
Scalaz Actors Lift Actors Scala Actors Akka Actors
Design philosophy

Minimal complexity.
Maximal generality,
modularity, and
extensibility.

Minimal complexity,
Garbage collection by JVM
rather than worrying about
an explicit lifecycle, error
handling behavior
consistent with other Scala
& Java programs,
lightweight/small memory
footprint, mailbox,
syntactically similar to Scala
Actors and Erlang actors,
high performance

Provide the full
Erlang actor model
in Scala,
lightweight/small
memory footprint

Simple and transparently distributable, high
performance, lightweight and highly adaptable

Versioning
Current stable version 5 2.1 2.8.1 0.10
Minimum Scala version 2.8 2.7.7 2.8
Minimum Java version 1.5 1.5 1.6
Actor Model Support
spawn new actors inside of actor Yes Yes Yes Yes
send messages to known actor Yes Yes Yes Yes

change behavior for next message Actors are immutable Yes
Yes: nested
react/receive Yes: become/unbecome

Supervision (link/trapExit) Not provided No
Actor: Yes,
Reactor: No Yes

Level of state isolation
If user defines public methods on
their Actors, are they callable from
the outside? n/a. Actor is a sealed trait Yes Yes No, actor instance is shielded behind an ActorRef
Actor type

Actor[A] extends A => ()
LiftActor, SpecializeLiftActor
[T]

Reactor[T], Actor
extends Reactor
[Any] Actor[Any]

Actor lifecycle management
Manual start No No Yes Yes
Manual stop No No No Yes
Restart-on-failure n/a Yes Yes Configurable per actor instance

Restart semantics N/A
Rerun actor
behavior

Restore actor to stable state by re-allocating it and
throw away the old instance

Restart configurability N/A N/A X times, X times within Y time
Lifecycle hooks provided No (no lifecycle) act preStart, postStop, preRestart, postRestart
Message send modes



Scalaz Actors Lift Actors Scala Actors Akka Actors

fire-forget
a ! message, or a
(message) actor ! msg actor ! msg actorRef ! message

send-receive-reply

Any function f becomes
such an actor: { val a: Msg
=> Promise[Rep] = f.
promise; val reply: Rep =
a(msg).get }

actor !? msg
actor !! msg actor !? msg actorRef !! message

send-receive-future

Any function f becomes
such an actor: { val a = f.
promise; val replyFuture =
a(message) } actor !! msg actorRef !!! message

send-result-of-future
promise(message).to
(actor) future.onComplete( f => to ! f.result )

compose actor with function

Contravariant functor:
actor comap f. Also Kleisli
composition in Promise No No No

Message reply modes

reply-to-sender-in-message
{ case (msg,replyTo) =>
replyTo ! replyMessage } N/A

{ case (msg,
replyTo) =>
replyTo !
replyMessage } { case (msg,replyTo) => replyTo ! replyMessage }

reply-to-message
Promote ordinary function
to Promise

{ case msg => reply
(response) }

{ case msg =>
reply(response) } { case msg => self reply replyMessage }

Message processing

Supports nested receives
Yes (with a little hand
coding)

Yes, both thread-
based receive and
event-based react

No, nesting receives can lead to memory leaks and
degraded performance over time.

Message Execution Mechanism
Name for Execution Mechanism Strategy java.util.Concurrent IScheduler Dispatcher
Execution Mechanism is
configurable Yes No Yes Yes
Execution Mechanism can be
specified on a per-actor basis Yes No Yes Yes
Lifecycle of Execution Mechanism
must be explicitly managed Depends on Strategy No

Depends on
IScheduler No

"thread-per-actor"-execution
mechanism

Use one Strategy per
actor with single-threaded
Strategy No

When calling
receive, thread
pool provides
thread of calling
actor

ThreadBasedDispatcher (deallocates backing Thread
after inactivity timeout)



Scalaz Actors Lift Actors Scala Actors Akka Actors

"event-driven"-execution mechanism Strategy.Executor
All Lift Actors are event
driven

Actors are event-
driven when no
thread-blocking
methods like
receive are used.

ExecutorBasedEventDrivenDispatcher,
HawtDispatcher,
ExecutorBasedEventDrivenWorkstealingDispatcher

Mailbox type

ConcurrentLinkedQueue
guarded by
CountdownLatch

custom implementation of a
doubly linked list that
requires very few locks to
access (no locks during
dispatch)

Custom linked list
that enables
optimizations in
the actor
implementation. Defined per Dispatcher, highly configurable

Supports transient mailboxes Yes Yes Yes Yes
Supports persistent mailboxes No No In commercial offering
Distribution/Remote Actors
Transparent remote actors N/A No Yes Yes

Transport protocol N/A N/A
Java serialization
on top of TCP Akka Remote Protocol (Protobuf on top of TCP)

Dynamic clustering N/A N/A N/A In commercial offering
Howtos

Define an actor
val messageHandler: T => ()
= t => action(t)

new MyActor extends
LiftActor {
def messageHandler =
{case x => }
}

class MyActor
extends Actor { def
act() { react { case
x => } } }

class MyActor extends Actor { def receive = { case
message => action } }

Create an actor instance actor(messageHandler) new MyActor new MyActor val myActor = actorOf[MyActor]

Start an actor instance

n/a -- no need to start or
stop an actor.  An actor
will always process
messages as long as you
have a JVM reference to it

n/a -- no need to start or
stop an actor.  An actor will
always process messages
as long as you have a JVM
reference to it myActor.start myActor.start

Stop an actor instance n/a

N/A -- no need to start or
stop an actor.  An actor will
always process messages
as long as you have a JVM
reference to it N/A myActor.stop


