.getInstance()))
getContext().parent().tell(

new ShardRegion.Passivate(PoisonPill.getInstance()), getSelf());

else
unhandled(msg);

}
}

The above actor uses event sourcing and the support provided in UntypedPersistentActor to store its state.
It does not have to be a persistent actor, but in case of failure or migration of entries between nodes it must be able
to recover its state if it is valuable.

Note how the persistenceId is defined. You may define it another way, but it must be unique.

When using the sharding extension you are first, typically at system startup on each node in the
cluster, supposed to register the supported entry types with the ClusterSharding.start method.
ClusterSharding.start gives you the reference which you can pass along.

ActorRef startedCounterRegion = ClusterSharding.get(system).start("Counter", Props.create(Counter.class),
messageExtractor);

The messageExtractor defines application specific methods to extract the entry identifier and the shard iden-
tifier from incoming messages.

ShardRegion.MessageExtractor messageExtractor = new ShardRegion.MessageExtractor() {

@Override
public String entryId(Object message) {
if (message instanceof Counter.EntryEnvelope)

return String.valueOf(((Counter.EntryEnvelope) message).id);
else if (message instanceof Counter.Get)

return String.valueOf(((Counter.Get) message).counterId);
else

return null;
}

@Override
public Object entryMessage(Object message) {
if (message instanceof Counter.EntryEnvelope)

return ((Counter.EntryEnvelope) message).payload;
else

return message;
}

@Override
public String shardId(Object message) {
if (message instanceof Counter.EntryEnvelope) {

long id = ((Counter.EntryEnvelope) message).id;
return String.valueOf(id % 10);

} else if (message instanceof Counter.Get) {
long id = ((Counter.Get) message).counterId;
return String.valueOf(id % 10);

} else {
return null;

}
}

9.2. External Contributions 373

Akka Java Documentation, Release 2.3.16

};

This example illustrates two different ways to define the entry identifier in the messages:

• The Get message includes the identifier itself.

• The EntryEnvelope holds the identifier, and the actual message that is sent to the entry actor is wrapped
in the envelope.

Note how these two messages types are handled in the entryId and entryMessage methods shown above.

A shard is a group of entries that will be managed together. The grouping is defined by the shardResolver
function shown above. Creating a good sharding algorithm is an interesting challenge in itself. Try to produce a
uniform distribution, i.e. same amount of entries in each shard. As a rule of thumb, the number of shards should
be a factor ten greater than the planned maximum number of cluster nodes.

Messages to the entries are always sent via the local ShardRegion. The ShardRegion actor for a named
entry type can be retrieved with ClusterSharding.shardRegion. The ShardRegion will lookup the
location of the shard for the entry if it does not already know its location. It will delegate the message to the right
node and it will create the entry actor on demand, i.e. when the first message for a specific entry is delivered.

ActorRef counterRegion = ClusterSharding.get(system).shardRegion("Counter");
counterRegion.tell(new Counter.Get(100), getSelf());

counterRegion.tell(new Counter.EntryEnvelope(100,
Counter.CounterOp.INCREMENT), getSelf());

counterRegion.tell(new Counter.Get(100), getSelf());

An Example in Scala

This is how an entry actor may look like:

case object Increment
case object Decrement
case class Get(counterId: Long)
case class EntryEnvelope(id: Long, payload: Any)

case object Stop
case class CounterChanged(delta: Int)

class Counter extends PersistentActor {
import ShardRegion.Passivate

context.setReceiveTimeout(120.seconds)

// self.path.parent.name is the type name (utf-8 URL-encoded)
// self.path.name is the entry identifier (utf-8 URL-encoded)
override def persistenceId: String = self.path.parent.name + "-" + self.path.name

var count = 0

def updateState(event: CounterChanged): Unit =
count += event.delta

override def receiveRecover: Receive = {
case evt: CounterChanged ⇒ updateState(evt)

}

override def receiveCommand: Receive = {
case Increment ⇒ persist(CounterChanged(+1))(updateState)
case Decrement ⇒ persist(CounterChanged(-1))(updateState)
case Get(_) ⇒ sender() ! count

9.2. External Contributions 374

Akka Java Documentation, Release 2.3.16

case ReceiveTimeout ⇒ context.parent ! Passivate(stopMessage = Stop)
case Stop ⇒ context.stop(self)

}
}

The above actor uses event sourcing and the support provided in PersistentActor to store its state. It does
not have to be a persistent actor, but in case of failure or migration of entries between nodes it must be able to
recover its state if it is valuable.

Note how the persistenceId is defined. You may define it another way, but it must be unique.

When using the sharding extension you are first, typically at system startup on each node in the
cluster, supposed to register the supported entry types with the ClusterSharding.start method.
ClusterSharding.start gives you the reference which you can pass along.

val counterRegion: ActorRef = ClusterSharding(system).start(
typeName = "Counter",
entryProps = Some(Props[Counter]),
idExtractor = idExtractor,
shardResolver = shardResolver)

The idExtractor and shardResolver are two application specific functions to extract the entry identifier
and the shard identifier from incoming messages.

val idExtractor: ShardRegion.IdExtractor = {
case EntryEnvelope(id, payload) ⇒ (id.toString, payload)
case msg @ Get(id) ⇒ (id.toString, msg)

}

val shardResolver: ShardRegion.ShardResolver = {
case EntryEnvelope(id, _) ⇒ (id % 12).toString
case Get(id) ⇒ (id % 12).toString

}

This example illustrates two different ways to define the entry identifier in the messages:

• The Get message includes the identifier itself.

• The EntryEnvelope holds the identifier, and the actual message that is sent to the entry actor is wrapped
in the envelope.

Note how these two messages types are handled in the idExtractor function shown above.

A shard is a group of entries that will be managed together. The grouping is defined by the shardResolver
function shown above. Creating a good sharding algorithm is an interesting challenge in itself. Try to produce a
uniform distribution, i.e. same amount of entries in each shard. As a rule of thumb, the number of shards should
be a factor ten greater than the planned maximum number of cluster nodes.

Messages to the entries are always sent via the local ShardRegion. The ShardRegion actor for a named
entry type can be retrieved with ClusterSharding.shardRegion. The ShardRegion will lookup the
location of the shard for the entry if it does not already know its location. It will delegate the message to the right
node and it will create the entry actor on demand, i.e. when the first message for a specific entry is delivered.

val counterRegion: ActorRef = ClusterSharding(system).shardRegion("Counter")
counterRegion ! Get(100)
expectMsg(0)

counterRegion ! EntryEnvelope(100, Increment)
counterRegion ! Get(100)
expectMsg(1)

A more comprehensive sample is available in the Typesafe Activator tutorial named Akka Cluster Sharding with
Scala!.

9.2. External Contributions 375

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-cluster-sharding-scala
http://www.typesafe.com/activator/template/akka-cluster-sharding-scala

Akka Java Documentation, Release 2.3.16

How it works

The ShardRegion actor is started on each node in the cluster, or group of nodes tagged with a specific role.
The ShardRegion is created with two application specific functions to extract the entry identifier and the shard
identifier from incoming messages. A shard is a group of entries that will be managed together. For the first
message in a specific shard the ShardRegion request the location of the shard from a central coordinator, the
ShardCoordinator.

The ShardCoordinator decides which ShardRegion that owns the shard. The ShardRegion receives
the decided home of the shard and if that is the ShardRegion instance itself it will create a local child actor
representing the entry and direct all messages for that entry to it. If the shard home is another ShardRegion
instance messages will be forwarded to that ShardRegion instance instead. While resolving the location of a
shard incoming messages for that shard are buffered and later delivered when the shard home is known. Subse-
quent messages to the resolved shard can be delivered to the target destination immediately without involving the
ShardCoordinator.

Scenario 1:

1. Incoming message M1 to ShardRegion instance R1.

2. M1 is mapped to shard S1. R1 doesn’t know about S1, so it asks the coordinator C for the location of S1.

3. C answers that the home of S1 is R1.

4. R1 creates child actor for the entry E1 and sends buffered messages for S1 to E1 child

5. All incoming messages for S1 which arrive at R1 can be handled by R1 without C. It creates entry children
as needed, and forwards messages to them.

Scenario 2:

1. Incoming message M2 to R1.

2. M2 is mapped to S2. R1 doesn’t know about S2, so it asks C for the location of S2.

3. C answers that the home of S2 is R2.

4. R1 sends buffered messages for S2 to R2

5. All incoming messages for S2 which arrive at R1 can be handled by R1 without C. It forwards messages to
R2.

6. R2 receives message for S2, ask C, which answers that the home of S2 is R2, and we are in Scenario 1 (but
for R2).

To make sure that at most one instance of a specific entry actor is running somewhere in the cluster it is important
that all nodes have the same view of where the shards are located. Therefore the shard allocation decisions are
taken by the central ShardCoordinator, which is running as a cluster singleton, i.e. one instance on the oldest
member among all cluster nodes or a group of nodes tagged with a specific role.

The logic that decides where a shard is to be located is defined in a pluggable shard allocation strategy. The
default implementation ShardCoordinator.LeastShardAllocationStrategy allocates new shards
to the ShardRegion with least number of previously allocated shards. This strategy can be replaced by an
application specific implementation.

To be able to use newly added members in the cluster the coordinator facilitates rebalancing of shards, i.e. migrate
entries from one node to another. In the rebalance process the coordinator first notifies all ShardRegion actors
that a handoff for a shard has started. That means they will start buffering incoming messages for that shard,
in the same way as if the shard location is unknown. During the rebalance process the coordinator will not
answer any requests for the location of shards that are being rebalanced, i.e. local buffering will continue until
the handoff is completed. The ShardRegion responsible for the rebalanced shard will stop all entries in that
shard by sending PoisonPill to them. When all entries have been terminated the ShardRegion owning the
entries will acknowledge the handoff as completed to the coordinator. Thereafter the coordinator will reply to
requests for the location of the shard and thereby allocate a new home for the shard and then buffered messages
in the ShardRegion actors are delivered to the new location. This means that the state of the entries are not

9.2. External Contributions 376

Akka Java Documentation, Release 2.3.16

transferred or migrated. If the state of the entries are of importance it should be persistent (durable), e.g. with
akka-persistence, so that it can be recovered at the new location.

The logic that decides which shards to rebalance is defined in a pluggable shard allocation strategy. The de-
fault implementation ShardCoordinator.LeastShardAllocationStrategy picks shards for hand-
off from the ShardRegion with most number of previously allocated shards. They will then be allocated to the
ShardRegion with least number of previously allocated shards, i.e. new members in the cluster. There is a
configurable threshold of how large the difference must be to begin the rebalancing. This strategy can be replaced
by an application specific implementation.

The state of shard locations in the ShardCoordinator is persistent (durable) with akka-persistence
to survive failures. Since it is running in a cluster akka-persistence must be configured with a distributed
journal. When a crashed or unreachable coordinator node has been removed (via down) from the cluster a new
ShardCoordinator singleton actor will take over and the state is recovered. During such a failure period
shards with known location are still available, while messages for new (unknown) shards are buffered until the
new ShardCoordinator becomes available.

As long as a sender() uses the same ShardRegion actor to deliver messages to an entry actor the order of the
messages is preserved. As long as the buffer limit is not reached messages are delivered on a best effort basis, with
at-most once delivery semantics, in the same way as ordinary message sending. Reliable end-to-end messaging,
with at-least-once semantics can be added by using channels in akka-persistence.

Some additional latency is introduced for messages targeted to new or previously unused shards due to the round-
trip to the coordinator. Rebalancing of shards may also add latency. This should be considered when designing
the application specific shard resolution, e.g. to avoid too fine grained shards.

Proxy Only Mode

The ShardRegion actor can also be started in proxy only mode, i.e. it will not host any entries itself, but
knows how to delegate messages to the right location. A ShardRegion starts in proxy only mode if the roles
of the node does not include the node role specified in akka.contrib.cluster.sharding.role config
property or if the specified entryProps is None / null.

Passivation

If the state of the entries are persistent you may stop entries that are not used to reduce memory consumption. This
is done by the application specific implementation of the entry actors for example by defining receive timeout
(context.setReceiveTimeout). If a message is already enqueued to the entry when it stops itself the
enqueued message in the mailbox will be dropped. To support graceful passivation without loosing such messages
the entry actor can send ShardRegion.Passivate to its parent ShardRegion. The specified wrapped
message in Passivate will be sent back to the entry, which is then supposed to stop itself. Incoming messages
will be buffered by the ShardRegion between reception of Passivate and termination of the entry. Such
buffered messages are thereafter delivered to a new incarnation of the entry.

Configuration

The ClusterSharding extension can be configured with the following properties:

Settings for the ClusterShardingExtension
akka.contrib.cluster.sharding {

The extension creates a top level actor with this name in top level user scope,
e.g. '/user/sharding'
guardian-name = sharding
If the coordinator can't store state changes it will be stopped
and started again after this duration.
coordinator-failure-backoff = 10 s
Start the coordinator singleton manager on members tagged with this role.
All members are used if undefined or empty.

9.2. External Contributions 377

Akka Java Documentation, Release 2.3.16

ShardRegion actor is started in proxy only mode on nodes that are not tagged
with this role.
role = ""
The ShardRegion retries registration and shard location requests to the
ShardCoordinator with this interval if it does not reply.
retry-interval = 2 s
Maximum number of messages that are buffered by a ShardRegion actor.
buffer-size = 100000
Timeout of the shard rebalancing process.
handoff-timeout = 60 s
Rebalance check is performed periodically with this interval.
rebalance-interval = 10 s
How often the coordinator saves persistent snapshots, which are
used to reduce recovery times
snapshot-interval = 3600 s
Setting for the default shard allocation strategy
least-shard-allocation-strategy {
Threshold of how large the difference between most and least number of
allocated shards must be to begin the rebalancing.
rebalance-threshold = 10
The number of ongoing rebalancing processes is limited to this number.
max-simultaneous-rebalance = 3

}
}

Custom shard allocation strategy can be defined in an optional parameter to
ClusterSharding.start. See the API documentation of ShardAllocationStrategy (Scala)
or AbstractShardAllocationStrategy (Java) for details of how to implement a custom shard allocation
strategy.

Distributed Publish Subscribe in Cluster

How do I send a message to an actor without knowing which node it is running on?

How do I send messages to all actors in the cluster that have registered interest in a named topic?

This pattern provides a mediator actor, akka.contrib.pattern.DistributedPubSubMediator, that
manages a registry of actor references and replicates the entries to peer actors among all cluster nodes or a group
of nodes tagged with a specific role.

The DistributedPubSubMediator is supposed to be started on all nodes, or all nodes with specified role, in the
cluster. The mediator can be started with the DistributedPubSubExtension or as an ordinary actor.

Changes are only performed in the own part of the registry and those changes are versioned. Deltas are dissemi-
nated in a scalable way to other nodes with a gossip protocol. The registry is eventually consistent, i.e. changes
are not immediately visible at other nodes, but typically they will be fully replicated to all other nodes after a few
seconds.

You can send messages via the mediator on any node to registered actors on any other node. There is four modes
of message delivery.

1. DistributedPubSubMediator.Send

The message will be delivered to one recipient with a matching path, if any such exists in the registry. If several
entries match the path the message will be sent via the supplied RoutingLogic (default random) to one desti-
nation. The sender() of the message can specify that local affinity is preferred, i.e. the message is sent to an actor
in the same local actor system as the used mediator actor, if any such exists, otherwise route to any other matching
entry. A typical usage of this mode is private chat to one other user in an instant messaging application. It can also
be used for distributing tasks to registered workers, like a cluster aware router where the routees dynamically can
register themselves.

2. DistributedPubSubMediator.SendToAll

9.2. External Contributions 378

Akka Java Documentation, Release 2.3.16

The message will be delivered to all recipients with a matching path. Actors with the same path, without address
information, can be registered on different nodes. On each node there can only be one such actor, since the path
is unique within one local actor system. Typical usage of this mode is to broadcast messages to all replicas with
the same path, e.g. 3 actors on different nodes that all perform the same actions, for redundancy. You can also
optionally specify a property (allButSelf) deciding if the message should be sent to a matching path on the
self node or not.

3. DistributedPubSubMediator.Publish

Actors may be registered to a named topic instead of path. This enables many subscribers on each node. The
message will be delivered to all subscribers of the topic. For efficiency the message is sent over the wire only once
per node (that has a matching topic), and then delivered to all subscribers of the local topic representation. This is
the true pub/sub mode. A typical usage of this mode is a chat room in an instant messaging application.

4. DistributedPubSubMediator.Publish with sendOneMessageToEachGroup

Actors may be subscribed to a named topic with an optional property (group). If subscribing with a group
name, each message published to a topic with the (sendOneMessageToEachGroup) flag is delivered via the
supplied RoutingLogic (default random) to one actor within each subscribing group. If all the subscribed
actors have the same group name, then this works just like Send and all messages are delivered to one subscriber.
If all the subscribed actors have different group names, then this works like normal Publish and all messages
are broadcast to all subscribers.

You register actors to the local mediator with DistributedPubSubMediator.Put or
DistributedPubSubMediator.Subscribe. Put is used together with Send and SendToAll
message delivery modes. The ActorRef in Put must belong to the same local actor system as the mediator.
Subscribe is used together with Publish. Actors are automatically removed from the registry when they
are terminated, or you can explicitly remove entries with DistributedPubSubMediator.Remove or
DistributedPubSubMediator.Unsubscribe.

Successful Subscribe and Unsubscribe is acknowledged with DistributedPubSubMediator.SubscribeAck
and DistributedPubSubMediator.UnsubscribeAck replies.

A Small Example in Java

A subscriber actor:

public class Subscriber extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public Subscriber() {
ActorRef mediator =

DistributedPubSubExtension.get(getContext().system()).mediator();
// subscribe to the topic named "content"
mediator.tell(new DistributedPubSubMediator.Subscribe("content", getSelf()),

getSelf());
}

public void onReceive(Object msg) {
if (msg instanceof String)

log.info("Got: {}", msg);
else if (msg instanceof DistributedPubSubMediator.SubscribeAck)

log.info("subscribing");
else

unhandled(msg);
}

}

Subscriber actors can be started on several nodes in the cluster, and all will receive messages published to the
“content” topic.

system.actorOf(Props.create(Subscriber.class), "subscriber1");
//another node

9.2. External Contributions 379

Akka Java Documentation, Release 2.3.16

system.actorOf(Props.create(Subscriber.class), "subscriber2");
system.actorOf(Props.create(Subscriber.class), "subscriber3");

A simple actor that publishes to this “content” topic:

public class Publisher extends UntypedActor {

// activate the extension
ActorRef mediator =
DistributedPubSubExtension.get(getContext().system()).mediator();

public void onReceive(Object msg) {
if (msg instanceof String) {

String in = (String) msg;
String out = in.toUpperCase();
mediator.tell(new DistributedPubSubMediator.Publish("content", out),

getSelf());
} else {

unhandled(msg);
}

}
}

It can publish messages to the topic from anywhere in the cluster:

//somewhere else
ActorRef publisher = system.actorOf(Props.create(Publisher.class), "publisher");
// after a while the subscriptions are replicated
publisher.tell("hello", null);

A Small Example in Scala

A subscriber actor:

class Subscriber extends Actor with ActorLogging {
import DistributedPubSubMediator.{ Subscribe, SubscribeAck }
val mediator = DistributedPubSubExtension(context.system).mediator
// subscribe to the topic named "content"
mediator ! Subscribe("content", self)

def receive = {
case SubscribeAck(Subscribe("content", None, `self`)) ⇒
context become ready

}

def ready: Actor.Receive = {
case s: String ⇒
log.info("Got {}", s)

}
}

Subscriber actors can be started on several nodes in the cluster, and all will receive messages published to the
“content” topic.

runOn(first) {
system.actorOf(Props[Subscriber], "subscriber1")

}
runOn(second) {

system.actorOf(Props[Subscriber], "subscriber2")
system.actorOf(Props[Subscriber], "subscriber3")

}

A simple actor that publishes to this “content” topic:

9.2. External Contributions 380

Akka Java Documentation, Release 2.3.16

class Publisher extends Actor {
import DistributedPubSubMediator.Publish
// activate the extension
val mediator = DistributedPubSubExtension(context.system).mediator

def receive = {
case in: String ⇒

val out = in.toUpperCase
mediator ! Publish("content", out)

}
}

It can publish messages to the topic from anywhere in the cluster:

runOn(third) {
val publisher = system.actorOf(Props[Publisher], "publisher")
later()
// after a while the subscriptions are replicated
publisher ! "hello"

}

A more comprehensive sample is available in the Typesafe Activator tutorial named Akka Clustered PubSub with
Scala!.

DistributedPubSubExtension

In the example above the mediator is started and accessed with the
akka.contrib.pattern.DistributedPubSubExtension. That is convenient and perfectly
fine in most cases, but it can be good to know that it is possible to start the mediator actor as an ordinary actor and
you can have several different mediators at the same time to be able to divide a large number of actors/topics to
different mediators. For example you might want to use different cluster roles for different mediators.

The DistributedPubSubExtension can be configured with the following properties:

Settings for the DistributedPubSubExtension
akka.contrib.cluster.pub-sub {

Actor name of the mediator actor, /user/distributedPubSubMediator
name = distributedPubSubMediator

Start the mediator on members tagged with this role.
All members are used if undefined or empty.
role = ""

The routing logic to use for 'Send'
Possible values: random, round-robin, broadcast
routing-logic = random

How often the DistributedPubSubMediator should send out gossip information
gossip-interval = 1s

Removed entries are pruned after this duration
removed-time-to-live = 120s

Maximum number of elements to transfer in one message when synchronizing the registries.
Next chunk will be transferred in next round of gossip.
max-delta-elements = 3000

}

It is recommended to load the extension when the actor system is started by defining it in akka.extensions
configuration property. Otherwise it will be activated when first used and then it takes a while for it to be populated.

9.2. External Contributions 381

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-clustering
http://www.typesafe.com/activator/template/akka-clustering

Akka Java Documentation, Release 2.3.16

akka.extensions = ["akka.contrib.pattern.DistributedPubSubExtension"]

Cluster Client

An actor system that is not part of the cluster can communicate with actors somewhere in the cluster via this
ClusterClient. The client can of course be part of another cluster. It only needs to know the location of one
(or more) nodes to use as initial contact points. It will establish a connection to a ClusterReceptionist
somewhere in the cluster. It will monitor the connection to the receptionist and establish a new connection
if the link goes down. When looking for a new receptionist it uses fresh contact points retrieved from pre-
vious establishment, or periodically refreshed contacts, i.e. not necessarily the initial contact points. Also,
note it’s necessary to change akka.actor.provider from akka.actor.LocalActorRefProvider
to akka.remote.RemoteActorRefProvider or akka.cluster.ClusterActorRefProvider
when using the cluster client.

The receptionist is supposed to be started on all nodes, or all nodes with specified role, in the cluster. The
receptionist can be started with the ClusterReceptionistExtension or as an ordinary actor.

You can send messages via the ClusterClient to any actor in the cluster that is regis-
tered in the DistributedPubSubMediator used by the ClusterReceptionist. The
ClusterReceptionistExtension provides methods for registration of actors that should be reach-
able from the client. Messages are wrapped in ClusterClient.Send, ClusterClient.SendToAll or
ClusterClient.Publish.

1. ClusterClient.Send

The message will be delivered to one recipient with a matching path, if any such exists. If several entries match
the path the message will be delivered to one random destination. The sender() of the message can specify that
local affinity is preferred, i.e. the message is sent to an actor in the same local actor system as the used receptionist
actor, if any such exists, otherwise random to any other matching entry.

2. ClusterClient.SendToAll

The message will be delivered to all recipients with a matching path.

3. ClusterClient.Publish

The message will be delivered to all recipients Actors that have been registered as subscribers to the named topic.

Response messages from the destination actor are tunneled via the receptionist to avoid inbound connections from
other cluster nodes to the client, i.e. the sender(), as seen by the destination actor, is not the client itself. The
sender() of the response messages, as seen by the client, is preserved as the original sender(), so the client can
choose to send subsequent messages directly to the actor in the cluster.

While establishing a connection to a receptionist the ClusterClient will buffer messages and send
them when the connection is established. If the buffer is full the ClusterClient will throw
akka.actor.StashOverflowException, which can be handled in by the supervision strategy of the par-
ent actor. The size of the buffer can be configured by the following stash-capacity setting of the mailbox
that is used by the ClusterClient actor.

akka.contrib.cluster.client {

How often failure detection heartbeat messages should be sent
heartbeat-interval = 2s

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
The ClusterClient is using the akka.remote.DeadlineFailureDetector, which
will trigger if there are no heartbeats within the duration
heartbeat-interval + acceptable-heartbeat-pause, i.e. 15 seconds with
the default settings.
acceptable-heartbeat-pause = 15s

mailbox {

9.2. External Contributions 382

Akka Java Documentation, Release 2.3.16

mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox"
stash-capacity = 1000

}
}

An Example

On the cluster nodes first start the receptionist. Note, it is recommended to load the extension when the actor
system is started by defining it in the akka.extensions configuration property:

akka.extensions = ["akka.contrib.pattern.ClusterReceptionistExtension"]

Next, register the actors that should be available for the client.

runOn(host1) {
val serviceA = system.actorOf(Props[Service], "serviceA")
ClusterReceptionistExtension(system).registerService(serviceA)

}

runOn(host2, host3) {
val serviceB = system.actorOf(Props[Service], "serviceB")
ClusterReceptionistExtension(system).registerService(serviceB)

}

On the client you create the ClusterClient actor and use it as a gateway for sending messages to the actors
identified by their path (without address information) somewhere in the cluster.

runOn(client) {
val c = system.actorOf(ClusterClient.props(initialContacts), "client")
c ! ClusterClient.Send("/user/serviceA", "hello", localAffinity = true)
c ! ClusterClient.SendToAll("/user/serviceB", "hi")

}

The initialContacts parameter is a Set[ActorSelection], which can be created like this:

val initialContacts = Set(
system.actorSelection("akka.tcp://OtherSys@host1:2552/user/receptionist"),
system.actorSelection("akka.tcp://OtherSys@host2:2552/user/receptionist"))

You will probably define the address information of the initial contact points in configuration or system property.

A more comprehensive sample is available in the Typesafe Activator tutorial named Distributed workers with
Akka and Scala! and Distributed workers with Akka and Java!.

ClusterReceptionistExtension

In the example above the receptionist is started and accessed with the
akka.contrib.pattern.ClusterReceptionistExtension. That is convenient and
perfectly fine in most cases, but it can be good to know that it is possible to start the
akka.contrib.pattern.ClusterReceptionist actor as an ordinary actor and you can have
several different receptionists at the same time, serving different types of clients.

The ClusterReceptionistExtension can be configured with the following properties:

Settings for the ClusterReceptionistExtension
akka.contrib.cluster.receptionist {

Actor name of the ClusterReceptionist actor, /user/receptionist
name = receptionist

Start the receptionist on members tagged with this role.
All members are used if undefined or empty.

9.2. External Contributions 383

http://www.typesafe.com/platform/getstarted
http://www.typesafe.com/activator/template/akka-distributed-workers
http://www.typesafe.com/activator/template/akka-distributed-workers
http://www.typesafe.com/activator/template/akka-distributed-workers-java

Akka Java Documentation, Release 2.3.16

role = ""

The receptionist will send this number of contact points to the client
number-of-contacts = 3

The actor that tunnel response messages to the client will be stopped
after this time of inactivity.
response-tunnel-receive-timeout = 30s

}

Note that the ClusterReceptionistExtension uses the DistributedPubSubExtension, which is
described in Distributed Publish Subscribe in Cluster.

It is recommended to load the extension when the actor system is started by defining it in the akka.extensions
configuration property:

akka.extensions = ["akka.contrib.pattern.ClusterReceptionistExtension"]

Aggregator Pattern

The aggregator pattern supports writing actors that aggregate data from multiple other actors and updates its state
based on those responses. It is even harder to optionally aggregate more data based on the runtime state of the
actor or take certain actions (sending another message and get another response) based on two or more previous
responses.

A common thought is to use the ask pattern to request information from other actors. However, ask creates another
actor specifically for the ask. We cannot use a callback from the future to update the state as the thread executing
the callback is not defined. This will likely close-over the current actor.

The aggregator pattern solves such scenarios. It makes sure we’re acting from the same actor in the scope of the
actor receive.

Introduction

The aggregator pattern allows match patterns to be dynamically added to and removed from an actor from inside
the message handling logic. All match patterns are called from the receive loop and run in the thread handling
the incoming message. These dynamically added patterns and logic can safely read and/or modify this actor’s
mutable state without risking integrity or concurrency issues.

Usage

To use the aggregator pattern, you need to extend the Aggregator trait. The trait takes care of receive and
actors extending this trait should not override receive. The trait provides the expect, expectOnce, and
unexpect calls. The expect and expectOnce calls return a handle that can be used for later de-registration
by passing the handle to unexpect.

expect is often used for standing matches such as catching error messages or timeouts.

expect {
case TimedOut ⇒ collectBalances(force = true)

}

expectOnce is used for matching the initial message as well as other requested messages

expectOnce {
case GetCustomerAccountBalances(id, types) ⇒
new AccountAggregator(sender(), id, types)

case _ ⇒
sender() ! CantUnderstand

9.2. External Contributions 384

Akka Java Documentation, Release 2.3.16

context.stop(self)
}

def fetchCheckingAccountsBalance() {
context.actorOf(Props[CheckingAccountProxy]) ! GetAccountBalances(id)
expectOnce {
case CheckingAccountBalances(balances) ⇒

results += (Checking -> balances)
collectBalances()

}
}

unexpect can be used for expecting multiple responses until a timeout or when the logic dictates such an
expect no longer applies.

val handle = expect {
case Response(name, value) ⇒
values += value
if (values.size > 3) processList()

case TimedOut ⇒ processList()
}

def processList() {
unexpect(handle)

if (values.size > 0) {
context.actorSelection("/user/evaluator") ! values.toList
expectOnce {

case EvaluationResults(name, eval) ⇒ processFinal(eval)
}

} else processFinal(List.empty[Int])
}

As the name eludes, expect keeps the partial function matching any received messages until unexpect is
called or the actor terminates, whichever comes first. On the other hand, expectOnce removes the partial
function once a match has been established.

It is a common pattern to register the initial expectOnce from the construction of the actor to accept the initial
message. Once that message is received, the actor starts doing all aggregations and sends the response back to the
original requester. The aggregator should terminate after the response is sent (or timed out). A different original
request should use a different actor instance.

As you can see, aggregator actors are generally stateful, short lived actors.

Sample Use Case - AccountBalanceRetriever

This example below shows a typical and intended use of the aggregator pattern.

import scala.collection._
import scala.concurrent.duration._
import scala.math.BigDecimal.int2bigDecimal

import akka.actor._
/**
* Sample and test code for the aggregator patter.

* This is based on Jamie Allen's tutorial at

* http://jaxenter.com/tutorial-asynchronous-programming-with-akka-actors-46220.html

*/

sealed trait AccountType
case object Checking extends AccountType
case object Savings extends AccountType

9.2. External Contributions 385

Akka Java Documentation, Release 2.3.16

case object MoneyMarket extends AccountType

case class GetCustomerAccountBalances(id: Long, accountTypes: Set[AccountType])
case class GetAccountBalances(id: Long)

case class AccountBalances(accountType: AccountType,
balance: Option[List[(Long, BigDecimal)]])

case class CheckingAccountBalances(balances: Option[List[(Long, BigDecimal)]])
case class SavingsAccountBalances(balances: Option[List[(Long, BigDecimal)]])
case class MoneyMarketAccountBalances(balances: Option[List[(Long, BigDecimal)]])

case object TimedOut
case object CantUnderstand

class SavingsAccountProxy extends Actor {
def receive = {
case GetAccountBalances(id: Long) ⇒

sender() ! SavingsAccountBalances(Some(List((1, 150000), (2, 29000))))
}

}
class CheckingAccountProxy extends Actor {

def receive = {
case GetAccountBalances(id: Long) ⇒
sender() ! CheckingAccountBalances(Some(List((3, 15000))))

}
}
class MoneyMarketAccountProxy extends Actor {

def receive = {
case GetAccountBalances(id: Long) ⇒
sender() ! MoneyMarketAccountBalances(None)

}
}

class AccountBalanceRetriever extends Actor with Aggregator {

import context._

expectOnce {
case GetCustomerAccountBalances(id, types) ⇒
new AccountAggregator(sender(), id, types)

case _ ⇒
sender() ! CantUnderstand
context.stop(self)

}

class AccountAggregator(originalSender: ActorRef,
id: Long, types: Set[AccountType]) {

val results =
mutable.ArrayBuffer.empty[(AccountType, Option[List[(Long, BigDecimal)]])]

if (types.size > 0)
types foreach {

case Checking ⇒ fetchCheckingAccountsBalance()
case Savings ⇒ fetchSavingsAccountsBalance()
case MoneyMarket ⇒ fetchMoneyMarketAccountsBalance()

}
else collectBalances() // Empty type list yields empty response

context.system.scheduler.scheduleOnce(1.second, self, TimedOut)
expect {

case TimedOut ⇒ collectBalances(force = true)

9.2. External Contributions 386

Akka Java Documentation, Release 2.3.16

}

def fetchCheckingAccountsBalance() {
context.actorOf(Props[CheckingAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case CheckingAccountBalances(balances) ⇒
results += (Checking -> balances)
collectBalances()

}
}

def fetchSavingsAccountsBalance() {
context.actorOf(Props[SavingsAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case SavingsAccountBalances(balances) ⇒
results += (Savings -> balances)
collectBalances()

}
}

def fetchMoneyMarketAccountsBalance() {
context.actorOf(Props[MoneyMarketAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case MoneyMarketAccountBalances(balances) ⇒
results += (MoneyMarket -> balances)
collectBalances()

}
}

def collectBalances(force: Boolean = false) {
if (results.size == types.size || force) {

originalSender ! results.toList // Make sure it becomes immutable
context.stop(self)

}
}

}
}

Sample Use Case - Multiple Response Aggregation and Chaining

A shorter example showing aggregating responses and chaining further requests.

case class InitialRequest(name: String)
case class Request(name: String)
case class Response(name: String, value: String)
case class EvaluationResults(name: String, eval: List[Int])
case class FinalResponse(qualifiedValues: List[String])

/**
* An actor sample demonstrating use of unexpect and chaining.

* This is just an example and not a complete test case.

*/
class ChainingSample extends Actor with Aggregator {

expectOnce {
case InitialRequest(name) ⇒ new MultipleResponseHandler(sender(), name)

}

class MultipleResponseHandler(originalSender: ActorRef, propName: String) {

import context.dispatcher

9.2. External Contributions 387

Akka Java Documentation, Release 2.3.16

import collection.mutable.ArrayBuffer

val values = ArrayBuffer.empty[String]

context.actorSelection("/user/request_proxies") ! Request(propName)
context.system.scheduler.scheduleOnce(50.milliseconds, self, TimedOut)

val handle = expect {
case Response(name, value) ⇒

values += value
if (values.size > 3) processList()

case TimedOut ⇒ processList()
}

def processList() {
unexpect(handle)

if (values.size > 0) {
context.actorSelection("/user/evaluator") ! values.toList
expectOnce {
case EvaluationResults(name, eval) ⇒ processFinal(eval)

}
} else processFinal(List.empty[Int])

}

def processFinal(eval: List[Int]) {
// Select only the entries coming back from eval
originalSender ! FinalResponse(eval map values)
context.stop(self)

}
}

}

Pitfalls

• The current implementation does not match the sender of the message. This is designed to work with
ActorSelection as well as ActorRef. Without the sender(), there is a chance a received message
can be matched by more than one partial function. The partial function that was registered via expect
or expectOnce first (chronologically) and is not yet de-registered by unexpect takes precedence in
this case. Developers should make sure the messages can be uniquely matched or the wrong logic can be
executed for a certain message.

• The sender referenced in any expect or expectOnce logic refers to the sender() of that particular
message and not the sender() of the original message. The original sender() still needs to be saved so a final
response can be sent back.

• context.become is not supported when extending the Aggregator trait.

• We strongly recommend against overriding receive. If your use case really dictates, you may do so with
extreme caution. Always provide a pattern match handling aggregator messages among your receive
pattern matches, as follows:

case msg if handleMessage(msg) ⇒ // noop
// side effects of handleMessage does the actual match

Sorry, there is not yet a Java implementation of the aggregator pattern available.

9.2.3 Suggested Way of Using these Contributions

Since the Akka team does not restrict updates to this subproject even during otherwise binary compatible releases,
and modules may be removed without deprecation, it is suggested to copy the source files into your own code

9.2. External Contributions 388

Akka Java Documentation, Release 2.3.16

base, changing the package name. This way you can choose when to update or which fixes to include (to keep
binary compatibility if needed) and later releases of Akka do not potentially break your application.

9.2.4 Suggested Format of Contributions

Each contribution should be a self-contained unit, consisting of one source file or one exclusively used package,
without dependencies to other modules in this subproject; it may depend on everything else in the Akka distri-
bution, though. This ensures that contributions may be moved into the standard distribution individually. The
module shall be within a subpackage of akka.contrib.

Each module must be accompanied by a test suite which verifies that the provided features work, possibly
complemented by integration and unit tests. The tests should follow the Developer Guidelines and go into the
src/test/scala or src/test/java directories (with package name matching the module which is being
tested). As an example, if the module were called akka.contrib.pattern.ReliableProxy, then the
test suite should be called akka.contrib.pattern.ReliableProxySpec.

Each module must also have proper documentation in reStructured Text format. The documentation should be a
single <module>.rst file in the akka-contrib/docs directory, including a link from index.rst (this
file).

9.2. External Contributions 389

http://sphinx.pocoo.org/rest.html

CHAPTER

TEN

INFORMATION FOR AKKA DEVELOPERS

10.1 Building Akka

This page describes how to build and run Akka from the latest source code.

10.1.1 Get the Source Code

Akka uses Git and is hosted at Github.

You first need Git installed on your machine. You can then clone the source repository from http://github.com/
akka/akka.

For example:

git clone git://github.com/akka/akka.git

If you have already cloned the repository previously then you can update the code with git pull:

git pull origin master

10.1.2 sbt - Simple Build Tool

Akka is using the excellent sbt build system. So the first thing you have to do is to download and install sbt. You
can read more about how to do that in the sbt setup documentation.

The sbt commands that you’ll need to build Akka are all included below. If you want to find out more about sbt
and using it for your own projects do read the sbt documentation.

The Akka sbt build file is project/AkkaBuild.scala.

10.1.3 Building Akka

First make sure that you are in the akka code directory:

cd akka

Building

To compile all the Akka core modules use the compile command:

sbt compile

You can run all tests with the test command:

sbt test

If compiling and testing are successful then you have everything working for the latest Akka development version.

390

http://git-scm.com
http://github.com
http://github.com/akka/akka
http://github.com/akka/akka
https://github.com/sbt/sbt
http://www.scala-sbt.org/0.13/tutorial/index.html
https://github.com/harrah/xsbt/wiki

Akka Java Documentation, Release 2.3.16

Parallel Execution

By default the tests are executed sequentially. They can be executed in parallel to reduce build times, if hardware
can handle the increased memory and cpu usage. Add the following system property to sbt launch script to activate
parallel execution:

-Dakka.parallelExecution=true

Long Running and Time Sensitive Tests

By default are the long running tests (mainly cluster tests) and time sensitive tests (dependent on the performance
of the machine it is running on) disabled. You can enable them by adding one of the flags:

-Dakka.test.tags.include=long-running
-Dakka.test.tags.include=timing

Or if you need to enable them both:

-Dakka.test.tags.include=long-running,timing

Publish to Local Ivy Repository

If you want to deploy the artifacts to your local Ivy repository (for example, to use from an sbt project) use the
publish-local command:

sbt publish-local

Note: Akka generates class diagrams for the API documentation using ScalaDoc. This needs the dot command
from the Graphviz software package to be installed to avoid errors. You can disable the diagram generation by
adding the flag -Dakka.scaladoc.diagrams=false

sbt Interactive Mode

Note that in the examples above we are calling sbt compile and sbt test and so on, but sbt also has an
interactive mode. If you just run sbt you enter the interactive sbt prompt and can enter the commands directly.
This saves starting up a new JVM instance for each command and can be much faster and more convenient.

For example, building Akka as above is more commonly done like this:

% sbt
[info] Set current project to default (in build file:/.../akka/project/plugins/)
[info] Set current project to akka (in build file:/.../akka/)
> compile
...
> test
...

sbt Batch Mode

It’s also possible to combine commands in a single call. For example, testing, and publishing Akka to the local
Ivy repository can be done with:

sbt test publish-local

10.1. Building Akka 391

Akka Java Documentation, Release 2.3.16

10.1.4 Dependencies

You can look at the Ivy dependency resolution information that is cre-
ated on sbt update and found in ~/.ivy2/cache. For example, the
~/.ivy2/cache/com.typesafe.akka-akka-remote-compile.xml file contains the resolu-
tion information for the akka-remote module compile dependencies. If you open this file in a web browser you
will get an easy to navigate view of dependencies.

10.2 Multi JVM Testing

Supports running applications (objects with main methods) and ScalaTest tests in multiple JVMs at the same time.
Useful for integration testing where multiple systems communicate with each other.

10.2.1 Setup

The multi-JVM testing is an sbt plugin that you can find at http://github.com/typesafehub/sbt-multi-jvm.

You can add it as a plugin by adding the following to your project/plugins.sbt:

addSbtPlugin("com.typesafe.sbt" % "sbt-multi-jvm" % "0.3.8")

You can then add multi-JVM testing to build.sbt or project/Build.scala by including the MultiJvm
settings and config. Please note that MultiJvm test sources are located in src/multi-jvm/..., and not in
src/test/....

Here is an example build.sbt file for sbt 0.13 that uses the MultiJvm plugin:

import com.typesafe.sbt.SbtMultiJvm
import com.typesafe.sbt.SbtMultiJvm.MultiJvmKeys.MultiJvm

val akkaVersion = "2.3.16"

val project = Project(
id = "akka-sample-multi-node-scala",
base = file("."),
settings = Project.defaultSettings ++ SbtMultiJvm.multiJvmSettings ++ Seq(
name := "akka-sample-multi-node-scala",
version := "2.3.16",
scalaVersion := "2.10.4",
libraryDependencies ++= Seq(

"com.typesafe.akka" %% "akka-remote" % akkaVersion,
"com.typesafe.akka" %% "akka-multi-node-testkit" % akkaVersion,
"org.scalatest" %% "scalatest" % "2.0" % "test"),

// make sure that MultiJvm test are compiled by the default test compilation
compile in MultiJvm <<= (compile in MultiJvm) triggeredBy (compile in Test),
// disable parallel tests
parallelExecution in Test := false,
// make sure that MultiJvm tests are executed by the default test target,
// and combine the results from ordinary test and multi-jvm tests
executeTests in Test <<= (executeTests in Test, executeTests in MultiJvm) map {

case (testResults, multiNodeResults) =>
val overall =
if (testResults.overall.id < multiNodeResults.overall.id)

multiNodeResults.overall
else

testResults.overall
Tests.Output(overall,
testResults.events ++ multiNodeResults.events,
testResults.summaries ++ multiNodeResults.summaries)

}

10.2. Multi JVM Testing 392

http://github.com/typesafehub/sbt-multi-jvm

Akka Java Documentation, Release 2.3.16

)
) configs (MultiJvm)

You can specify JVM options for the forked JVMs:

jvmOptions in MultiJvm := Seq("-Xmx256M")

10.2.2 Running tests

The multi-JVM tasks are similar to the normal tasks: test, test-only, and run, but are under the
multi-jvm configuration.

So in Akka, to run all the multi-JVM tests in the akka-remote project use (at the sbt prompt):

akka-remote-tests/multi-jvm:test

Or one can change to the akka-remote-tests project first, and then run the tests:

project akka-remote-tests
multi-jvm:test

To run individual tests use test-only:

multi-jvm:test-only akka.remote.RandomRoutedRemoteActor

More than one test name can be listed to run multiple specific tests. Tab-completion in sbt makes it easy to
complete the test names.

It’s also possible to specify JVM options with test-only by including those options after the test names and
--. For example:

multi-jvm:test-only akka.remote.RandomRoutedRemoteActor -- -Dsome.option=something

10.2.3 Creating application tests

The tests are discovered, and combined, through a naming convention. MultiJvm test sources are located in
src/multi-jvm/.... A test is named with the following pattern:

{TestName}MultiJvm{NodeName}

That is, each test has MultiJvm in the middle of its name. The part before it groups together tests/applications
under a single TestName that will run together. The part after, the NodeName, is a distinguishing name for each
forked JVM.

So to create a 3-node test called Sample, you can create three applications like the following:

package sample

object SampleMultiJvmNode1 {
def main(args: Array[String]) {
println("Hello from node 1")

}
}

object SampleMultiJvmNode2 {
def main(args: Array[String]) {
println("Hello from node 2")

}
}

object SampleMultiJvmNode3 {
def main(args: Array[String]) {

10.2. Multi JVM Testing 393

Akka Java Documentation, Release 2.3.16

println("Hello from node 3")
}

}

When you call multi-jvm:run sample.Sample at the sbt prompt, three JVMs will be spawned, one for
each node. It will look like this:

> multi-jvm:run sample.Sample
...
[info] * sample.Sample
[JVM-1] Hello from node 1
[JVM-2] Hello from node 2
[JVM-3] Hello from node 3
[success] Total time: ...

10.2.4 Changing Defaults

You can change the name of the multi-JVM test source directory by adding the following configuration to your
project:

unmanagedSourceDirectories in MultiJvm <<=
Seq(baseDirectory(_ / "src/some_directory_here")).join

You can change what the MultiJvm identifier is. For example, to change it to ClusterTest use the
multiJvmMarker setting:

multiJvmMarker in MultiJvm := "ClusterTest"

Your tests should now be named {TestName}ClusterTest{NodeName}.

10.2.5 Configuration of the JVM instances

You can define specific JVM options for each of the spawned JVMs. You do that by creating a file named after
the node in the test with suffix .opts and put them in the same directory as the test.

For example, to feed the JVM options -Dakka.remote.port=9991 and -Xmx256m to the
SampleMultiJvmNode1 let’s create three *.opts files and add the options to them. Separate multiple op-
tions with space.

SampleMultiJvmNode1.opts:

-Dakka.remote.port=9991 -Xmx256m

SampleMultiJvmNode2.opts:

-Dakka.remote.port=9992 -Xmx256m

SampleMultiJvmNode3.opts:

-Dakka.remote.port=9993 -Xmx256m

10.2.6 ScalaTest

There is also support for creating ScalaTest tests rather than applications. To do this use the same naming conven-
tion as above, but create ScalaTest suites rather than objects with main methods. You need to have ScalaTest on
the classpath. Here is a similar example to the one above but using ScalaTest:

package sample

import org.scalatest.WordSpec

10.2. Multi JVM Testing 394

Akka Java Documentation, Release 2.3.16

import org.scalatest.matchers.MustMatchers

class SpecMultiJvmNode1 extends WordSpec with MustMatchers {
"A node" should {
"be able to say hello" in {

val message = "Hello from node 1"
message must be("Hello from node 1")

}
}

}

class SpecMultiJvmNode2 extends WordSpec with MustMatchers {
"A node" should {
"be able to say hello" in {

val message = "Hello from node 2"
message must be("Hello from node 2")

}
}

}

To run just these tests you would call multi-jvm:test-only sample.Spec at the sbt prompt.

10.2.7 Multi Node Additions

There has also been some additions made to the SbtMultiJvm plugin to accommodate the experimental module
multi node testing, described in that section.

10.3 I/O Layer Design

The akka.io package has been developed in collaboration between the Akka and spray.io teams. Its design
incorporates the experiences with the spray-io module along with improvements that were jointly developed
for more general consumption as an actor-based service.

10.3.1 Requirements

In order to form a general and extensible IO layer basis for a wide range of applications, with Akka remoting and
spray HTTP being the initial ones, the following requirements were established as key drivers for the design:

• scalability to millions of concurrent connections

• lowest possible latency in getting data from an input channel into the target actor’s mailbox

• maximal throughput

• optional back-pressure in both directions (i.e. throttling local senders as well as allowing local readers to
throttle remote senders, where allowed by the protocol)

• a purely actor-based API with immutable data representation

• extensibility for integrating new transports by way of a very lean SPI; the goal is to not force I/O mechanisms
into a lowest common denominator but instead allow completely protocol-specific user-level APIs.

10.3.2 Basic Architecture

Each transport implementation will be made available as a separate Akka extension, offering an ActorRef
representing the initial point of contact for client code. This “manager” accepts requests for establishing a com-
munications channel (e.g. connect or listen on a TCP socket). Each communications channel is represented by
one dedicated actor, which is exposed to client code for all interaction with this channel over its entire lifetime.

10.3. I/O Layer Design 395

http://spray.io

Akka Java Documentation, Release 2.3.16

The central element of the implementation is the transport-specific “selector” actor; in the case of TCP this would
wrap a java.nio.channels.Selector. The channel actors register their interest in readability or writabil-
ity of their channel by sending corresponding messages to their assigned selector actor. However, the actual
channel reading and writing is performed by the channel actors themselves, which frees the selector actors from
time-consuming tasks and thereby ensures low latency. The selector actor’s only responsibility is the management
of the underlying selector’s key set and the actual select operation, which is the only operation to typically block.

The assignment of channels to selectors is performed by the manager actor and remains unchanged for the entire
lifetime of a channel. Thereby the management actor “stripes” new channels across one or more selector actors
based on some implementation-specific distribution logic. This logic may be delegated (in part) to the selectors
actors, which could, for example, choose to reject the assignment of a new channel when they consider themselves
to be at capacity.

The manager actor creates (and therefore supervises) the selector actors, which in turn create and supervise their
channel actors. The actor hierarchy of one single transport implementation therefore consists of three distinct
actor levels, with the management actor at the top-, the channel actors at the leaf- and the selector actors at the
mid-level.

Back-pressure for output is enabled by allowing the user to specify within its Write messages whether it wants
to receive an acknowledgement for enqueuing that write to the O/S kernel. Back-pressure for input is enabled
by sending the channel actor a message which temporarily disables read interest for the channel until reading is
re-enabled with a corresponding resume command. In the case of transports with flow control—like TCP—the
act of not consuming data at the receiving end (thereby causing them to remain in the kernels read buffers) is
propagated back to the sender, linking these two mechanisms across the network.

10.3.3 Design Benefits

Staying within the actor model for the whole implementation allows us to remove the need for explicit thread
handling logic, and it also means that there are no locks involved (besides those which are part of the underlying
transport library). Writing only actor code results in a cleaner implementation, while Akka’s efficient actor mes-
saging does not impose a high tax for this benefit. In fact the event-based nature of I/O maps so well to the actor
model that we expect clear performance and especially scalability benefits over traditional solutions with explicit
thread management and synchronization.

Another benefit of supervision hierarchies is that clean-up of resources comes naturally: shutting down a selector
actor will automatically clean up all channel actors, allowing proper closing of the channels and sending the
appropriate messages to user-level client actors. DeathWatch allows the channel actors to notice the demise of
their user-level handler actors and terminate in an orderly fashion in that case as well; this naturally reduces the
chances of leaking open channels.

The choice of using ActorRef for exposing all functionality entails that these references can be distributed or
delegated freely and in general handled as the user sees fit, including the use of remoting and life-cycle monitoring
(just to name two).

10.3.4 How to go about Adding a New Transport

The best start is to study the TCP reference implementation to get a good grip on the basic working principle and
then design an implementation, which is similar in spirit, but adapted to the new protocol in question. There are
vast differences between I/O mechanisms (e.g. compare file I/O to a message broker) and the goal of this I/O layer
is explicitly not to shoehorn all of them into a uniform API, which is why only the basic architecture ideas are
documented here.

10.4 Developer Guidelines

Note: First read The Akka Contributor Guidelines.

10.4. Developer Guidelines 396

https://github.com/akka/akka/blob/master/CONTRIBUTING.md

Akka Java Documentation, Release 2.3.16

10.4.1 Code Style

The Akka code style follows the Scala Style Guide . The only exception is the style of block comments:

/**
* Style mandated by "Scala Style Guide"

*/

/**
* Style adopted in the Akka codebase

*/

Akka is using Scalariform to format the source code as part of the build. So just hack away and then run sbt
compile and it will reformat the code according to Akka standards.

10.4.2 Process

The full process is described in The Akka Contributor Guidelines. In summary:

• Make sure you have signed the Akka CLA, if not, sign it online.

• Pick a ticket, if there is no ticket for your work then create one first.

• Fork akka/akka. Start working in a feature branch.

• When you are done, create a GitHub Pull-Request towards the targeted branch.

• When there’s consensus on the review, someone from the Akka Core Team will merge it.

10.4.3 Commit messages

Please follow the conventions described in The Akka Contributor Guidelines when creating public commits and
writing commit messages.

10.4.4 Testing

All code that is checked in should have tests. All testing is done with ScalaTest and ScalaCheck.

• Name tests as Test.scala if they do not depend on any external stuff. That keeps surefire happy.

• Name tests as Spec.scala if they have external dependencies.

Actor TestKit

There is a useful test kit for testing actors: akka.util.TestKit. It enables assertions concerning replies received and
their timing, there is more documentation in the akka-testkit module.

Multi-JVM Testing

Included in the example is an sbt trait for multi-JVM testing which will fork JVMs for multi-node testing. There
is support for running applications (objects with main methods) and running ScalaTest tests.

NetworkFailureTest

You can use the ‘NetworkFailureTest’ trait to test network failure.

10.4. Developer Guidelines 397

http://docs.scala-lang.org/style/
https://github.com/akka/akka/blob/master/CONTRIBUTING.md
http://www.typesafe.com/contribute/cla
https://github.com/akka/akka
https://github.com/akka/akka/blob/master/CONTRIBUTING.md
http://github.com/akka/akka/tree/v2.3.16/akka-testkit/src/main/scala/akka/testkit/TestKit.scala

Akka Java Documentation, Release 2.3.16

10.5 Documentation Guidelines

The Akka documentation uses reStructuredText as its markup language and is built using Sphinx.

10.5.1 Sphinx

For more details see The Sphinx Documentation

10.5.2 reStructuredText

For more details see The reST Quickref

Sections

Section headings are very flexible in reST. We use the following convention in the Akka documentation:

• # (over and under) for module headings

• = for sections

• - for subsections

• ^ for subsubsections

• ~ for subsubsubsections

Cross-referencing

Sections that may be cross-referenced across the documentation should be marked with a reference. To
mark a section use .. _ref-name: before the section heading. The section can then be linked with
:ref:‘ref-name‘. These are unique references across the entire documentation.

For example:

.. _akka-module:

#############
Akka Module

#############

This is the module documentation.

.. _akka-section:

Akka Section
============

Akka Subsection

Here is a reference to "akka section": :ref:`akka-section` which will have the
name "Akka Section".

10.5.3 Build the documentation

First install Sphinx. See below.

10.5. Documentation Guidelines 398

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org
http://sphinx.pocoo.org/contents.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx.pocoo.org

Akka Java Documentation, Release 2.3.16

Building

For the html version of the docs:

sbt sphinx:generate-html

open <project-dir>/akka-docs/target/sphinx/html/index.html

For the pdf version of the docs:

sbt sphinx:generate-pdf

open <project-dir>/akka-docs/target/sphinx/latex/AkkaJava.pdf
or
open <project-dir>/akka-docs/target/sphinx/latex/AkkaScala.pdf

Installing Sphinx on OS X

Install Homebrew

Install Python with Homebrew:

brew install python

Homebrew will automatically add Python executable to your $PATH and pip is a part of the default Python
installation with Homebrew.

More information in case of trouble: https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python

Install sphinx:

pip install sphinx

Install BasicTeX package from: http://www.tug.org/mactex/morepackages.html

Add texlive bin to $PATH:

export TEXLIVE_PATH=/usr/local/texlive/2015basic/bin/universal-darwin
export PATH=$TEXLIVE_PATH:$PATH

Add missing tex packages:

sudo tlmgr update --self
sudo tlmgr install titlesec
sudo tlmgr install framed
sudo tlmgr install threeparttable
sudo tlmgr install wrapfig
sudo tlmgr install helvetic
sudo tlmgr install courier
sudo tlmgr install multirow

If you get the error “unknown locale: UTF-8” when generating the documentation the solution is to define the
following environment variables:

export LANG=en_US.UTF-8
export LC_ALL=en_US.UTF-8

10.5. Documentation Guidelines 399

https://github.com/mxcl/homebrew
https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python
http://www.tug.org/mactex/morepackages.html

Akka Java Documentation, Release 2.3.16

10.6 Team

Name Role
Jonas Bonér Founder, Despot, Committer
Viktor Klang Honorary Member
Roland Kuhn Project Lead
Patrik Nordwall Core Team
Björn Antonsson Core Team
Endre Varga Core Team
Mathias Doenitz Committer
Johannes Rudolph Committer
Raymond Roestenburg Committer
Piotr Gabryanczyk Committer
Helena Edelson Committer
Martin Krasser Committer
Henrik Engström Alumnus
Peter Vlugter Alumnus
Derek Williams Alumnus
Debasish Ghosh Alumnus
Ross McDonald Alumnus
Eckhart Hertzler Alumnus
Mikael Högqvist Alumnus
Tim Perrett Alumnus
Jeanfrancois Arcand Alumnus
Jan Van Besien Alumnus
Michael Kober Alumnus
Peter Veentjer Alumnus
Irmo Manie Alumnus
Heiko Seeberger Alumnus
Hiram Chirino Alumnus
Scott Clasen Alumnus

10.6. Team 400

CHAPTER

ELEVEN

PROJECT INFORMATION

11.1 Migration Guides

11.1.1 Migration Guide 1.3.x to 2.0.x

Migration from 1.3.x to 2.0.x is described in the documentation of 2.0.

11.1.2 Migration Guide 2.0.x to 2.1.x

Migration from 2.0.x to 2.1.x is described in the documentation of 2.1.

11.1.3 Migration Guide 2.1.x to 2.2.x

Migration from 2.1.x to 2.2.x is described in the documentation of 2.2.

11.1.4 Migration Guide 2.2.x to 2.3.x

The 2.3 release contains some structural changes that require some simple, mechanical source-level changes in
client code.

When migrating from earlier versions you should first follow the instructions for migrating 1.3.x to 2.0.x and then
2.0.x to 2.1.x and then 2.1.x to 2.2.x.

Removed hand over data in cluster singleton

The support for passing data from previous singleton instance to new instance in a graceful leaving scenario
has been removed. Valuable state should be persisted in durable storage instead, e.g. using akka-persistence.
The constructor/props parameters of ClusterSingletonManager has been changed to ordinary Props
parameter for the singleton actor instead of the factory parameter.

Changed cluster auto-down configuration

akka.cluster.auto-down setting has been replaced by akka.cluster.auto-down-unreachable-after,
which instructs the cluster to automatically mark unreachable nodes as DOWN after this configured time of
unreachability. This feature is disabled by default, as it also was in 2.2.x.

During the deprecation phase akka.cluster.auto-down=on is interpreted at as instant auto-down.

401

http://doc.akka.io/docs/akka/2.0.5/project/migration-guide-1.3.x-2.0.x.html
http://doc.akka.io/docs/akka/2.1.4/project/migration-guide-2.0.x-2.1.x.html
http://doc.akka.io/docs/akka/2.2.3/project/migration-guide-2.1.x-2.2.x.html

Akka Java Documentation, Release 2.3.16

Routers

The routers have been cleaned up and enhanced. The routing logic has been extracted to be usable within normal
actors as well. Some usability problems have been have been solved, such as properly reject invalid configuration
combinations. Routees can be dynamically added and removed by sending special management messages to the
router.

The two types of routers have been named Pool and Group to make them more distinguishable and reduce
confusion of their subtle differences:

• Pool - The router creates routees as child actors and removes them from the router if they terminate.

• Group - The routee actors are created externally to the router and the router sends messages to the specified
path using actor selection, without watching for termination.

Configuration of routers is compatible with 2.2.x, but the router type should preferably be specified with -pool
or -group suffix.

Some classes used for programmatic definition of routers have been renamed, but the old classes remain as dep-
recated. The compiler will guide you with deprecation warning. For example RoundRobinRouter has been
renamed to RoundRobinPool or RoundRobinGroup depending on which type you are actually using.

There is no replacement for SmallestMailboxRouter combined with routee paths, i.e. a group, because that
combination is not useful.

An optional API enhancement that makes the code read better is to use the props method instead of
withRouter. withRouter has not been deprecated and you can continue to use that if you prefer that way of
defining a router.

Example in Scala:

context.actorOf(FromConfig.props(Props[Worker]), "router1")
context.actorOf(RoundRobinPool(5).props(Props[Worker]), "router2")

Example in Java:

getContext().actorOf(FromConfig.getInstance().props(Props.create(Worker.class)),
"router1");

getContext().actorOf(new RoundRobinPool(5).props(Props.create(Worker.class)),
"router2");

To support multiple routee paths for a cluster aware router sending to paths the deployment configuration
property cluster.routees-path has been changed to string list routees.paths property. The old
cluster.routees-path is deprecated, but still working during the deprecation phase.

Example:

/router4 {
router = round-robin-group
nr-of-instances = 10
routees.paths = ["/user/myserviceA", "/user/myserviceB"]
cluster.enabled = on

}

The API for creating custom routers and resizers have changed without keeping the old API as deprecated. That
should be a an API used by only a few users and they should be able to migrate to the new API without much
trouble.

Read more about the new routers in the documentation for Scala and documentation for Java.

Akka IO is no longer experimental

The core IO layer introduced in Akka 2.2 is now a fully supported module of Akka.

11.1. Migration Guides 402

Akka Java Documentation, Release 2.3.16

Experimental Pipelines IO abstraction has been removed

Pipelines in the form introduced by 2.2 has been found unintuitive and are therefore discontinued. A new more
flexible and easier-to-use abstraction will replace their role in the future. Pipelines will be still available in the 2.2
series.

Changed cluster expected-response-after configuration

Configuration property akka.cluster.failure-detector.heartbeat-request.expected-response-after
has been renamed to akka.cluster.failure-detector.expected-response-after.

Removed automatic retry feature from Remoting in favor of retry-gate

The retry-gate feature is now the only failure handling strategy in Remoting. This change means
that when remoting detects faulty connections it goes into a gated state where all buffered and sub-
sequent remote messages are dropped until the configurable time defined by the configuration key
akka.remote.retry-gate-closed-for elapses after the failure event. This behavior prevents recon-
nect storms and unbounded buffer growth during network instabilities. After the configured time elapses the gate
is lifted and a new connection will be attempted when there are new remote messages to be delivered.

In concert with this change all settings related to the old reconnect behavior (akka.remote.retry-window
and akka.remote.maximum-retries-in-window) were removed.

The timeout setting akka.remote.gate-invalid-addresses-for that controlled the gate inter-
val for certain failure events is also removed and all gating intervals are now controlled by the
akka.remote.retry-gate-closed-for setting instead.

Reduced default sensitivity settings for transport failure detector in Remoting

Since the most commonly used transport with Remoting is TCP, which pro-
vides proper connection termination events the failure detector sensitivity setting
akka.remote.transport-failure-detector.acceptable-heartbeat-pause now
defaults to 20 seconds to reduce load induced false-positive failure detection events in remot-
ing. In case a non-connection-oriented protocol is used it is recommended to change this and the
akka.remote.transport-failure-detector.heartbeat-interval setting to a more sen-
sitive value.

Quarantine is now permanent

The setting that controlled the length of quarantine akka.remote.quarantine-systems-for has been
removed. The only setting available now is akka.remote.prune-quarantine-marker-after which
influences how long quarantine tombstones are kept around to avoid long-term memory leaks. This new setting
defaults to 5 days.

Remoting uses a dedicated dispatcher by default

The default value of akka.remote.use-dispatcher has been changed to a dedicated dispatcher.

Dataflow is Deprecated

Akka dataflow is superseded by Scala Async.

11.1. Migration Guides 403

https://github.com/scala/async

Akka Java Documentation, Release 2.3.16

Durable Mailboxes are Deprecated

Durable mailboxes are superseded by akka-persistence, which offers several tools to support reliable mes-
saging.

Read more about akka-persistence in the documentation for Scala and documentation for Java.

Deprecated STM Support for Agents

Agents participating in enclosing STM transaction is a deprecated feature.

Transactor Module is Deprecated

The integration between actors and STM in the module akka-transactor is deprecated and will be removed
in a future version.

Typed Channels has been removed

Typed channels were an experimental feature which we decided to remove: its implementation relied on an exper-
imental feature of Scala for which there is no correspondence in Java and other languages and its usage was not
intuitive.

Removed Deprecated Features

The following, previously deprecated, features have been removed:

• event-handlers renamed to loggers

• API changes to FSM and TestFSMRef

• DefaultScheduler superseded by LightArrayRevolverScheduler

• all previously deprecated construction and deconstruction methods for Props

publishCurrentClusterState is Deprecated

Use sendCurrentClusterState instead. Note that you can also retrieve the current cluster state with the
new Cluster(system).state.

CurrentClusterState is not a ClusterDomainEvent

CurrentClusterState does not implement the ClusterDomainEvent marker interface any more.

Note the new initialStateMode parameter of Cluster.subscribe, which makes it possible to handle
the initial state as events instead of CurrentClusterState. See documentation for Scala and documentation
for Java.

BalancingDispatcher is Deprecated

Use BalancingPool instead of BalancingDispatcher. See documentation for Scala and documentation
for Java.

During a migration period you can still use BalancingDispatcher by specifying the full class name in the dispatcher
configuration:

type = "akka.dispatch.BalancingDispatcherConfigurator"

11.1. Migration Guides 404

http://doc.akka.io/docs/akka/2.2.3/project/migration-guide-2.1.x-2.2.x.html#event-handlers_renamed_to_loggers
http://doc.akka.io/docs/akka/2.2.3/project/migration-guide-2.1.x-2.2.x.html#API_changes_to_FSM_and_TestFSMRef

Akka Java Documentation, Release 2.3.16

akka-sbt-plugin is Removed

akka-sbt-plugin for packaging of application binaries has been removed. Version 2.2.3 can still be used
independent of Akka version of the application. Version 2.2.3 can be used with both sbt 0.12 and 0.13.

sbt-native-packager is the recommended tool for creating distributions of Akka applications when using sbt.

Parens Added to sender

Parens were added to the sender() method of the Actor Scala API to highlight that the sender() reference is
not referentially transparent and must not be exposed to other threads, for example by closing over it when using
future callbacks.

It is recommended to use this new convention:

sender() ! "reply"

However, it is not mandatory to use parens and you do not have to change anything.

ReliableProxy Constructor Changed

The constructor of ReliableProxy in akka-contrib has been changed to take an ActorPath instead
of an ActorRef. Also it takes new parameters to support reconnection. Use the new props factory methods,
ReliableProxy.props.

OSGi Changes

akka-osgi no longer contains the akka-actor classes, instead akka-actor is a bundle now. akka-osgi
only contains a few OSGi helpers, most notably the BundleDelegatingClassLoader which resolves e.g.
reference.conf files (hence these are not copied into the akka-osgi bundle any longer either).

akka-osgi-aries has been removed. Similar can be implemented outside of Akka if needed.

TestKit: reworked time dilation

TestDuration has been changed into an implicit value class plus a Java API in JavaTestKit. Please change:

import akka.testkit.duration2TestDuration

into:

import akka.testkit.TestDuration

11.1.5 Migration Guide Akka Persistence (experimental) 2.3.3 to 2.3.4 (and 2.4.x)

Akka Persistence is an experimental module, which means that neither Binary Compatibility nor API stability
is provided for Persistence while under the experimental flag. The goal of this phase is to gather user feedback
before we freeze the APIs in a major release.

Renamed EventsourcedProcessor to PersistentActor

EventsourcedProcessor is now deprecated and replaced by PersistentActor which provides
the same (and more) API. Migrating to 2.4.x is as simple as changing all your classes to extending
PersistentActor.

Replace all classes like:

11.1. Migration Guides 405

https://github.com/sbt/sbt-native-packager

Akka Java Documentation, Release 2.3.16

class DeprecatedProcessor extends EventsourcedProcessor {
def processorId = "id"
/*...*/

}

To extend PersistentActor:

class NewPersistentActor extends PersistentActor {
def persistenceId = "id"
/*...*/

}

Read more about the persistent actor in the documentation for Scala and documentation for Java.

Changed processorId to (abstract) persistenceId

In Akka Persistence 2.3.3 and previously, the main building block of applications were Processors. Persistent
messages, as well as processors implemented the processorId method to identify which persistent entity a
message belonged to.

This concept remains the same in Akka 2.3.4, yet we rename processorId to persistenceId be-
cause Processors will be removed, and persistent messages can be used from different classes not only
PersistentActor (Views, directly from Journals etc).

Please note that persistenceId is abstract in the new API classes (PersistentActor and
PersistentView), and we do not provide a default (actor-path derrived) value for it like we did for
processorId. The rationale behind this change being stricter de-coupling of your Actor hierarchy and the
logical “which persistent entity this actor represents”. A longer discussion on this subject can be found on issue
#15436 on github.

In case you want to perserve the old behavior of providing the actor’s path as the default persistenceId, you
can easily implement it yourself either as a helper trait or simply by overriding persistenceId as follows:

override def persistenceId = self.path.toStringWithoutAddress

We provided the renamed method also on already deprecated classes (Channels), so you can simply apply a global
rename of processorId to persistenceId.

Removed Processor in favour of extending PersistentActor with persistAsync

The Processor is now deprecated since 2.3.4 and will be removed in 2.4.x. It’s semantics replicated in
PersistentActor in the form of an additional persist method: persistAsync.

In essence, the difference betwen persist and persistAsync is that the former will stash all incomming
commands until all persist callbacks have been processed, whereas the latter does not stash any commands. The
new persistAsync should be used in cases of low consistency yet high responsiveness requirements, the Actor
can keep processing incomming commands, even though not all previous events have been handled.

When these persist and persistAsync are used together in the same PersistentActor, the persist
logic will win over the async version so that all guarantees concerning persist still hold. This will however lower
the throughput

Now deprecated code using Processor:

class OldProcessor extends Processor {
override def processorId = "user-wallet-1337"

def receive = {
case Persistent(cmd) => sender() ! cmd

}
}

11.1. Migration Guides 406

https://github.com/akka/akka/issues/15436
https://github.com/akka/akka/issues/15436

Akka Java Documentation, Release 2.3.16

Replacement code, with the same semantics, using PersistentActor:

class NewProcessor extends PersistentActor {
override def persistenceId = "user-wallet-1337"

def receiveCommand = {
case cmd =>

persistAsync(cmd) { e => sender() ! e }
}

def receiveRecover = {
case _ => // logic for handling replay

}
}

It is worth pointing out that using sender() inside the persistAsync callback block is valid, and does not suffer
any of the problems Futures have when closing over the sender reference.

Using the PersistentActor instead of Processor also shifts the responsibility of deciding if a message
should be persisted to the receiver instead of the sender of the message. Previously, using Processor, clients
would have to wrap messages as Persistent(cmd) manually, as well as have to be aware of the receiver being
a Processor, which didn’t play well with transparency of the ActorRefs in general.

Removed deleteMessage

deleteMessage is deprecated and will be removed. When using command sourced Processor the command
was stored before it was received and could be validated and then there was a reason to remove faulty commands to
avoid repeating the error during replay. When using PersistentActor you can always validate the command
before persisting and therefore the stored event (or command) should always be valid for replay.

deleteMessages can still be used for pruning of all messages up to a sequence number.

Renamed View to PersistentView, which receives plain messages (Persistent() wrapper is gone)

Views used to receive messages wrapped as Persistent(payload, seqNr), this is no longer the case
and views receive the payload as message from the Journal directly. The rationale here is that the wrapper
aproach was inconsistent with the other Akka Persistence APIs and also is not easily “discoverable” (you have to
know you will be getting this Persistent wrapper).

Instead, since 2.3.4, views get plain messages, and can use additional methods provided by the View to identify
if a message was sent from the Journal (had been played back to the view). So if you had code like this:

class AverageView extends View {
override def processorId = "average-view"

def receive = {
case Persistent(msg, seqNr) =>

// from Journal

case msg =>
// from user-land

}

You should update it to extend PersistentView instead:

class AverageView extends PersistentView {
override def persistenceId = "persistence-sample"
override def viewId = "persistence-sample-average"

def receive = {
case msg if isPersistent =>

// from Journal

11.1. Migration Guides 407

Akka Java Documentation, Release 2.3.16

val seqNr = lastSequenceNr // in case you require the sequence number

case msg =>
// from user-land

}
}

In case you need to obtain the current sequence number the view is looking at, you can use the lastSequenceNr
method. It is equivalent to “current sequence number”, when isPersistent returns true, otherwise it yields
the sequence number of the last persistent message that this view was updated with.

Removed Channel and PersistentChannel in favour of AtLeastOnceDelivery trait

One of the primary tasks of a Channel was to de-duplicate messages that were sent from a Processor during
recovery. Performing external side effects during recovery is not encouraged with event sourcing and therefore
the Channel is not needed for this purpose.

The Channel and PersistentChannel also performed at-least-once delivery of messages, but it did
not free a sending actor from implementing retransmission or timeouts, since the acknowledgement from
the channel is needed to guarantee safe hand-off. Therefore at-least-once delivery is provided in a new
AtLeastOnceDelivery trait that is mixed-in to the persistent actor on the sending side.

Read more about at-least-once delivery in the documentation for Scala and documentation for Java.

11.1.6 Migration Guide Eventsourced to Akka Persistence 2.3.x

General notes

Eventsourced and Akka persistence-scala share many high-level concepts but strongly differ on design, imple-
mentation and usage level. This migration guide is more a higher-level comparison of Eventsourced and Akka
Persistence rather than a sequence of low-level instructions how to transform Eventsourced application code into
Akka Persistence application code. This should provide a good starting point for a migration effort. Development
teams should consult the user documentation of both projects for further details.

Scope of this migration guide is code migration, not journal migration. Journals written by Eventsourced can
neither be used directly Akka Persistence nor migrated to Akka Persistence compatible journals. Journal migration
tools may be provided in the future but do not exist at the moment.

Extensions

Eventsourced and Akka Persistence are both extending-akka-scala.

Eventsourced: EventsourcingExtension

• Must be explicitly created with an actor system and an application-defined journal actor as arguments. (see
example usage).

• Processors and Channels must be created with the factory methods processorOf and channelOf de-
fined on EventsourcingExtension.

• Is a central registry of created processors and channels.

Akka Persistence: Persistence extension

• Must not be explicitly created by an application. A Persistence extension is implicitly created upon
first PersistentActor‘ creation. Journal actors are automatically created from a journal plugin configuration
(see journal-plugin-api).

• PersistentActor can be created like any other actor with actorOfwithout using the Persistence
extension.

11.1. Migration Guides 408

https://github.com/eligosource/eventsourced
https://github.com/eligosource/eventsourced#step-1-eventsourcingextension-initialization
https://github.com/eligosource/eventsourced#processor
https://github.com/eligosource/eventsourced#channel

Akka Java Documentation, Release 2.3.16

• Is not a central registry of persistent actors.

Processors / PersistentActor

Eventsourced: Eventsourced

• Stackable trait that adds journaling (write-ahead-logging) to actors (see processor definition and creation).
Name Eventsourced caused some confusion in the past as many examples used Eventsourced pro-
cessors for command sourcing. See also this FAQ entry for clarification.

• Must be explicitly recovered using recovery methods on EventsourcingExtension. Applications are
responsible for avoiding an interference of replayed messages and new messages i.e. applications have to
explicitly wait for recovery to complete. Recovery on processor re-start is not supported out-of-the box.

• Journaling-preserving behavior changes are only possible with special-purpose methods become
and unbecome, in addition to non-journaling-preserving behavior changes with default methods
context.become and context.unbecome.

• Writes messages of type Message to the journal (see processor usage). Sender references are not stored in
the journal i.e. the sender reference of a replayed message is always system.deadLetters.

• Supports snapshots.

• Identifiers are of type Int and must be application-defined.

• Does not support batch-writes of messages to the journal.

• Does not support stashing of messages.

Akka Persistence: PersistentActor

• Trait that adds journaling to actors (see event-sourcing) and used by applications for event sourcing or
command sourcing. Corresponds to Eventsourced processors in Eventsourced but is not a stackable
trait.

• Automatically recovers on start and re-start, by default. recovery can be customized or turned off by over-
riding actor life cycle hooks preStart and preRestart. Processor takes care that new messages
never interfere with replayed messages. New messages are internally buffered until recovery completes.

• No special-purpose behavior change methods. Default behavior change methods context.become and
context.unbecome can be used and are journaling-preserving.

• Sender references are written to the journal. Sender references of type PromiseActorRef are not jour-
naled, they are system.deadLetters on replay.

• Supports snapshots.

• persistence-identifiers are of type String, have a default value and can be overridden by applications.

• Supports batch-writes.

• Supports stashing of messages.

Channels

Eventsourced: DefaultChannel

• Prevents redundant delivery of messages to a destination (see usage example and default channel).

• Is associated with a single destination actor reference. A new incarnation of the destination is not automati-
cally resolved by the channel. In this case a new channel must be created.

• Must be explicitly activated using methods deliver or recover defined on
EventsourcingExtension.

11.1. Migration Guides 409

https://github.com/eligosource/eventsourced#step-2-event-sourced-actor-definition
https://github.com/eligosource/eventsourced#step-3-event-sourced-actor-creation-and-recovery
https://github.com/eligosource/eventsourced/wiki/FAQ#wiki-event-sourcing-comparison
https://github.com/eligosource/eventsourced#recovery
https://github.com/eligosource/eventsourced#behavior-changes
https://github.com/eligosource/eventsourced#step-4-event-sourced-actor-usage
https://github.com/eligosource/eventsourced#sender-references
https://github.com/eligosource/eventsourced#snapshots
https://github.com/eligosource/eventsourced#step-5-channel-usage
https://github.com/eligosource/eventsourced#defaultchannel

Akka Java Documentation, Release 2.3.16

• Must be activated after all processors have been activated. Depending on the recovery method, this is either
done automatically or must be followed by the application (see non-blocking recovery). This is necessary
for a network of processors and channels to recover consistently.

• Does not redeliver messages on missing or negative delivery confirmation.

• Cannot be used standalone.

Eventsourced: ReliableChannel

• Provides DefaultChannel functionality plus persistence and recovery from sender JVM crashes (see
ReliableChannel). Also provides message redelivery in case of missing or negative delivery confirmations.

• Delivers next message to a destination only if previous message has been successfully delivered (flow con-
trol is done by destination).

• Stops itself when the maximum number of redelivery attempts has been reached.

• Cannot reply on persistence.

• Can be used standalone.

Akka Persistence: AtLeastOnceDelivery

• AtLeastOnceDelivery trait is mixed in to a PersistentActor

• Does not prevent redundant delivery of messages to a destination

• Is not associated with a single destination. A destination can be specified with each deliver request and
is referred to by an actor path. A destination path is resolved to the current destination incarnation during
delivery (via actorSelection).

• Redelivers messages on missing delivery confirmation. In contrast to Eventsourced, Akka Persistence
doesn’t distinguish between missing and negative confirmations. It only has a notion of missing confirma-
tions using timeouts (which are closely related to negative confirmations as both trigger message redelivery).

Views

Eventsourced:

• No direct support for views. Only way to maintain a view is to use a channel and a processor as destination.

Akka Persistence: View

• Receives the message stream written by a PersistentActor by reading it directly from the journal (see
persistent-views). Alternative to using channels. Useful in situations where actors shall receive a persistent
message stream in correct order without duplicates.

• Supports snapshots.

Serializers

Eventsourced:

• Uses a protobuf serializer for serializing Message objects.

• Delegates to a configurable Akka serializer for serializing Message payloads.

• Delegates to a configurable, proprietary (stream) serializer for serializing snapshots.

• See Serialization.

Akka Persistence:

• Uses a protobuf serializer for serializing Persistent objects.

• Delegates to a configurable Akka serializer for serializing Persistent payloads.

• Delegates to a configurable Akka serializer for serializing snapshots.

11.1. Migration Guides 410

https://github.com/eligosource/eventsourced#recovery
https://github.com/eligosource/eventsourced#non-blocking-recovery
https://github.com/eligosource/eventsourced#reliablechannel
https://github.com/eligosource/eventsourced#serialization

Akka Java Documentation, Release 2.3.16

• See custom-serialization.

Sequence numbers

Eventsourced:

• Generated on a per-journal basis.

Akka Persistence:

• Generated on a per persistent actor basis.

Storage plugins

Eventsourced:

• Plugin API: SynchronousWriteReplaySupport and AsynchronousWriteReplaySupport

• No separation between journal and snapshot storage plugins.

• All plugins pre-packaged with project (see journals and snapshot configuration)

Akka Persistence:

• Plugin API: SyncWriteJournal, AsyncWriteJournal, AsyncRecovery, SnapshotStore
(see storage-plugins).

• Clear separation between journal and snapshot storage plugins.

• Limited number of pre-packaged-plugins (LevelDB journal and local snapshot store).

• Impressive list of community plugins.

11.2 Issue Tracking

Akka is using GitHub Issues as its issue tracking system.

11.2.1 Browsing

Tickets

Before filing a ticket, please check the existing Akka tickets for earlier reports of the same problem. You are very
welcome to comment on existing tickets, especially if you have reproducible test cases that you can share.

Roadmaps

Please refer to the Akka roadmap in order to find out the general theme of work to be done for upcoming versions
of Akka.

11.2.2 Creating tickets

Please include the versions of Scala and Akka and relevant configuration files.

You can create a new ticket if you have registered a GitHub user account.

Thanks a lot for reporting bugs and suggesting features!

11.2. Issue Tracking 411

http://eligosource.github.io/eventsourced/api/snapshot/#org.eligosource.eventsourced.journal.common.support.SynchronousWriteReplaySupport
http://eligosource.github.io/eventsourced/api/snapshot/#org.eligosource.eventsourced.journal.common.support.AsynchronousWriteReplaySupport
https://github.com/eligosource/eventsourced#journals
https://github.com/eligosource/eventsourced#configuration
http://akka.io/community/
https://github.com/akka/akka/issues
https://docs.google.com/document/d/18W9-fKs55wiFNjXL9q50PYOnR7-nnsImzJqHOPPbM4E/pub
https://github.com/akka/akka/issues/new

Akka Java Documentation, Release 2.3.16

11.3 Licenses

11.3.1 Akka License

This software is licensed under the Apache 2 license, quoted below.

Copyright 2009-2014 Typesafe Inc. <http://www.typesafe.com>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

11.3.2 Akka Committer License Agreement

All committers have signed this CLA. It can be signed online.

11.3.3 Licenses for Dependency Libraries

Each dependency and its license can be seen in the project build file (the comment on the side of each dependency):
AkkaBuild.scala

11.4 Sponsors

11.4.1 Typesafe

Typesafe is the company behind the Akka Project, Scala Programming Language, Play Web Framework, Scala
IDE, Simple Build Tool and many other open source projects. It also provides the Typesafe Stack, a full-featured
development stack consisting of AKka, Play and Scala. Learn more at typesafe.com.

11.4.2 YourKit

YourKit is kindly supporting open source projects with its full-featured Java Profiler.

YourKit, LLC is the creator of innovative and intelligent tools for profiling Java and .NET applications. Take a
look at YourKit’s leading software products: YourKit Java Profiler and YourKit .NET Profiler

11.5 Project

11.5.1 Commercial Support

Commercial support is provided by Typesafe. Akka is part of the Typesafe Reactive Platform.

11.3. Licenses 412

http://www.typesafe.com/contribute/current-cla
http://www.typesafe.com/contribute/cla
http://github.com/akka/akka/tree/v2.3.16/project/AkkaBuild.scala#L1054
http://www.typesafe.com
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp
http://www.typesafe.com
http://www.typesafe.com/platform

Akka Java Documentation, Release 2.3.16

11.5.2 Mailing List

Akka User Google Group

Akka Developer Google Group

11.5.3 Downloads

http://akka.io/downloads

11.5.4 Source Code

Akka uses Git and is hosted at Github.

• Akka: clone the Akka repository from http://github.com/akka/akka

11.5.5 Releases Repository

All Akka releases are published via Sonatype to Maven Central, see search.maven.org

11.5.6 Snapshots Repository

Nightly builds are available in http://repo.akka.io/snapshots/ as both SNAPSHOT and timestamped versions.

For timestamped versions, pick a timestamp from http://repo.akka.io/snapshots/com/typesafe/akka/akka-actor_2.
10/. All Akka modules that belong to the same build have the same timestamp.

sbt definition of snapshot repository

Make sure that you add the repository to the sbt resolvers:

resolvers += "Typesafe Snapshots" at "http://repo.akka.io/snapshots/"

Define the library dependencies with the timestamp as version. For example:

libraryDependencies += "com.typesafe.akka" % "akka-remote_2.10" %
"2.1-20121016-001042"

maven definition of snapshot repository

Make sure that you add the repository to the maven repositories in pom.xml:

<repositories>
<repository>
<id>akka-snapshots</id>
<name>Akka Snapshots</name>
<url>http://repo.akka.io/snapshots/</url>
<layout>default</layout>

</repository>
</repositories>

Define the library dependencies with the timestamp as version. For example:

11.5. Project 413

http://groups.google.com/group/akka-user
http://groups.google.com/group/akka-dev
http://akka.io/downloads
http://github.com
http://github.com/akka/akka
http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22com.typesafe.akka%22
http://repo.akka.io/snapshots/
http://repo.akka.io/snapshots/com/typesafe/akka/akka-actor_2.10/
http://repo.akka.io/snapshots/com/typesafe/akka/akka-actor_2.10/

Akka Java Documentation, Release 2.3.16

<dependencies>
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-remote_2.10</artifactId>
<version>2.1-20121016-001042</version>

</dependency>
</dependencies>

11.5. Project 414

CHAPTER

TWELVE

ADDITIONAL INFORMATION

12.1 Frequently Asked Questions

12.1.1 Akka Project

Where does the name Akka come from?

It is the name of a beautiful Swedish mountain up in the northern part of Sweden called Laponia. The mountain is
also sometimes called ‘The Queen of Laponia’.

Akka is also the name of a goddess in the Sámi (the native Swedish population) mythology. She is the goddess
that stands for all the beauty and good in the world. The mountain can be seen as the symbol of this goddess.

Also, the name AKKA is the a palindrome of letters A and K as in Actor Kernel.

Akka is also:

• the name of the goose that Nils traveled across Sweden on in The Wonderful Adventures of Nils by the
Swedish writer Selma Lagerlöf.

• the Finnish word for ‘nasty elderly woman’ and the word for ‘elder sister’ in the Indian languages Tamil,
Telugu, Kannada and Marathi.

• a font

• a town in Morocco

• a near-earth asteroid

12.1.2 Actors in General

sender()/getSender() disappears when I use Future in my Actor, why?

When using future callbacks, inside actors you need to carefully avoid closing over the containing actor’s refer-
ence, i.e. do not call methods or access mutable state on the enclosing actor from within the callback. This breaks
the actor encapsulation and may introduce synchronization bugs and race conditions because the callback will be
scheduled concurrently to the enclosing actor. Unfortunately there is not yet a way to detect these illegal accesses
at compile time.

Read more about it in the docs for Actors and shared mutable state.

Why OutOfMemoryError?

It can be many reasons for OutOfMemoryError. For example, in a pure push based system with message con-
sumers that are potentially slower than corresponding message producers you must add some kind of message
flow control. Otherwise messages will be queued in the consumers’ mailboxes and thereby filling up the heap
memory.

415

https://lh4.googleusercontent.com/-z28mTALX90E/UCOsd249TdI/AAAAAAAAAB0/zGyNNZla-zY/w442-h331/akka-beautiful-panorama.jpg
http://en.wikipedia.org/wiki/The_Wonderful_Adventures_of_Nils
http://www.dafont.com/akka.font

Akka Java Documentation, Release 2.3.16

Some articles for inspiration:

• Balancing Workload across Nodes with Akka 2.

• Work Pulling Pattern to prevent mailbox overflow, throttle and distribute work

12.1.3 Actors Scala API

How can I get compile time errors for missing messages in receive?

One solution to help you get a compile time warning for not handling a message that you should be handling is
to define your actors input and output messages implementing base traits, and then do a match that the will be
checked for exhaustiveness.

Here is an example where the compiler will warn you that the match in receive isn’t exhaustive:

object MyActor {
// these are the messages we accept
sealed abstract trait Message
case class FooMessage(foo: String) extends Message
case class BarMessage(bar: Int) extends Message

// these are the replies we send
sealed abstract trait Reply
case class BazMessage(baz: String) extends Reply

}

class MyActor extends Actor {
import MyActor._
def receive = {
case message: Message => message match {

case BarMessage(bar) => sender ! BazMessage("Got " + bar)
// warning here:
// "match may not be exhaustive. It would fail on the following input: FooMessage(_)"

}
}

}

12.1.4 Remoting

I want to send to a remote system but it does not do anything

Make sure that you have remoting enabled on both ends: client and server. Both do need hostname and port
configured, and you will need to know the port of the server; the client can use an automatic port in most cases
(i.e. configure port zero). If both systems are running on the same network host, their ports must be different

If you still do not see anything, look at what the logging of remote life-cycle events tells you (normally logged
at INFO level) or switch on Auxiliary remote logging options to see all sent and received messages (logged at
DEBUG level).

Which options shall I enable when debugging remoting issues?

Have a look at the Remote Configuration, the typical candidates are:

• akka.remote.log-sent-messages

• akka.remote.log-received-messages

• akka.remote.log-remote-lifecycle-events (this also includes deserialization errors)

12.1. Frequently Asked Questions 416

http://letitcrash.com/post/29044669086/balancing-workload-across-nodes-with-akka-2
http://www.michaelpollmeier.com/akka-work-pulling-pattern/

Akka Java Documentation, Release 2.3.16

What is the name of a remote actor?

When you want to send messages to an actor on a remote host, you need to know its full path, which is of the
form:

akka.protocol://system@host:1234/user/my/actor/hierarchy/path

Observe all the parts you need here:

• protocol is the protocol to be used to communicate with the remote system. Most of the cases this is
tcp.

• system is the remote system’s name (must match exactly, case-sensitive!)

• host is the remote system’s IP address or DNS name, and it must match that system’s configuration (i.e.
akka.remote.netty.hostname)

• 1234 is the port number on which the remote system is listening for connections and receiving messages

• /user/my/actor/hierarchy/path is the absolute path of the remote actor in the remote system’s
supervision hierarchy, including the system’s guardian (i.e. /user, there are others e.g. /system which
hosts loggers, /temp which keeps temporary actor refs used with ask(), /remote which enables remote
deployment, etc.); this matches how the actor prints its own self reference on the remote host, e.g. in log
output.

Why are replies not received from a remote actor?

The most common reason is that the local system’s name (i.e. the system@host:1234 part in the answer
above) is not reachable from the remote system’s network location, e.g. because host was configured to be
0.0.0.0, localhost or a NAT’ed IP address.

How reliable is the message delivery?

The general rule is at-most-once delivery, i.e. no guaranteed delivery. Stronger reliability can be built on top,
and Akka provides tools to do so.

Read more in Message Delivery Reliability.

12.1.5 Debugging

How do I turn on debug logging?

To turn on debug logging in your actor system add the following to your configuration:

akka.loglevel = DEBUG

To enable different types of debug logging add the following to your configuration:

• akka.actor.debug.receive will log all messages sent to an actor if that actors receive method is a
LoggingReceive

• akka.actor.debug.autoreceive will log all special messages like Kill, PoisonPill e.t.c.
sent to all actors

• akka.actor.debug.lifecycle will log all actor lifecycle events of all actors

Read more about it in the docs for Logging and actor.logging-scala.

12.1. Frequently Asked Questions 417

Akka Java Documentation, Release 2.3.16

12.2 Books

• Akka in Action, by Raymond Roestenburg and Rob Bakker, Manning Publications Co., ISBN:
9781617291012, est fall 2013

• Akka Concurrency, by Derek Wyatt, artima developer, ISBN: 0981531660, est April 2013

• Akka Essentials, by Munish K. Gupta, PACKT Publishing, ISBN: 1849518289, October 2012

12.3 Other Language Bindings

12.3.1 JRuby

Read more here: https://github.com/iconara/mikka.

12.3.2 Groovy/Groovy++

Read more here: https://gist.github.com/620439.

12.3.3 Clojure

Read more here: http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/.

12.4 Akka in OSGi

12.4.1 Configuring the OSGi Framework

To use Akka in an OSGi environment, the org.osgi.framework.bootdelegation property must be set
to always delegate the sun.misc package to the boot classloader instead of resolving it through the normal OSGi
class space.

12.4.2 Activator

To bootstrap Akka inside an OSGi environment, you can use the akka.osgi.ActorSystemActivator
class to conveniently set up the ActorSystem.

import akka.actor.{ Props, ActorSystem }
import org.osgi.framework.BundleContext
import akka.osgi.ActorSystemActivator

class Activator extends ActorSystemActivator {

def configure(context: BundleContext, system: ActorSystem) {
// optionally register the ActorSystem in the OSGi Service Registry
registerService(context, system)

val someActor = system.actorOf(Props[SomeActor], name = "someName")
someActor ! SomeMessage

}

}

12.2. Books 418

http://typesafe.com/resources/e-book/akka-in-action
http://www.artima.com/shop/akka_concurrency
http://www.packtpub.com/akka-java-applications-essentials/book
https://github.com/iconara/mikka
https://gist.github.com/620439
http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/

Akka Java Documentation, Release 2.3.16

The ActorSystemActivator creates the actor system with a class loader that finds resources
(reference.conf files) and classes from the application bundle and all transitive dependencies.

The ActorSystemActivator class is included in the akka-osgi artifact:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-osgi_2.10</artifactId>
<version>2.3.16</version>

</dependency>

12.4.3 Sample

A complete sample project is provided in akka-sample-osgi-dining-hakkers.

12.5 Incomplete List of HTTP Frameworks

12.5.1 Play

The Play framework is built using Akka, and is well suited for building both full web applications as well as REST
services.

12.5.2 Spray

The Spray toolkit is built using Akka, and is a minimalistic HTTP/REST layer.

12.5.3 Akka Mist

If you are using Akka Mist (Akka’s old HTTP/REST module) with Akka 1.x and wish to upgrade to 2.x there is
now a port of Akka Mist to Akka 2.x. You can find it here.

12.5.4 Other Alternatives

There are a bunch of other alternatives for using Akka with HTTP/REST. You can find some of them among the
Community Projects.

12.5. Incomplete List of HTTP Frameworks 419

http://github.com/akka/akka/tree/v2.3.16/akka-samples/akka-sample-osgi-dining-hakkers
http://www.playframework.com
http://spray.io
https://github.com/thenewmotion/akka-http
http://akka.io/community

	Introduction
	What is Akka?
	Why Akka?
	Getting Started
	The Obligatory Hello World
	Use-case and Deployment Scenarios
	Examples of use-cases for Akka

	General
	Terminology, Concepts
	Actor Systems
	What is an Actor?
	Supervision and Monitoring
	Actor References, Paths and Addresses
	Location Transparency
	Akka and the Java Memory Model
	Message Delivery Reliability
	Configuration

	Actors
	Actors
	Typed Actors
	Fault Tolerance
	Dispatchers
	Mailboxes
	Routing
	Building Finite State Machine Actors
	Persistence
	Testing Actor Systems

	Actors (Java with Lambda Support)
	Actors (Java with Lambda Support)
	Fault Tolerance (Java with Lambda Support)
	FSM (Java with Lambda Support)
	Persistence (Java with Lambda Support)

	Futures and Agents
	Futures
	Agents

	Networking
	Cluster Specification
	Cluster Usage
	Remoting
	Serialization
	I/O
	Using TCP
	Using UDP
	ZeroMQ
	Camel

	Utilities
	Event Bus
	Logging
	Scheduler
	Duration
	Circuit Breaker
	Akka Extensions
	Microkernel

	HowTo: Common Patterns
	Scheduling Periodic Messages
	Single-Use Actor Trees with High-Level Error Reporting
	Template Pattern

	Experimental Modules
	Multi Node Testing
	External Contributions

	Information for Akka Developers
	Building Akka
	Multi JVM Testing
	I/O Layer Design
	Developer Guidelines
	Documentation Guidelines
	Team

	Project Information
	Migration Guides
	Issue Tracking
	Licenses
	Sponsors
	Project

	Additional Information
	Frequently Asked Questions
	Books
	Other Language Bindings
	Akka in OSGi
	Incomplete List of HTTP Frameworks

