
Akka Scala Documentation
Release 2.2.5

Typesafe Inc

February 19, 2015

CONTENTS

1 Introduction 1
1.1 What is Akka? . 1
1.2 Why Akka? . 3
1.3 Getting Started . 3
1.4 The Obligatory Hello World . 7
1.5 Use-case and Deployment Scenarios . 8
1.6 Examples of use-cases for Akka . 8

2 General 10
2.1 Terminology, Concepts . 10
2.2 Actor Systems . 12
2.3 What is an Actor? . 14
2.4 Supervision and Monitoring . 16
2.5 Actor References, Paths and Addresses . 19
2.6 Location Transparency . 25
2.7 Akka and the Java Memory Model . 26
2.8 Message Delivery Guarantees . 28
2.9 Configuration . 33

3 Actors 65
3.1 Actors . 65
3.2 Typed Channels (EXPERIMENTAL) . 84
3.3 Typed Actors . 93
3.4 Fault Tolerance . 97
3.5 Dispatchers . 109
3.6 Mailboxes . 112
3.7 Routing . 118
3.8 FSM . 130
3.9 Testing Actor Systems . 138

4 Futures and Agents 155
4.1 Futures . 155
4.2 Dataflow Concurrency . 161
4.3 Software Transactional Memory . 163
4.4 Agents . 164
4.5 Transactors . 167

5 Networking 171
5.1 Cluster Specification . 171
5.2 Cluster Usage . 179
5.3 Remoting . 203
5.4 Serialization . 223
5.5 I/O . 228
5.6 Encoding and decoding binary data . 237
5.7 Using TCP . 245

i

5.8 Using UDP . 254
5.9 ZeroMQ . 256
5.10 Camel . 260

6 Utilities 275
6.1 Event Bus . 275
6.2 Logging . 278
6.3 Scheduler . 283
6.4 Duration . 287
6.5 Circuit Breaker . 288
6.6 Akka Extensions . 291
6.7 Durable Mailboxes . 294
6.8 Microkernel . 297

7 HowTo: Common Patterns 301
7.1 Throttling Messages . 301
7.2 Balancing Workload Across Nodes . 301
7.3 Work Pulling Pattern to throttle and distribute work, and prevent mailbox overflow 301
7.4 Ordered Termination . 301
7.5 Akka AMQP Proxies . 302
7.6 Shutdown Patterns in Akka 2 . 302
7.7 Distributed (in-memory) graph processing with Akka . 302
7.8 Case Study: An Auto-Updating Cache Using Actors . 302
7.9 Discovering message flows in actor systems with the Spider Pattern 302
7.10 Scheduling Periodic Messages . 303
7.11 Template Pattern . 304

8 Experimental Modules 305
8.1 Multi Node Testing . 305
8.2 External Contributions . 310

9 Information for Akka Developers 330
9.1 Building Akka . 330
9.2 Multi JVM Testing . 332
9.3 I/O Layer Design . 336
9.4 Developer Guidelines . 337
9.5 Documentation Guidelines . 339
9.6 Team . 341

10 Project Information 342
10.1 Migration Guides . 342
10.2 Issue Tracking . 348
10.3 Licenses . 349
10.4 Sponsors . 349
10.5 Project . 349

11 Additional Information 352
11.1 Books . 352
11.2 Here is a list of recipes for all things Akka . 352
11.3 Other Language Bindings . 352
11.4 Akka in OSGi . 352
11.5 Incomplete List of HTTP Frameworks . 353

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Akka?

Scalable real-time transaction processing

We believe that writing correct concurrent, fault-tolerant and scalable applications is too hard. Most of the time it’s
because we are using the wrong tools and the wrong level of abstraction. Akka is here to change that. Using the
Actor Model we raise the abstraction level and provide a better platform to build correct, concurrent, and scalable
applications. For fault-tolerance we adopt the “Let it crash” model which the telecom industry has used with great
success to build applications that self-heal and systems that never stop. Actors also provide the abstraction for
transparent distribution and the basis for truly scalable and fault-tolerant applications.

Akka is Open Source and available under the Apache 2 License.

Download from http://typesafe.com/stack/downloads/akka/

Please note that all code samples compile, so if you want direct access to the sources, have a look over at the Akka
Docs Project.

1.1.1 Akka implements a unique hybrid

Actors

Actors give you:

• Simple and high-level abstractions for concurrency and parallelism.

• Asynchronous, non-blocking and highly performant event-driven programming model.

• Very lightweight event-driven processes (approximately 2.7 million actors per GB RAM).

See Actors (Scala) and Untyped Actors (Java)

Fault Tolerance

• Supervisor hierarchies with “let-it-crash” semantics.

• Supervisor hierarchies can span over multiple JVMs to provide truly fault-tolerant systems.

• Excellent for writing highly fault-tolerant systems that self-heal and never stop.

See Fault Tolerance (Scala) and Fault Tolerance (Java)

Location Transparency

Everything in Akka is designed to work in a distributed environment: all interactions of actors use pure message
passing and everything is asynchronous.

For an overview of the remoting see Location Transparency

1

http://typesafe.com/stack/downloads/akka/
http://github.com/akka/akka/tree/v2.2.5/akka-docs/rst
http://github.com/akka/akka/tree/v2.2.5/akka-docs/rst

Akka Scala Documentation, Release 2.2.5

Transactors

Transactors combine actors and Software Transactional Memory (STM) into transactional actors. It allows you to
compose atomic message flows with automatic retry and rollback.

See Transactors (Scala) and Transactors (Java)

1.1.2 Scala and Java APIs

Akka has both a Scala Documentation and a java-api.

1.1.3 Akka can be used in two different ways

• As a library: used by a web app, to be put into WEB-INF/lib or as a regular JAR on your classpath.

• As a microkernel: stand-alone kernel to drop your application into.

See the Use-case and Deployment Scenarios for details.

1.1.4 What happened to Cloudy Akka?

The commercial offering was earlier referred to as Cloudy Akka. This offering consisted of two things:

• Cluster support for Akka

• Monitoring & Management (formerly called Atmos)

Cloudy Akka has been discontinued and the Cluster support is now being moved into the Open Source version of
Akka (the upcoming Akka 2.1), while Monitoring & Management (Atmos) has been re-branded as the Typesafe
Console, which is now part of the commercial subscription for the Typesafe Stack (see below for details).

1.1.5 Typesafe Stack

Akka is now also part of the Typesafe Stack.

The Typesafe Stack is a modern software platform that makes it easy for developers to build scalable software
applications. It combines the Scala programming language, Akka, the Play! web framework and robust developer
tools in a simple package that integrates seamlessly with existing Java infrastructure.

The Typesafe Stack is all fully open source.

1.1.6 Typesafe Console

On top of the Typesafe Stack we also have a commercial product called Typesafe Console which provides the
following features:

1. Slick Web UI with real-time view into the system

2. Management through Dashboard, JMX and REST

3. Dapper-style tracing of messages across components and remote nodes

4. Real-time statistics

5. Very low overhead monitoring agents (should always be on in production)

6. Consolidation of statistics and logging information to a single node

7. Storage of statistics data for later processing

8. Provisioning and rolling upgrades

Read more here.

1.1. What is Akka? 2

http://typesafe.com/stack
http://typesafe.com/products/typesafe-subscription

Akka Scala Documentation, Release 2.2.5

1.2 Why Akka?

1.2.1 What features can the Akka platform offer, over the competition?

Akka provides scalable real-time transaction processing.

Akka is an unified runtime and programming model for:

• Scale up (Concurrency)

• Scale out (Remoting)

• Fault tolerance

One thing to learn and admin, with high cohesion and coherent semantics.

Akka is a very scalable piece of software, not only in the context of performance but also in the size of applications
it is useful for. The core of Akka, akka-actor, is very small and easily dropped into an existing project where you
need asynchronicity and lockless concurrency without hassle.

You can choose to include only the parts of akka you need in your application and then there’s the whole package,
the Akka Microkernel, which is a standalone container to deploy your Akka application in. With CPUs growing
more and more cores every cycle, Akka is the alternative that provides outstanding performance even if you’re
only running it on one machine. Akka also supplies a wide array of concurrency-paradigms, allowing users to
choose the right tool for the job.

1.2.2 What’s a good use-case for Akka?

We see Akka being adopted by many large organizations in a big range of industries:

• Investment and Merchant Banking

• Retail

• Social Media

• Simulation

• Gaming and Betting

• Automobile and Traffic Systems

• Health Care

• Data Analytics

and much more. Any system with the need for high-throughput and low latency is a good candidate for using
Akka.

Actors let you manage service failures (Supervisors), load management (back-off strategies, timeouts and
processing-isolation), as well as both horizontal and vertical scalability (add more cores and/or add more ma-
chines).

Here’s what some of the Akka users have to say about how they are using Akka:
http://stackoverflow.com/questions/4493001/good-use-case-for-akka

All this in the ApacheV2-licensed open source project.

1.3 Getting Started

1.3.1 Prerequisites

Akka requires that you have Java 1.6 or later installed on you machine.

1.2. Why Akka? 3

http://stackoverflow.com/questions/4493001/good-use-case-for-akka
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Akka Scala Documentation, Release 2.2.5

1.3.2 Getting Started Guides and Template Projects

The best way to start learning Akka is to download Typesafe Activator and try out one of Akka Template Projects.

1.3.3 Download

There are several ways to download Akka. You can download it as part of the Typesafe Platform (as described
above). You can download the full distribution with microkernel, which includes all modules. Or you can use a
build tool like Maven or SBT to download dependencies from the Akka Maven repository.

1.3.4 Modules

Akka is very modular and consists of several JARs containing different features.

• akka-actor – Classic Actors, Typed Actors, IO Actor etc.

• akka-agent – Agents, integrated with Scala STM

• akka-camel – Apache Camel integration

• akka-cluster – Cluster membership management, elastic routers.

• akka-dataflow – add-on to SIP-14 futures supporting implicit continuation-passing style

• akka-file-mailbox – Akka durable mailbox (find more among community projects)

• akka-kernel – Akka microkernel for running a bare-bones mini application server

• akka-mailboxes-common – common infrastructure for implementing durable mailboxes

• akka-osgi – base bundle for using Akka in OSGi containers, containing the akka-actor classes

• akka-osgi-aries – Aries blueprint for provisioning actor systems

• akka-remote – Remote Actors

• akka-slf4j – SLF4J Logger (event bus listener)

• akka-testkit – Toolkit for testing Actor systems

• akka-transactor – Transactors - transactional actors, integrated with Scala STM

• akka-zeromq – ZeroMQ integration

In addition to these stable modules there are several which are on their way into the stable core but are still marked
“experimental” at this point. This does not mean that they do not function as intended, it primarily means that
their API has not yet solidified enough in order to be considered frozen. You can help accelerating this process by
giving feedback on these modules on our mailing list.

• akka-channels-experimental – Typed Channels on top of untyped Actors, using Scala 2.10
macros

• akka-contrib – an assortment of contributions which may or may not be moved into core modules, see
External Contributions for more details.

The filename of the actual JAR is for example akka-actor_2.10-2.2.5.jar (and analog for the other
modules).

How to see the JARs dependencies of each Akka module is described in the Dependencies section.

1.3.5 Using a release distribution

Download the release you need from http://typesafe.com/stack/downloads/akka and unzip it.

1.3. Getting Started 4

http://typesafe.com/platform/getstarted
http://typesafe.com/stack/downloads/akka

Akka Scala Documentation, Release 2.2.5

1.3.6 Using a snapshot version

The Akka nightly snapshots are published to http://repo.akka.io/snapshots/ and are versioned with both
SNAPSHOT and timestamps. You can choose a timestamped version to work with and can de-
cide when to update to a newer version. The Akka snapshots repository is also proxied through
http://repo.typesafe.com/typesafe/snapshots/ which includes proxies for several other repositories that Akka mod-
ules depend on.

Warning: The use of Akka SNAPSHOTs, nightlies and milestone releases is discouraged unless you know
what you are doing.

1.3.7 Microkernel

The Akka distribution includes the microkernel. To run the microkernel put your application jar in the deploy
directory and use the scripts in the bin directory.

More information is available in the documentation of the Microkernel (Scala) / Microkernel (Java).

1.3.8 Using a build tool

Akka can be used with build tools that support Maven repositories.

1.3.9 Maven repositories

For Akka version 2.1-M2 and onwards:

Maven Central

For previous Akka versions:

Akka Repo Typesafe Repo

1.3.10 Using Akka with Maven

The simplest way to get started with Akka and Maven is to check out the Akka/Maven template project.

Since Akka is published to Maven Central (for versions since 2.1-M2), is it enough to add the Akka dependencies
to the POM. For example, here is the dependency for akka-actor:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_2.10</artifactId>
<version>2.2.5</version>

</dependency>

Note: for snapshot versions both SNAPSHOT and timestamped versions are published.

1.3.11 Using Akka with SBT

The simplest way to get started with Akka and SBT is to check out the Akka/SBT template project.

Summary of the essential parts for using Akka with SBT:

SBT installation instructions on https://github.com/harrah/xsbt/wiki/Setup

build.sbt file:

1.3. Getting Started 5

http://repo.akka.io/snapshots/
http://repo.typesafe.com/typesafe/snapshots/
http://repo1.maven.org/maven2/
http://repo.akka.io/releases/
http://repo.typesafe.com/typesafe/releases/
http://typesafe.com/resources/getting-started/typesafe-stack/downloading-installing.html#template-projects-for-scala-akka-and-play
http://typesafe.com/resources/getting-started/typesafe-stack/downloading-installing.html#template-projects-for-scala-akka-and-play
https://github.com/harrah/xsbt/wiki/Setup

Akka Scala Documentation, Release 2.2.5

name := "My Project"

version := "1.0"

scalaVersion := "2.10.2"

resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies +=
"com.typesafe.akka" %% "akka-actor" % "2.2.5"

Note: the libraryDependencies setting above is specific to SBT v0.12.x and higher. If you are using an older
version of SBT, the libraryDependencies should look like this:

libraryDependencies +=
"com.typesafe.akka" % "akka-actor_2.10" % "2.2.5"

1.3.12 Using Akka with Gradle

Requires at least Gradle 1.4 Uses the Scala plugin

apply plugin: 'scala'

repositories {
mavenCentral()

}

dependencies {
compile 'org.scala-lang:scala-library:2.10.2'

}

tasks.withType(ScalaCompile) {
scalaCompileOptions.useAnt = false

}

dependencies {
compile group: 'com.typesafe.akka', name: 'akka-actor_2.10', version: '2.2.5'
compile group: 'org.scala-lang', name: 'scala-library', version: '2.10.2'

}

1.3.13 Using Akka with Eclipse

Setup SBT project and then use sbteclipse to generate a Eclipse project.

1.3.14 Using Akka with IntelliJ IDEA

Setup SBT project and then use sbt-idea to generate a IntelliJ IDEA project.

1.3.15 Using Akka with NetBeans

Setup SBT project and then use sbt-netbeans-plugin to generate a NetBeans project.

1.3. Getting Started 6

http://gradle.org
http://gradle.org/docs/current/userguide/scala_plugin.html
https://github.com/typesafehub/sbteclipse
https://github.com/mpeltonen/sbt-idea
https://github.com/remeniuk/sbt-netbeans-plugin

Akka Scala Documentation, Release 2.2.5

1.3.16 Do not use -optimize Scala compiler flag

Warning: Akka has not been compiled or tested with -optimize Scala compiler flag. Strange behavior has
been reported by users that have tried it.

1.3.17 Build from sources

Akka uses Git and is hosted at Github.

• Akka: clone the Akka repository from http://github.com/akka/akka

Continue reading the page on Building Akka

1.3.18 Need help?

If you have questions you can get help on the Akka Mailing List.

You can also ask for commercial support.

Thanks for being a part of the Akka community.

1.4 The Obligatory Hello World

Since every programming paradigm needs to solve the tough problem of printing a well-known greeting to the
console we’ll introduce you to the actor-based version.

import akka.actor.Actor
import akka.actor.Props

class HelloWorld extends Actor {

override def preStart(): Unit = {
// create the greeter actor
val greeter = context.actorOf(Props[Greeter], "greeter")
// tell it to perform the greeting
greeter ! Greeter.Greet

}

def receive = {
// when the greeter is done, stop this actor and with it the application
case Greeter.Done ⇒ context.stop(self)

}
}

The HelloWorld actor is the application’s “main” class; when it terminates the application will shut
down—more on that later. The main business logic happens in the preStart method, where a Greeter
actor is created and instructed to issue that greeting we crave for. When the greeter is done it will tell us so by
sending back a message, and when that message has been received it will be passed into the behavior described by
the receive method where we can conclude the demonstration by stopping the HelloWorld actor. You will
be very curious to see how the Greeter actor performs the actual task:

object Greeter {
case object Greet
case object Done

}

class Greeter extends Actor {
def receive = {

1.4. The Obligatory Hello World 7

http://github.com
http://github.com/akka/akka
http://groups.google.com/group/akka-user
http://typesafe.com

Akka Scala Documentation, Release 2.2.5

case Greeter.Greet ⇒
println("Hello World!")
sender ! Greeter.Done

}
}

This is extremely simple now: after its creation this actor will not do anything until someone sends it a message,
and if that happens to be an invitation to greet the world then the Greeter complies and informs the requester
that the deed has been done.

As a Scala developer you will probably want to tell us that there is no main(Array[String]) method any-
where in these classes, so how do we run this program? The answer is that the appropriate main method is
implemented in the generic launcher class akka.Main which expects only one command line argument: the
class name of the application’s main actor. This main method will then create the infrastructure needed for run-
ning the actors, start the given main actor and arrange for the whole application to shut down once the main actor
terminates. Thus you will be able to run the above code with a command similar to the following:

java -classpath <all those JARs> akka.Main com.example.HelloWorld

This conveniently assumes placement of the above class definitions in package com.example and it further
assumes that you have the required JAR files for scala-library and akka-actor available. The easiest
would be to manage these dependencies with a build tool, see Using a build tool.

1.5 Use-case and Deployment Scenarios

1.5.1 How can I use and deploy Akka?

Akka can be used in different ways:

• As a library: used as a regular JAR on the classpath and/or in a web app, to be put into WEB-INF/lib

• As a stand alone application by instantiating ActorSystem in a main class or using the Microkernel (Scala)
/ Microkernel (Java)

Using Akka as library

This is most likely what you want if you are building Web applications. There are several ways you can use Akka
in Library mode by adding more and more modules to the stack.

Using Akka as a stand alone microkernel

Akka can also be run as a stand-alone microkernel. See Microkernel (Scala) / Microkernel (Java) for more infor-
mation.

1.6 Examples of use-cases for Akka

We see Akka being adopted by many large organizations in a big range of industries all from investment and
merchant banking, retail and social media, simulation, gaming and betting, automobile and traffic systems, health
care, data analytics and much more. Any system that have the need for high-throughput and low latency is a good
candidate for using Akka.

There is a great discussion on use-cases for Akka with some good write-ups by production users here

1.5. Use-case and Deployment Scenarios 8

http://stackoverflow.com/questions/4493001/good-use-case-for-akka/4494512#4494512

Akka Scala Documentation, Release 2.2.5

1.6.1 Here are some of the areas where Akka is being deployed into production

Transaction processing (Online Gaming, Finance/Banking, Trading, Statistics, Betting, Social
Media, Telecom)

Scale up, scale out, fault-tolerance / HA

Service backend (any industry, any app)

Service REST, SOAP, Cometd, WebSockets etc Act as message hub / integration layer Scale up, scale
out, fault-tolerance / HA

Concurrency/parallelism (any app)

Correct Simple to work with and understand Just add the jars to your existing JVM project (use Scala,
Java, Groovy or JRuby)

Simulation

Master/Worker, Compute Grid, MapReduce etc.

Batch processing (any industry)

Camel integration to hook up with batch data sources Actors divide and conquer the batch workloads

Communications Hub (Telecom, Web media, Mobile media)

Scale up, scale out, fault-tolerance / HA

Gaming and Betting (MOM, online gaming, betting)

Scale up, scale out, fault-tolerance / HA

Business Intelligence/Data Mining/general purpose crunching

Scale up, scale out, fault-tolerance / HA

Complex Event Stream Processing

Scale up, scale out, fault-tolerance / HA

1.6. Examples of use-cases for Akka 9

CHAPTER

TWO

GENERAL

2.1 Terminology, Concepts

In this chapter we attempt to establish a common terminology to define a solid ground for communicating about
concurrent, distributed systems which Akka targets. Please note that, for many of these terms, there is no sin-
gle agreed definition. We simply seek to give working definitions that will be used in the scope of the Akka
documentation.

2.1.1 Concurrency vs. Parallelism

Concurrency and parallelism are related concepts, but there are small differences. Concurrency means that two or
more tasks are making progress even though they might not be executing simultaneously. This can for example
be realized with time slicing where parts of tasks are executed sequentially and mixed with parts of other tasks.
Parallelism on the other hand arise when the execution can be truly simultaneous.

2.1.2 Asynchronous vs. Synchronous

A method call is considered synchronous if the caller cannot make progress until the method returns a value or
throws an exception. On the other hand, an asynchronous call allows the caller to progress after a finite number of
steps, and the completion of the method may be signalled via some additional mechanism (it might be a registered
callback, a Future, or a message).

A synchronous API may use blocking to implement synchrony, but this is not a necessity. A very CPU intensive
task might give a similar behavior as blocking. In general, it is preferred to use asynchronous APIs, as they
guarantee that the system is able to progress. Actors are asynchronous by nature: an actor can progress after a
message send without waiting for the actual delivery to happen.

2.1.3 Non-blocking vs. Blocking

We talk about blocking if the delay of one thread can indefinitely delay some of the other threads. A good example
is a resource which can be used exclusively by one thread using mutual exclusion. If a thread holds on to the
resource indefinitely (for example accidentally running an infinite loop) other threads waiting on the resource can
not progress. In contrast, non-blocking means that no thread is able to indefinitely delay others.

Non-blocking operations are preferred to blocking ones, as the overall progress of the system is not trivially
guaranteed when it contains blocking operations.

2.1.4 Deadlock vs. Starvation vs. Live-lock

Deadlock arises when several participants are waiting on each other to reach a specific state to be able to progress.
As none of them can progress without some other participant to reach a certain state (a “Catch-22” problem) all
affected subsystems stall. Deadlock is closely related to blocking, as it is necessary that a participant thread be
able to delay the progression of other threads indefinitely.

10

Akka Scala Documentation, Release 2.2.5

In the case of deadlock, no participants can make progress, while in contrast Starvation happens, when there are
participants that can make progress, but there might be one or more that cannot. Typical scenario is the case
of a naive scheduling algorithm that always selects high-priority tasks over low-priority ones. If the number of
incoming high-priority tasks is constantly high enough, no low-priority ones will be ever finished.

Livelock is similar to deadlock as none of the participants make progress. The difference though is that instead
of being frozen in a state of waiting for others to progress, the participants continuously change their state. An
example scenario when two participants have two identical resources available. They each try to get the resource,
but they also check if the other needs the resource, too. If the resource is requested by the other participant, they
try to get the other instance of the resource. In the unfortunate case it might happen that the two participants
“bounce” between the two resources, never acquiring it, but always yielding to the other.

2.1.5 Race Condition

We call it a Race condition when an assumption about the ordering of a set of events might be violated by external
non-deterministic effects. Race conditions often arise when multiple threads have a shared mutable state, and the
operations of thread on the state might be interleaved causing unexpected behavior. While this is a common case,
shared state is not necessary to have race conditions. One example could be a client sending unordered packets
(e.g UDP datagrams) P1, P2 to a server. As the packets might potentially travel via different network routes, it
is possible that the server receives P2 first and P1 afterwards. If the messages contain no information about their
sending order it is impossible to determine by the server that they were sent in a different order. Depending on the
meaning of the packets this can cause race conditions.

Note: The only guarantee that Akka provides about messages sent between a given pair of actors is that their
order is always preserved. see Message Delivery Guarantees

2.1.6 Non-blocking Guarantees (Progress Conditions)

As discussed in the previous sections blocking is undesirable for several reasons, including the dangers of dead-
locks and reduced throughput in the system. In the following sections we discuss various non-blocking properties
with different strength.

Wait-freedom

A method is wait-free if every call is guaranteed to finish in a finite number of steps. If a method is bounded
wait-free then the number of steps has a finite upper bound.

From this definition it follows that wait-free methods are never blocking, therefore deadlock can not happen.
Additionally, as each participant can progress after a finite number of steps (when the call finishes), wait-free
methods are free of starvation.

Lock-freedom

Lock-freedom is a weaker property than wait-freedom. In the case of lock-free calls, infinitely often some method
finishes in a finite number of steps. This definition implies that no deadlock is possible for lock-free calls. On the
other hand, the guarantee that some call finishes in a finite number of steps is not enough to guarantee that all of
them eventually finish. In other words, lock-freedom is not enough to guarantee the lack of starvation.

Obstruction-freedom

Obstruction-freedom is the weakest non-blocking guarantee discussed here. A method is called obstruction-free if
there is a point in time after which it executes in isolation (other threads make no steps, e.g.: become suspended),
it finishes in a bounded number of steps. All lock-free objects are obstruction-free, but the opposite is generally
not true.

2.1. Terminology, Concepts 11

Akka Scala Documentation, Release 2.2.5

Optimistic concurrency control (OCC) methods are usually obstruction-free. The OCC approach is that every
participant tries to execute its operation on the shared object, but if a participant detects conflicts from others, it
rolls back the modifications, and tries again according to some schedule. If there is a point in time, where one of
the participants is the only one trying, the operation will succeed.

2.1.7 Recommended literature

• The Art of Multiprocessor Programming, M. Herlihy and N Shavit, 2008. ISBN 978-0123705914

• Java Concurrency in Practice, B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes and D. Lea, 2006.
ISBN 978-0321349606

2.2 Actor Systems

Actors are objects which encapsulate state and behavior, they communicate exclusively by exchanging messages
which are placed into the recipient’s mailbox. In a sense, actors are the most stringent form of object-oriented
programming, but it serves better to view them as persons: while modeling a solution with actors, envision a group
of people and assign sub-tasks to them, arrange their functions into an organizational structure and think about
how to escalate failure (all with the benefit of not actually dealing with people, which means that we need not
concern ourselves with their emotional state or moral issues). The result can then serve as a mental scaffolding for
building the software implementation.

Note: An ActorSystem is a heavyweight structure that will allocate 1. . . N Threads, so create one per logical
application.

2.2.1 Hierarchical Structure

Like in an economic organization, actors naturally form hierarchies. One actor, which is to oversee a certain
function in the program might want to split up its task into smaller, more manageable pieces. For this purpose it
starts child actors which it supervises. While the details of supervision are explained here, we shall concentrate on
the underlying concepts in this section. The only prerequisite is to know that each actor has exactly one supervisor,
which is the actor that created it.

The quintessential feature of actor systems is that tasks are split up and delegated until they become small enough
to be handled in one piece. In doing so, not only is the task itself clearly structured, but the resulting actors can
be reasoned about in terms of which messages they should process, how they should react normally and how
failure should be handled. If one actor does not have the means for dealing with a certain situation, it sends a
corresponding failure message to its supervisor, asking for help. The recursive structure then allows to handle
failure at the right level.

Compare this to layered software design which easily devolves into defensive programming with the aim of not
leaking any failure out: if the problem is communicated to the right person, a better solution can be found than if
trying to keep everything “under the carpet”.

Now, the difficulty in designing such a system is how to decide who should supervise what. There is of course no
single best solution, but there are a few guidelines which might be helpful:

• If one actor manages the work another actor is doing, e.g. by passing on sub-tasks, then the manager should
supervise the child. The reason is that the manager knows which kind of failures are expected and how to
handle them.

• If one actor carries very important data (i.e. its state shall not be lost if avoidable), this actor should source
out any possibly dangerous sub-tasks to children it supervises and handle failures of these children as ap-
propriate. Depending on the nature of the requests, it may be best to create a new child for each request,
which simplifies state management for collecting the replies. This is known as the “Error Kernel Pattern”
from Erlang.

2.2. Actor Systems 12

Akka Scala Documentation, Release 2.2.5

• If one actor depends on another actor for carrying out its duty, it should watch that other actor’s liveness
and act upon receiving a termination notice. This is different from supervision, as the watching party has
no influence on the supervisor strategy, and it should be noted that a functional dependency alone is not a
criterion for deciding where to place a certain child actor in the hierarchy.

There are of course always exceptions to these rules, but no matter whether you follow the rules or break them,
you should always have a reason.

2.2.2 Configuration Container

The actor system as a collaborating ensemble of actors is the natural unit for managing shared facilities like
scheduling services, configuration, logging, etc. Several actor systems with different configuration may co-exist
within the same JVM without problems, there is no global shared state within Akka itself. Couple this with the
transparent communication between actor systems—within one node or across a network connection—to see that
actor systems themselves can be used as building blocks in a functional hierarchy.

2.2.3 Actor Best Practices

1. Actors should be like nice co-workers: do their job efficiently without bothering everyone else needlessly
and avoid hogging resources. Translated to programming this means to process events and generate re-
sponses (or more requests) in an event-driven manner. Actors should not block (i.e. passively wait while
occupying a Thread) on some external entity—which might be a lock, a network socket, etc.—unless it is
unavoidable; in the latter case see below.

2. Do not pass mutable objects between actors. In order to ensure that, prefer immutable messages. If the
encapsulation of actors is broken by exposing their mutable state to the outside, you are back in normal Java
concurrency land with all the drawbacks.

3. Actors are made to be containers for behavior and state, embracing this means to not routinely send behavior
within messages (which may be tempting using Scala closures). One of the risks is to accidentally share
mutable state between actors, and this violation of the actor model unfortunately breaks all the properties
which make programming in actors such a nice experience.

4. Top-level actors are the innermost part of your Error Kernel, so create them sparingly and prefer truly
hierarchical systems. This has benefits with respect to fault-handling (both considering the granularity of
configuration and the performance) and it also reduces the strain on the guardian actor, which is a single
point of contention if over-used.

2.2.4 Blocking Needs Careful Management

In some cases it is unavoidable to do blocking operations, i.e. to put a thread to sleep for an indeterminate
time, waiting for an external event to occur. Examples are legacy RDBMS drivers or messaging APIs, and the
underlying reason is typically that (network) I/O occurs under the covers. When facing this, you may be tempted
to just wrap the blocking call inside a Future and work with that instead, but this strategy is too simple: you are
quite likely to find bottlenecks or run out of memory or threads when the application runs under increased load.

The non-exhaustive list of adequate solutions to the “blocking problem” includes the following suggestions:

• Do the blocking call within an actor (or a set of actors managed by a router [Java, Scala]), making sure to
configure a thread pool which is either dedicated for this purpose or sufficiently sized.

• Do the blocking call within a Future, ensuring an upper bound on the number of such calls at any point in
time (submitting an unbounded number of tasks of this nature will exhaust your memory or thread limits).

• Do the blocking call within a Future, providing a thread pool with an upper limit on the number of threads
which is appropriate for the hardware on which the application runs.

• Dedicate a single thread to manage a set of blocking resources (e.g. a NIO selector driving multiple chan-
nels) and dispatch events as they occur as actor messages.

2.2. Actor Systems 13

Akka Scala Documentation, Release 2.2.5

The first possibility is especially well-suited for resources which are single-threaded in nature, like database han-
dles which traditionally can only execute one outstanding query at a time and use internal synchronization to
ensure this. A common pattern is to create a router for N actors, each of which wraps a single DB connection and
handles queries as sent to the router. The number N must then be tuned for maximum throughput, which will vary
depending on which DBMS is deployed on what hardware.

Note: Configuring thread pools is a task best delegated to Akka, simply configure in the application.conf
and instantiate through an ActorSystem [Java, Scala]

2.2.5 What you should not concern yourself with

An actor system manages the resources it is configured to use in order to run the actors which it contains. There
may be millions of actors within one such system, after all the mantra is to view them as abundant and they
weigh in at an overhead of only roughly 300 bytes per instance. Naturally, the exact order in which messages are
processed in large systems is not controllable by the application author, but this is also not intended. Take a step
back and relax while Akka does the heavy lifting under the hood.

2.3 What is an Actor?

The previous section about Actor Systems explained how actors form hierarchies and are the smallest unit when
building an application. This section looks at one such actor in isolation, explaining the concepts you encounter
while implementing it. For a more in depth reference with all the details please refer to Actors (Scala) and Untyped
Actors (Java).

An actor is a container for State, Behavior, a Mailbox, Children and a Supervisor Strategy. All of this is encapsu-
lated behind an Actor Reference. Finally, this happens When an Actor Terminates.

2.3.1 Actor Reference

As detailed below, an actor object needs to be shielded from the outside in order to benefit from the actor model.
Therefore, actors are represented to the outside using actor references, which are objects that can be passed around
freely and without restriction. This split into inner and outer object enables transparency for all the desired
operations: restarting an actor without needing to update references elsewhere, placing the actual actor object on
remote hosts, sending messages to actors in completely different applications. But the most important aspect is
that it is not possible to look inside an actor and get hold of its state from the outside, unless the actor unwisely
publishes this information itself.

2.3.2 State

Actor objects will typically contain some variables which reflect possible states the actor may be in. This can be
an explicit state machine (e.g. using the FSM module), or it could be a counter, set of listeners, pending requests,
etc. These data are what make an actor valuable, and they must be protected from corruption by other actors. The
good news is that Akka actors conceptually each have their own light-weight thread, which is completely shielded
from the rest of the system. This means that instead of having to synchronize access using locks you can just write
your actor code without worrying about concurrency at all.

Behind the scenes Akka will run sets of actors on sets of real threads, where typically many actors share one
thread, and subsequent invocations of one actor may end up being processed on different threads. Akka ensures
that this implementation detail does not affect the single-threadedness of handling the actor’s state.

Because the internal state is vital to an actor’s operations, having inconsistent state is fatal. Thus, when the actor
fails and is restarted by its supervisor, the state will be created from scratch, like upon first creating the actor. This
is to enable the ability of self-healing of the system.

2.3. What is an Actor? 14

Akka Scala Documentation, Release 2.2.5

2.3.3 Behavior

Every time a message is processed, it is matched against the current behavior of the actor. Behavior means a
function which defines the actions to be taken in reaction to the message at that point in time, say forward a
request if the client is authorized, deny it otherwise. This behavior may change over time, e.g. because different
clients obtain authorization over time, or because the actor may go into an “out-of-service” mode and later come
back. These changes are achieved by either encoding them in state variables which are read from the behavior
logic, or the function itself may be swapped out at runtime, see the become and unbecome operations. However,
the initial behavior defined during construction of the actor object is special in the sense that a restart of the actor
will reset its behavior to this initial one.

2.3.4 Mailbox

An actor’s purpose is the processing of messages, and these messages were sent to the actor from other actors (or
from outside the actor system). The piece which connects sender and receiver is the actor’s mailbox: each actor
has exactly one mailbox to which all senders enqueue their messages. Enqueuing happens in the time-order of
send operations, which means that messages sent from different actors may not have a defined order at runtime
due to the apparent randomness of distributing actors across threads. Sending multiple messages to the same target
from the same actor, on the other hand, will enqueue them in the same order.

There are different mailbox implementations to choose from, the default being a FIFO: the order of the messages
processed by the actor matches the order in which they were enqueued. This is usually a good default, but
applications may need to prioritize some messages over others. In this case, a priority mailbox will enqueue not
always at the end but at a position as given by the message priority, which might even be at the front. While using
such a queue, the order of messages processed will naturally be defined by the queue’s algorithm and in general
not be FIFO.

An important feature in which Akka differs from some other actor model implementations is that the current
behavior must always handle the next dequeued message, there is no scanning the mailbox for the next matching
one. Failure to handle a message will typically be treated as a failure, unless this behavior is overridden.

2.3.5 Children

Each actor is potentially a supervisor: if it creates children for delegating sub-tasks, it will automatically supervise
them. The list of children is maintained within the actor’s context and the actor has access to it. Modifications to
the list are done by creating (context.actorOf(...)) or stopping (context.stop(child)) children
and these actions are reflected immediately. The actual creation and termination actions happen behind the scenes
in an asynchronous way, so they do not “block” their supervisor.

2.3.6 Supervisor Strategy

The final piece of an actor is its strategy for handling faults of its children. Fault handling is then done transparently
by Akka, applying one of the strategies described in Supervision and Monitoring for each incoming failure. As
this strategy is fundamental to how an actor system is structured, it cannot be changed once an actor has been
created.

Considering that there is only one such strategy for each actor, this means that if different strategies apply to
the various children of an actor, the children should be grouped beneath intermediate supervisors with matching
strategies, preferring once more the structuring of actor systems according to the splitting of tasks into sub-tasks.

2.3.7 When an Actor Terminates

Once an actor terminates, i.e. fails in a way which is not handled by a restart, stops itself or is stopped by its
supervisor, it will free up its resources, draining all remaining messages from its mailbox into the system’s “dead
letter mailbox” which will forward them to the EventStream as DeadLetters. The mailbox is then replaced within

2.3. What is an Actor? 15

Akka Scala Documentation, Release 2.2.5

the actor reference with a system mailbox, redirecting all new messages to the EventStream as DeadLetters. This
is done on a best effort basis, though, so do not rely on it in order to construct “guaranteed delivery”.

The reason for not just silently dumping the messages was inspired by our tests: we register the TestEventLis-
tener on the event bus to which the dead letters are forwarded, and that will log a warning for every dead letter
received—this has been very helpful for deciphering test failures more quickly. It is conceivable that this feature
may also be of use for other purposes.

2.4 Supervision and Monitoring

This chapter outlines the concept behind supervision, the primitives offered and their semantics. For details on
how that translates into real code, please refer to the corresponding chapters for Scala and Java APIs.

2.4.1 What Supervision Means

As described in Actor Systems supervision describes a dependency relationship between actors: the supervisor
delegates tasks to subordinates and therefore must respond to their failures. When a subordinate detects a failure
(i.e. throws an exception), it suspends itself and all its subordinates and sends a message to its supervisor, signaling
failure. Depending on the nature of the work to be supervised and the nature of the failure, the supervisor has a
choice of the following four options:

1. Resume the subordinate, keeping its accumulated internal state

2. Restart the subordinate, clearing out its accumulated internal state

3. Terminate the subordinate permanently

4. Escalate the failure, thereby failing itself

It is important to always view an actor as part of a supervision hierarchy, which explains the existence of the fourth
choice (as a supervisor also is subordinate to another supervisor higher up) and has implications on the first three:
resuming an actor resumes all its subordinates, restarting an actor entails restarting all its subordinates (but see
below for more details), similarly terminating an actor will also terminate all its subordinates. It should be noted
that the default behavior of the preRestart hook of the Actor class is to terminate all its children before
restarting, but this hook can be overridden; the recursive restart applies to all children left after this hook has been
executed.

Each supervisor is configured with a function translating all possible failure causes (i.e. exceptions) into one of
the four choices given above; notably, this function does not take the failed actor’s identity as an input. It is quite
easy to come up with examples of structures where this might not seem flexible enough, e.g. wishing for different
strategies to be applied to different subordinates. At this point it is vital to understand that supervision is about
forming a recursive fault handling structure. If you try to do too much at one level, it will become hard to reason
about, hence the recommended way in this case is to add a level of supervision.

Akka implements a specific form called “parental supervision”. Actors can only be created by other actors—where
the top-level actor is provided by the library—and each created actor is supervised by its parent. This restriction
makes the formation of actor supervision hierarchies implicit and encourages sound design decisions. It should
be noted that this also guarantees that actors cannot be orphaned or attached to supervisors from the outside,
which might otherwise catch them unawares. In addition, this yields a natural and clean shutdown procedure for
(sub-trees of) actor applications.

Warning: Supervision related parent-child communication happens by special system messages that have
their own mailboxes separate from user messages. This implies that supervision related events are not deter-
ministically ordered relative to ordinary messages. In general, the user cannot influence the order of normal
messages and failure notifications. For details and example see the Discussion: Message Ordering section.

2.4. Supervision and Monitoring 16

Akka Scala Documentation, Release 2.2.5

2.4.2 The Top-Level Supervisors

An actor system will during its creation start at least three actors, shown in the image above. For more information
about the consequences for actor paths see Top-Level Scopes for Actor Paths.

/user: The Guardian Actor

The actor which is probably most interacted with is the parent of all user-created actors, the guardian named
"/user". Actors created using system.actorOf() are children of this actor. This means that when this
guardian terminates, all normal actors in the system will be shutdown, too. It also means that this guardian’s
supervisor strategy determines how the top-level normal actors are supervised. Since Akka 2.1 it is possible to
configure this using the setting akka.actor.guardian-supervisor-strategy, which takes the fully-
qualified class-name of a SupervisorStrategyConfigurator. When the guardian escalates a failure, the
root guardian’s response will be to terminate the guardian, which in effect will shut down the whole actor system.

/system: The System Guardian

This special guardian has been introduced in order to achieve an orderly shut-down sequence where logging re-
mains active while all normal actors terminate, even though logging itself is implemented using actors. This
is realized by having the system guardian watch the user guardian and initiate its own shut-down upon re-
ception of the Terminated message. The top-level system actors are supervised using a strategy which
will restart indefinitely upon all types of Exception except for ActorInitializationException and
ActorKilledException, which will terminate the child in question. All other throwables are escalated,
which will shut down the whole actor system.

/: The Root Guardian

The root guardian is the grand-parent of all so-called “top-level” actors and supervises all the special actors
mentioned in Top-Level Scopes for Actor Paths using the SupervisorStrategy.stoppingStrategy,
whose purpose is to terminate the child upon any type of Exception. All other throwables will be escalated
. . . but to whom? Since every real actor has a supervisor, the supervisor of the root guardian cannot be a real
actor. And because this means that it is “outside of the bubble”, it is called the “bubble-walker”. This is a
synthetic ActorRef which in effect stops its child upon the first sign of trouble and sets the actor system’s
isTerminated status to true as soon as the root guardian is fully terminated (all children recursively stopped).

2.4. Supervision and Monitoring 17

Akka Scala Documentation, Release 2.2.5

2.4.3 What Restarting Means

When presented with an actor which failed while processing a certain message, causes for the failure fall into three
categories:

• Systematic (i.e. programming) error for the specific message received

• (Transient) failure of some external resource used during processing the message

• Corrupt internal state of the actor

Unless the failure is specifically recognizable, the third cause cannot be ruled out, which leads to the conclusion
that the internal state needs to be cleared out. If the supervisor decides that its other children or itself is not
affected by the corruption—e.g. because of conscious application of the error kernel pattern—it is therefore best
to restart the child. This is carried out by creating a new instance of the underlying Actor class and replacing
the failed instance with the fresh one inside the child’s ActorRef; the ability to do this is one of the reasons for
encapsulating actors within special references. The new actor then resumes processing its mailbox, meaning that
the restart is not visible outside of the actor itself with the notable exception that the message during which the
failure occurred is not re-processed.

The precise sequence of events during a restart is the following:

1. suspend the actor (which means that it will not process normal messages until resumed), and recursively
suspend all children

2. call the old instance’s preRestart hook (defaults to sending termination requests to all children and
calling postStop)

3. wait for all children which were requested to terminate (using context.stop()) during preRestart
to actually terminate; this—like all actor operations—is non-blocking, the termination notice from the last
killed child will effect the progression to the next step

4. create new actor instance by invoking the originally provided factory again

5. invoke postRestart on the new instance (which by default also calls preStart)

6. send restart request to all children which were not killed in step 3; restarted children will follow the same
process recursively, from step 2

7. resume the actor

2.4.4 What Lifecycle Monitoring Means

Note: Lifecycle Monitoring in Akka is usually referred to as DeathWatch

In contrast to the special relationship between parent and child described above, each actor may monitor any other
actor. Since actors emerge from creation fully alive and restarts are not visible outside of the affected supervisors,
the only state change available for monitoring is the transition from alive to dead. Monitoring is thus used to tie
one actor to another so that it may react to the other actor’s termination, in contrast to supervision which reacts to
failure.

Lifecycle monitoring is implemented using a Terminated message to be received by the monitoring actor,
where the default behavior is to throw a special DeathPactException if not otherwise handled. In order to
start listening for Terminated messages, invoke ActorContext.watch(targetActorRef). To stop
listening, invoke ActorContext.unwatch(targetActorRef). One important property is that the mes-
sage will be delivered irrespective of the order in which the monitoring request and target’s termination occur, i.e.
you still get the message even if at the time of registration the target is already dead.

Monitoring is particularly useful if a supervisor cannot simply restart its children and has to terminate them, e.g.
in case of errors during actor initialization. In that case it should monitor those children and re-create them or
schedule itself to retry this at a later time.

2.4. Supervision and Monitoring 18

Akka Scala Documentation, Release 2.2.5

Another common use case is that an actor needs to fail in the absence of an external resource, which may also be
one of its own children. If a third party terminates a child by way of the system.stop(child) method or
sending a PoisonPill, the supervisor might well be affected.

2.4.5 One-For-One Strategy vs. All-For-One Strategy

There are two classes of supervision strategies which come with Akka: OneForOneStrategy and
AllForOneStrategy. Both are configured with a mapping from exception type to supervision directive (see
above) and limits on how often a child is allowed to fail before terminating it. The difference between them is that
the former applies the obtained directive only to the failed child, whereas the latter applies it to all siblings as well.
Normally, you should use the OneForOneStrategy, which also is the default if none is specified explicitly.

The AllForOneStrategy is applicable in cases where the ensemble of children has such tight dependencies
among them, that a failure of one child affects the function of the others, i.e. they are inextricably linked. Since
a restart does not clear out the mailbox, it often is best to terminate the children upon failure and re-create them
explicitly from the supervisor (by watching the children’s lifecycle); otherwise you have to make sure that it is no
problem for any of the actors to receive a message which was queued before the restart but processed afterwards.

Normally stopping a child (i.e. not in response to a failure) will not automatically terminate the other children
in an all-for-one strategy; this can easily be done by watching their lifecycle: if the Terminated message is
not handled by the supervisor, it will throw a DeathPactException which (depending on its supervisor) will
restart it, and the default preRestart action will terminate all children. Of course this can be handled explicitly
as well.

Please note that creating one-off actors from an all-for-one supervisor entails that failures escalated by the tempo-
rary actor will affect all the permanent ones. If this is not desired, install an intermediate supervisor; this can very
easily be done by declaring a router of size 1 for the worker, see Routing or routing-java.

2.5 Actor References, Paths and Addresses

This chapter describes how actors are identified and located within a possibly distributed actor system. It ties into
the central idea that Actor Systems form intrinsic supervision hierarchies as well as that communication between
actors is transparent with respect to their placement across multiple network nodes.

The above image displays the relationship between the most important entities within an actor system, please read
on for the details.

2.5. Actor References, Paths and Addresses 19

Akka Scala Documentation, Release 2.2.5

2.5.1 What is an Actor Reference?

An actor reference is a subtype of ActorRef, whose foremost purpose is to support sending messages to the
actor it represents. Each actor has access to its canonical (local) reference through the self field; this reference
is also included as sender reference by default for all messages sent to other actors. Conversely, during message
processing the actor has access to a reference representing the sender of the current message through the sender
field.

There are several different types of actor references that are supported depending on the configuration of the actor
system:

• Purely local actor references are used by actor systems which are not configured to support networking
functions. These actor references will not function if sent across a network connection to a remote JVM.

• Local actor references when remoting is enabled are used by actor systems which support networking func-
tions for those references which represent actors within the same JVM. In order to also be reachable when
sent to other network nodes, these references include protocol and remote addressing information.

• There is a subtype of local actor references which is used for routers (i.e. actors mixing in the Router
trait). Its logical structure is the same as for the aforementioned local references, but sending a message to
them dispatches to one of their children directly instead.

• Remote actor references represent actors which are reachable using remote communication, i.e. sending
messages to them will serialize the messages transparently and send them to the remote JVM.

• There are several special types of actor references which behave like local actor references for all practical
purposes:

– PromiseActorRef is the special representation of a Promise for the purpose of being completed
by the response from an actor. akka.pattern.ask creates this actor reference.

– DeadLetterActorRef is the default implementation of the dead letters service to which Akka
routes all messages whose destinations are shut down or non-existent.

– EmptyLocalActorRef is what Akka returns when looking up a non-existent local actor path: it
is equivalent to a DeadLetterActorRef, but it retains its path so that Akka can send it over the
network and compare it to other existing actor references for that path, some of which might have been
obtained before the actor died.

• And then there are some one-off internal implementations which you should never really see:

– There is an actor reference which does not represent an actor but acts only as a pseudo-supervisor for
the root guardian, we call it “the one who walks the bubbles of space-time”.

– The first logging service started before actually firing up actor creation facilities is a fake
actor reference which accepts log events and prints them directly to standard output; it is
Logging.StandardOutLogger.

• (Future Extension) Cluster actor references represent clustered actor services which may be replicated,
migrated or load-balanced across multiple cluster nodes. As such they are virtual names which the cluster
service translates into local or remote actor references as appropriate.

2.5.2 What is an Actor Path?

Since actors are created in a strictly hierarchical fashion, there exists a unique sequence of actor names given by
recursively following the supervision links between child and parent down towards the root of the actor system.
This sequence can be seen as enclosing folders in a file system, hence we adopted the name “path” to refer to
it. As in some real file-systems there also are “symbolic links”, i.e. one actor may be reachable using more than
one path, where all but one involve some translation which decouples part of the path from the actor’s actual
supervision ancestor line; these specialities are described in the sub-sections to follow.

An actor path consists of an anchor, which identifies the actor system, followed by the concatenation of the path
elements, from root guardian to the designated actor; the path elements are the names of the traversed actors and
are separated by slashes.

2.5. Actor References, Paths and Addresses 20

Akka Scala Documentation, Release 2.2.5

What is the Difference Between Actor Reference and Path?

An actor reference designates a single actor and the life-cycle of the reference matches that actor’s life-cycle; an
actor path represents a name which may or may not be inhabited by an actor and the path itself does not have a
life-cycle, it never becomes invalid. You can create an actor path without creating an actor, but you cannot create
an actor reference without creating corresponding actor.

Note: That definition does not hold for actorFor, which is one of the reasons why actorFor is deprecated
in favor of actorSelection.

You can create an actor, terminate it, and then create a new actor with the same actor path. The newly created
actor is a new incarnation of the actor. It is not the same actor. An actor reference to the old incarnation is not
valid for the new incarnation. Messages sent to the old actor reference will not be delivered to the new incarnation
even though they have the same path.

Actor Path Anchors

Each actor path has an address component, describing the protocol and location by which the corresponding actor
is reachable, followed by the names of the actors in the hierarchy from the root up. Examples are:

"akka://my-sys/user/service-a/worker1" // purely local
"akka.tcp://my-sys@host.example.com:5678/user/service-b" // remote
"cluster://my-cluster/service-c" // clustered (Future Extension)

Here, akka.tcp is the default remote transport for the 2.2 release; other transports are pluggable. A re-
mote host using UDP would be accessible by using akka.udp. The interpretation of the host and port part
(i.e.‘‘serv.example.com:5678‘‘ in the example) depends on the transport mechanism used, but it must abide by the
URI structural rules.

Logical Actor Paths

The unique path obtained by following the parental supervision links towards the root guardian is called the logical
actor path. This path matches exactly the creation ancestry of an actor, so it is completely deterministic as soon as
the actor system’s remoting configuration (and with it the address component of the path) is set.

Physical Actor Paths

While the logical actor path describes the functional location within one actor system, configuration-based remote
deployment means that an actor may be created on a different network host than its parent, i.e. within a different
actor system. In this case, following the actor path from the root guardian up entails traversing the network, which
is a costly operation. Therefore, each actor also has a physical path, starting at the root guardian of the actor
system where the actual actor object resides. Using this path as sender reference when querying other actors will
let them reply directly to this actor, minimizing delays incurred by routing.

One important aspect is that a physical actor path never spans multiple actor systems or JVMs. This means that
the logical path (supervision hierarchy) and the physical path (actor deployment) of an actor may diverge if one
of its ancestors is remotely supervised.

Virtual Actor Paths (Future Extension)

In order to be able to replicate and migrate actors across a cluster of Akka nodes, another level of indirection has to
be introduced. The cluster component therefore provides a translation from virtual paths to physical paths which
may change in reaction to node failures, cluster rebalancing, etc.

This area is still under active development, expect updates in this section for the Akka release code named Rollins
.

2.5. Actor References, Paths and Addresses 21

Akka Scala Documentation, Release 2.2.5

2.5.3 How are Actor References obtained?

There are two general categories to how actor references may be obtained: by creating actors or by looking them
up, where the latter functionality comes in the two flavours of creating actor references from concrete actor paths
and querying the logical actor hierarchy.

While local and remote actor references and their paths work in the same way concerning the facilities mentioned
below, the exact semantics of clustered actor references and their paths—while certainly as similar as possi-
ble—may differ in certain aspects, owing to the virtual nature of those paths. Expect updates for the Akka release
code named Rollins.

Creating Actors

An actor system is typically started by creating actors beneath the guardian actor using the
ActorSystem.actorOf method and then using ActorContext.actorOf from within the created
actors to spawn the actor tree. These methods return a reference to the newly created actor. Each actor has direct
access (through its ActorContext) to references for its parent, itself and its children. These references may be
sent within messages to other actors, enabling those to reply directly.

Looking up Actors by Concrete Path

In addition, actor references may be looked up using the ActorSystem.actorSelection method. The
selection can be used for communicating with said actor and the actor corresponding to the selection is looked up
when delivering each message.

To acquire an ActorRef that is bound to the life-cycle of a specific actor you need to send a message, such as
the built-in Identify message, to the actor and use the sender reference of a reply from the actor.

Note: actorFor is deprecated in favor of actorSelection because actor references acquired with
actorFor behave differently for local and remote actors. In the case of a local actor reference, the named
actor needs to exist before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This
will be true even if an actor with that exact path is created after acquiring the actor reference. For remote actor
references acquired with actorFor the behaviour is different and sending messages to such a reference will under
the hood look up the actor by path on the remote system for every message send.

Absolute vs. Relative Paths

In addition to ActorSystem.actorSelection there is also ActorContext.actorSelection, which
is available inside any actor as context.actorSelection. This yields an actor selection much like its twin
on ActorSystem, but instead of looking up the path starting from the root of the actor tree it starts out on the
current actor. Path elements consisting of two dots ("..") may be used to access the parent actor. You can for
example send a message to a specific sibling:

context.actorSelection("../brother") ! msg

Absolute paths may of course also be looked up on context in the usual way, i.e.

context.actorSelection("/user/serviceA") ! msg

will work as expected.

Querying the Logical Actor Hierarchy

Since the actor system forms a file-system like hierarchy, matching on paths is possible in the same way as sup-
ported by Unix shells: you may replace (parts of) path element names with wildcards («*» and «?») to formulate
a selection which may match zero or more actual actors. Because the result is not a single actor reference, it has a
different type ActorSelection and does not support the full set of operations an ActorRef does. Selections

2.5. Actor References, Paths and Addresses 22

Akka Scala Documentation, Release 2.2.5

may be formulated using the ActorSystem.actorSelection and ActorContext.actorSelection
methods and do support sending messages:

context.actorSelection("../*") ! msg

will send msg to all siblings including the current actor. As for references obtained using actorFor, a traversal of
the supervision hierarchy is done in order to perform the message send. As the exact set of actors which match
a selection may change even while a message is making its way to the recipients, it is not possible to watch a
selection for liveliness changes. In order to do that, resolve the uncertainty by sending a request and gathering all
answers, extracting the sender references, and then watch all discovered concrete actors. This scheme of resolving
a selection may be improved upon in a future release.

Summary: actorOf vs. actorSelection vs. actorFor

Note: What the above sections described in some detail can be summarized and memorized easily as follows:

• actorOf only ever creates a new actor, and it creates it as a direct child of the context on which this method
is invoked (which may be any actor or actor system).

• actorSelection only ever looks up existing actors when messages are delivered, i.e. does not create
actors, or verify existence of actors when the selection is created.

• actorFor (deprecated in favor of actorSelection) only ever looks up an existing actor, i.e. does not create
one.

2.5.4 Actor Reference and Path Equality

Equality of ActorRef match the intention that an ActorRef corresponds to the target actor incarnation. Two
actor references are compared equal when they have the same path and point to the same actor incarnation. A
reference pointing to a terminated actor does not compare equal to a reference pointing to another (re-created)
actor with the same path. Note that a restart of an actor caused by a failure still means that it is the same actor
incarnation, i.e. a restart is not visible for the consumer of the ActorRef.

Remote actor references acquired with actorFor do not include the full information about the underlying actor
identity and therefore such references do not compare equal to references acquired with actorOf, sender, or
context.self. Because of this actorFor is deprecated in favor of actorSelection.

If you need to keep track of actor references in a collection and do not care about the exact actor incarnation you
can use the ActorPath as key, because the identifier of the target actor is not taken into account when comparing
actor paths.

2.5.5 Reusing Actor Paths

When an actor is terminated, its reference will point to the dead letter mailbox, DeathWatch will publish its final
transition and in general it is not expected to come back to life again (since the actor life cycle does not allow this).
While it is possible to create an actor at a later time with an identical path—simply due to it being impossible to
enforce the opposite without keeping the set of all actors ever created available—this is not good practice: remote
actor references acquired with actorFor which “died” suddenly start to work again, but without any guarantee
of ordering between this transition and any other event, hence the new inhabitant of the path may receive messages
which were destined for the previous tenant.

It may be the right thing to do in very specific circumstances, but make sure to confine the handling of this precisely
to the actor’s supervisor, because that is the only actor which can reliably detect proper deregistration of the name,
before which creation of the new child will fail.

It may also be required during testing, when the test subject depends on being instantiated at a specific path. In
that case it is best to mock its supervisor so that it will forward the Terminated message to the appropriate point in
the test procedure, enabling the latter to await proper deregistration of the name.

2.5. Actor References, Paths and Addresses 23

Akka Scala Documentation, Release 2.2.5

2.5.6 The Interplay with Remote Deployment

When an actor creates a child, the actor system’s deployer will decide whether the new actor resides in the same
JVM or on another node. In the second case, creation of the actor will be triggered via a network connection to
happen in a different JVM and consequently within a different actor system. The remote system will place the
new actor below a special path reserved for this purpose and the supervisor of the new actor will be a remote actor
reference (representing that actor which triggered its creation). In this case, context.parent (the supervisor
reference) and context.path.parent (the parent node in the actor’s path) do not represent the same actor.
However, looking up the child’s name within the supervisor will find it on the remote node, preserving logical
structure e.g. when sending to an unresolved actor reference.

2.5.7 The Interplay with Clustering (Future Extension)

This section is subject to change!

When creating a scaled-out actor subtree, a cluster name is created for a routed actor reference, where sending
to this reference will send to one (or more) of the actual actors created in the cluster. In order for those actors
to be able to query other actors while processing their messages, their sender reference must be unique for each
of the replicas, which means that physical paths will be used as self references for these instances. In the case
of replication for achieving fault-tolerance the opposite is required: the self reference will be a virtual (cluster)
path so that in case of migration or fail-over communication is resumed with the fresh instance.

2.5.8 What is the Address part used for?

When sending an actor reference across the network, it is represented by its path. Hence, the path must fully
encode all information necessary to send messages to the underlying actor. This is achieved by encoding protocol,
host and port in the address part of the path string. When an actor system receives an actor path from a remote

2.5. Actor References, Paths and Addresses 24

Akka Scala Documentation, Release 2.2.5

node, it checks whether that path’s address matches the address of this actor system, in which case it will be
resolved to the actor’s local reference. Otherwise, it will be represented by a remote actor reference.

2.5.9 Top-Level Scopes for Actor Paths

At the root of the path hierarchy resides the root guardian above which all other actors are found; its name is "/".
The next level consists of the following:

• "/user" is the guardian actor for all user-created top-level actors; actors created using
ActorSystem.actorOf are found below this one.

• "/system" is the guardian actor for all system-created top-level actors, e.g. logging listeners or actors
automatically deployed by configuration at the start of the actor system.

• "/deadLetters" is the dead letter actor, which is where all messages sent to stopped or non-existing
actors are re-routed (on a best-effort basis: messages may be lost even within the local JVM).

• "/temp" is the guardian for all short-lived system-created actors, e.g. those which are used in the imple-
mentation of ActorRef.ask.

• "/remote" is an artificial path below which all actors reside whose supervisors are remote actor references

The need to structure the name space for actors like this arises from a central and very simple design goal:
everything in the hierarchy is an actor, and all actors function in the same way. Hence you can not only look
up the actors you created, you can also look up the system guardian and send it a message (which it will dutifully
discard in this case). This powerful principle means that there are no quirks to remember, it makes the whole
system more uniform and consistent.

If you want to read more about the top-level structure of an actor system, have a look at The Top-Level Supervisors.

2.6 Location Transparency

The previous section describes how actor paths are used to enable location transparency. This special feature
deserves some extra explanation, because the related term “transparent remoting” was used quite differently in the
context of programming languages, platforms and technologies.

2.6.1 Distributed by Default

Everything in Akka is designed to work in a distributed setting: all interactions of actors use purely message
passing and everything is asynchronous. This effort has been undertaken to ensure that all functions are available
equally when running within a single JVM or on a cluster of hundreds of machines. The key for enabling this
is to go from remote to local by way of optimization instead of trying to go from local to remote by way of
generalization. See this classic paper for a detailed discussion on why the second approach is bound to fail.

2.6.2 Ways in which Transparency is Broken

What is true of Akka need not be true of the application which uses it, since designing for distributed execution
poses some restrictions on what is possible. The most obvious one is that all messages sent over the wire must be
serializable. While being a little less obvious this includes closures which are used as actor factories (i.e. within
Props) if the actor is to be created on a remote node.

Another consequence is that everything needs to be aware of all interactions being fully asynchronous, which in
a computer network might mean that it may take several minutes for a message to reach its recipient (depending
on configuration). It also means that the probability for a message to be lost is much higher than within one JVM,
where it is close to zero (still: no hard guarantee!).

2.6. Location Transparency 25

http://doc.akka.io/docs/misc/smli_tr-94-29.pdf

Akka Scala Documentation, Release 2.2.5

2.6.3 How is Remoting Used?

We took the idea of transparency to the limit in that there is nearly no API for the remoting layer of Akka: it is
purely driven by configuration. Just write your application according to the principles outlined in the previous
sections, then specify remote deployment of actor sub-trees in the configuration file. This way, your application
can be scaled out without having to touch the code. The only piece of the API which allows programmatic
influence on remote deployment is that Props contain a field which may be set to a specific Deploy instance; this
has the same effect as putting an equivalent deployment into the configuration file (if both are given, configuration
file wins).

2.6.4 Marking Points for Scaling Up with Routers

In addition to being able to run different parts of an actor system on different nodes of a cluster, it is also possible
to scale up onto more cores by multiplying actor sub-trees which support parallelization (think for example a
search engine processing different queries in parallel). The clones can then be routed to in different fashions, e.g.
round-robin. The only thing necessary to achieve this is that the developer needs to declare a certain actor as
“withRouter”, then—in its stead—a router actor will be created which will spawn up a configurable number of
children of the desired type and route to them in the configured fashion. Once such a router has been declared, its
configuration can be freely overridden from the configuration file, including mixing it with the remote deployment
of (some of) the children. Read more about this in Routing and routing-java.

2.7 Akka and the Java Memory Model

A major benefit of using the Typesafe Platform, including Scala and Akka, is that it simplifies the process of
writing concurrent software. This article discusses how the Typesafe Platform, and Akka in particular, approaches
shared memory in concurrent applications.

2.7.1 The Java Memory Model

Prior to Java 5, the Java Memory Model (JMM) was ill defined. It was possible to get all kinds of strange results
when shared memory was accessed by multiple threads, such as:

• a thread not seeing values written by other threads: a visibility problem

• a thread observing ‘impossible’ behavior of other threads, caused by instructions not being executed in the
order expected: an instruction reordering problem.

With the implementation of JSR 133 in Java 5, a lot of these issues have been resolved. The JMM is a set of rules
based on the “happens-before” relation, which constrain when one memory access must happen before another,
and conversely, when they are allowed to happen out of order. Two examples of these rules are:

• The monitor lock rule: a release of a lock happens before every subsequent acquire of the same lock.

• The volatile variable rule: a write of a volatile variable happens before every subsequent read of the same
volatile variable

Although the JMM can seem complicated, the specification tries to find a balance between ease of use and the
ability to write performant and scalable concurrent data structures.

2.7.2 Actors and the Java Memory Model

With the Actors implementation in Akka, there are two ways multiple threads can execute actions on shared
memory:

• if a message is sent to an actor (e.g. by another actor). In most cases messages are immutable, but if
that message is not a properly constructed immutable object, without a “happens before” rule, it would be

2.7. Akka and the Java Memory Model 26

Akka Scala Documentation, Release 2.2.5

possible for the receiver to see partially initialized data structures and possibly even values out of thin air
(longs/doubles).

• if an actor makes changes to its internal state while processing a message, and accesses that state while
processing another message moments later. It is important to realize that with the actor model you don’t get
any guarantee that the same thread will be executing the same actor for different messages.

To prevent visibility and reordering problems on actors, Akka guarantees the following two “happens before”
rules:

• The actor send rule: the send of the message to an actor happens before the receive of that message by the
same actor.

• The actor subsequent processing rule: processing of one message happens before processing of the next
message by the same actor.

Note: In layman’s terms this means that changes to internal fields of the actor are visible when the next message
is processed by that actor. So fields in your actor need not be volatile or equivalent.

Both rules only apply for the same actor instance and are not valid if different actors are used.

2.7.3 Futures and the Java Memory Model

The completion of a Future “happens before” the invocation of any callbacks registered to it are executed.

We recommend not to close over non-final fields (final in Java and val in Scala), and if you do choose to close
over non-final fields, they must be marked volatile in order for the current value of the field to be visible to the
callback.

If you close over a reference, you must also ensure that the instance that is referred to is thread safe. We highly
recommend staying away from objects that use locking, since it can introduce performance problems and in the
worst case, deadlocks. Such are the perils of synchronized.

2.7.4 STM and the Java Memory Model

Akka’s Software Transactional Memory (STM) also provides a “happens before” rule:

• The transactional reference rule: a successful write during commit, on an transactional reference, happens
before every subsequent read of the same transactional reference.

This rule looks a lot like the ‘volatile variable’ rule from the JMM. Currently the Akka STM only supports
deferred writes, so the actual writing to shared memory is deferred until the transaction commits. Writes during
the transaction are placed in a local buffer (the writeset of the transaction) and are not visible to other transactions.
That is why dirty reads are not possible.

How these rules are realized in Akka is an implementation detail and can change over time, and the exact details
could even depend on the used configuration. But they will build on the other JMM rules like the monitor lock rule
or the volatile variable rule. This means that you, the Akka user, do not need to worry about adding synchronization
to provide such a “happens before” relation, because it is the responsibility of Akka. So you have your hands free
to deal with your business logic, and the Akka framework makes sure that those rules are guaranteed on your
behalf.

2.7.5 Actors and shared mutable state

Since Akka runs on the JVM there are still some rules to be followed.

• Closing over internal Actor state and exposing it to other threads

2.7. Akka and the Java Memory Model 27

Akka Scala Documentation, Release 2.2.5

class MyActor extends Actor {
var state = ...
def receive = {

case _ =>
//Wrongs

// Very bad, shared mutable state,
// will break your application in weird ways

Future { state = NewState }
anotherActor ? message onSuccess { r => state = r }

// Very bad, "sender" changes for every message,
// shared mutable state bug

Future { expensiveCalculation(sender) }

//Rights

// Completely safe, "self" is OK to close over
// and it's an ActorRef, which is thread-safe

Future { expensiveCalculation() } onComplete { f => self ! f.value.get }

// Completely safe, we close over a fixed value
// and it's an ActorRef, which is thread-safe

val currentSender = sender
Future { expensiveCalculation(currentSender) }

}
}

• Messages should be immutable, this is to avoid the shared mutable state trap.

2.8 Message Delivery Guarantees

Akka helps you build reliable applications which make use of multiple processor cores in one machine (“scaling
up”) or distributed across a computer network (“scaling out”). The key abstraction to make this work is that all
interactions between your code units—actors—happen via message passing, which is why the precise semantics
of how messages are passed between actors deserve their own chapter.

In order to give some context to the discussion below, consider an application which spans multiple network hosts.
The basic mechanism for communication is the same whether sending to an actor on the local JVM or to a remote
actor, but of course there will be observable differences in the latency of delivery (possibly also depending on the
bandwidth of the network link and the message size) and the reliability. In case of a remote message send there
are obviously more steps involved which means that more can go wrong. Another aspect is that local sending will
just pass a reference to the message inside the same JVM, without any restrictions on the underlying object which
is sent, whereas a remote transport will place a limit on the message size.

Writing your actors such that every interaction could possibly be remote is the safe, pessimistic bet. It means to
only rely on those properties which are always guaranteed and which are discussed in detail below. This has of
course some overhead in the actor’s implementation. If you are willing to sacrifice full location transparency—for
example in case of a group of closely collaborating actors—you can place them always on the same JVM and
enjoy stricter guarantees on message delivery. The details of this trade-off are discussed further below.

As a supplementary part we give a few pointers at how to build stronger guarantees on top of the built-in ones.
The chapter closes by discussing the role of the “Dead Letter Office”.

2.8.1 The General Rules

These are the rules for message sends (i.e. the tell or ! method, which also underlies the ask pattern):

• at-most-once delivery, i.e. no guaranteed delivery

2.8. Message Delivery Guarantees 28

Akka Scala Documentation, Release 2.2.5

• message ordering per sender–receiver pair

The first rule is typically found also in other actor implementations while the second is specific to Akka.

Discussion: What does “at-most-once” mean?

When it comes to describing the semantics of a delivery mechanism, there are three basic categories:

• at-most-once delivery means that for each message handed to the mechanism, that message is delivered
zero or one times; in more casual terms it means that messages may be lost.

• at-least-once delivery means that for each message handed to the mechanism potentially multiple attempts
are made at delivering it, such that at least one succeeds; again, in more casual terms this means that
messages may be duplicated but not lost.

• exactly-once delivery means that for each message handed to the mechanism exactly one delivery is made
to the recipient; the message can neither be lost nor duplicated.

The first one is the cheapest—highest performance, least implementation overhead—because it can be done in
a fire-and-forget fashion without keeping state at the sending end or in the transport mechanism. The second
one requires retries to counter transport losses, which means keeping state at the sending end and having an
acknowledgement mechanism at the receiving end. The third is most expensive—and has consequently worst
performance—because in addition to the second it requires state to be kept at the receiving end in order to filter
out duplicate deliveries.

Discussion: Why No Guaranteed Delivery?

At the core of the problem lies the question what exactly this guarantee shall mean:

1. The message is sent out on the network?

2. The message is received by the other host?

3. The message is put into the target actor’s mailbox?

4. The message is starting to be processed by the target actor?

5. The message is processed successfully by the target actor?

Each one of these have different challenges and costs, and it is obvious that there are conditions under which
any message passing library would be unable to comply; think for example about configurable mailbox types
and how a bounded mailbox would interact with the third point, or even what it would mean to decide upon the
“successfully” part of point five.

Along those same lines goes the reasoning in Nobody Needs Reliable Messaging. The only meaningful way for a
sender to know whether an interaction was successful is by receiving a business-level acknowledgement message,
which is not something Akka could make up on its own (neither are we writing a “do what I mean” framework
nor would you want us to).

Akka embraces distributed computing and makes the fallibility of communication explicit through message pass-
ing, therefore it does not try to lie and emulate a leaky abstraction. This is a model that has been used with great
success in Erlang and requires the users to design their applications around it. You can read more about this
approach in the Erlang documentation (section 10.9 and 10.10), Akka follows it closely.

Another angle on this issue is that by providing only basic guarantees those use cases which do not need stricter
guarantees do not pay the cost of their implementation; it is always possible to add stricter guarantees on top of
basic ones, but it is not possible to retro-actively remove guarantees in order to gain more performance.

Discussion: Message Ordering

The rule more specifically is that for a given pair of actors, messages sent from the first to the second will not be
received out-of-order. This is illustrated in the following:

2.8. Message Delivery Guarantees 29

http://www.infoq.com/articles/no-reliable-messaging
http://www.erlang.org/faq/academic.html

Akka Scala Documentation, Release 2.2.5

Actor A1 sends messages M1, M2, M3 to A2

Actor A3 sends messages M4, M5, M6 to A2

This means that:

1. If M1 is delivered it must be delivered before M2 and M3

2. If M2 is delivered it must be delivered before M3

3. If M4 is delivered it must be delivered before M5 and M6

4. If M5 is delivered it must be delivered before M6

5. A2 can see messages from A1 interleaved with messages from A3

6. Since there is no guaranteed delivery, any of the messages may be dropped, i.e. not arrive
at A2

Note: It is important to note that Akka’s guarantee applies to the order in which messages are enqueued into the
recipient’s mailbox. If the mailbox implementation does not respect FIFO order (e.g. a PriorityMailbox),
then the order of processing by the actor can deviate from the enqueueing order.

Please note that this rule is not transitive:

Actor A sends message M1 to actor C

Actor A then sends message M2 to actor B

Actor B forwards message M2 to actor C

Actor C may receive M1 and M2 in any order

Causal transitive ordering would imply that M2 is never received before M1 at actor C (though any of them might
be lost). This ordering can be violated due to different message delivery latencies when A, B and C reside on
different network hosts, see more below.

Communication of failure

Please note, that the ordering guarantees discussed above only hold for user messages between actors. Failure
of a child of an actor is communicated by special system messages that are not ordered relative to ordinary user
messages. In particular:

Child actor C sends message M to its parent P

Child actor fails with failure F

Parent actor P might receive the two events either in order M, F or F, M

The reason for this is that internal system messages has their own mailboxes therefore the ordering of enqueue
calls of a user and system message cannot guarantee the ordering of their dequeue times.

2.8.2 The Rules for In-JVM (Local) Message Sends

Be careful what you do with this section!

Relying on the stronger guarantees in this section is not recommended since it will bind your application to local-
only deployment: an application may have to be designed differently (as opposed to just employing some message
exchange patterns local to some actors) in order to be fit for running on a cluster of machines. Our credo is “design
once, deploy any way you wish”, and to achieve this you should only rely on The General Rules.

2.8. Message Delivery Guarantees 30

Akka Scala Documentation, Release 2.2.5

Reliability of Local Message Sends

The Akka test suite relies on not losing messages in the local context (and for non-error condition tests also for
remote deployment), meaning that we actually do apply the best effort to keep our tests stable. A local tell
operation can however fail for the same reasons as a normal method call can on the JVM:

• StackOverflowError

• OutOfMemoryError

• other VirtualMachineError

In addition, local sends can fail in Akka-specific ways:

• if the mailbox does not accept the message (e.g. full BoundedMailbox)

• if the receiving actor fails while processing the message or is already terminated

While the first is clearly a matter of configuration the second deserves some thought: the sender of a message does
not get feedback if there was an exception while processing, that notification goes to the supervisor instead. This
is in general not distinguishable from a lost message for an outside observer.

Ordering of Local Message Sends

Assuming strict FIFO mailboxes the abovementioned caveat of non-transitivity of the message ordering guarantee
is eliminated under certain conditions. As you will note, these are quite subtle as it stands, and it is even possible
that future performance optimizations will invalidate this whole paragraph. The possibly non-exhaustive list of
counter-indications is:

• Before receiving the first reply from a top-level actor, there is a lock which protects an internal interim
queue, and this lock is not fair; the implication is that enqueue requests from different senders which arrive
during the actor’s construction (figuratively, the details are more involved) may be reordered depending on
low-level thread scheduling. Since completely fair locks do not exist on the JVM this is unfixable.

• The same mechanism is used during the construction of a Router, more precisely the routed ActorRef, hence
the same problem exists for actors deployed with Routers.

• As mentioned above, the problem occurs anywhere a lock is involved during enqueueing, which may also
apply to custom mailboxes (or durable mailboxes).

This list has been compiled carefully, but other problematic scenarios may have escaped our analysis.

How does Local Ordering relate to Network Ordering

As explained in the previous paragraph local message sends obey transitive causal ordering under certain condi-
tions. If the remote message transport would respect this ordering as well, that would translate to transitive causal
ordering across one network link, i.e. if exactly two network hosts are involved. Involving multiple links, e.g. the
three actors on three different nodes mentioned above, then no guarantees can be made.

The current remote transport does not support this (again this is caused by non-FIFO wake-up order of a lock, this
time serializing connection establishment).

As a speculative view into the future it might be possible to support this ordering guarantee by re-implementing
the remote transport layer based completely on actors; at the same time we are looking into providing other low-
level transport protocols like UDP or SCTP which would enable higher throughput or lower latency by removing
this guarantee again, which would mean that choosing between different implementations would allow trading
guarantees versus performance.

2.8.3 Building On Top Of Akka

The philosophy of Akka is to provide a small and consistent tool set which is well suited for building powerful
abstractions on top.

2.8. Message Delivery Guarantees 31

Akka Scala Documentation, Release 2.2.5

Messaging Patterns

As discussed above a straight-forward answer to the requirement of guaranteed delivery is an explicit
ACK–RETRY protocol. In its simplest form this requires

• a way to identify individual messages to correlate message with acknowledgement

• a retry mechanism which will resend messages if not acknowledged in time

• a way for the receiver to detect and discard duplicates

The third becomes necessary by virtue of the acknowledgements not being guaranteed to arrive either. An example
of implementing all three requirements is shown at Reliable Proxy Pattern. Another way of implementing the third
part would be to make processing the messages idempotent at the receiving end on the level of the business logic;
this is convenient if it arises naturally and otherwise implemented by keeping track of processed message IDs.

Event Sourcing

Event sourcing (and sharding) is what makes large websites scale to billions of users, and the idea is quite simple:
when a component (think actor) processes a command it will generate a list of events representing the effect of
the command. These events are stored in addition to being applied to the component’s state. The nice thing about
this scheme is that events only ever are appended to the storage, nothing is ever mutated; this enables perfect
replication and scaling of consumers of this event stream (i.e. other components may consume the event stream as
a means to replicate the component’s state on a different continent or to react to changes). If the component’s state
is lost—due to a machine failure or by being pushed out of a cache—it can easily be reconstructed by replaying
the event stream (usually employing snapshots to speed up the process). Read a lot more about Event Sourcing.

Martin Krasser has written an implementation of event sourcing principles on top of Akka called eventsourced,
including support for guaranteed delivery semantics as described in the previous section.

Mailbox with Explicit Acknowledgement

By implementing a custom mailbox type it is possible retry message processing at the receiving actor’s end in order
to handle temporary failures. This pattern is mostly useful in the local communication context where delivery
guarantees are otherwise sufficient to fulfill the application’s requirements.

Please note that the caveats for The Rules for In-JVM (Local) Message Sends do apply.

An example implementation of this pattern is shown at Mailbox with Explicit Acknowledgement.

2.8.4 Dead Letters

Messages which cannot be delivered (and for which this can be ascertained) will be delivered to a synthetic actor
called /deadLetters. This delivery happens on a best-effort basis; it may fail even within the local JVM (e.g.
during actor termination). Messages sent via unreliable network transports will be lost without turning up as dead
letters.

What Should I Use Dead Letters For?

The main use of this facility is for debugging, especially if an actor send does not arrive consistently (where
usually inspecting the dead letters will tell you that the sender or recipient was set wrong somewhere along the
way). In order to be useful for this purpose it is good practice to avoid sending to deadLetters where possible, i.e.
run your application with a suitable dead letter logger (see more below) from time to time and clean up the log
output. This exercise—like all else—requires judicious application of common sense: it may well be that avoiding
to send to a terminated actor complicates the sender’s code more than is gained in debug output clarity.

The dead letter service follows the same rules with respect to delivery guarantees as all other message sends, hence
it cannot be used to implement guaranteed delivery.

2.8. Message Delivery Guarantees 32

http://martinfowler.com/eaaDev/EventSourcing.html
https://github.com/eligosource/eventsourced

Akka Scala Documentation, Release 2.2.5

How do I Receive Dead Letters?

An actor can subscribe to class akka.actor.DeadLetter on the event stream, see event-stream-java (Java)
or Event Stream (Scala) for how to do that. The subscribed actor will then receive all dead letters published in
the (local) system from that point onwards. Dead letters are not propagated over the network, if you want to
collect them in one place you will have to subscribe one actor per network node and forward them manually. Also
consider that dead letters are generated at that node which can determine that a send operation is failed, which for
a remote send can be the local system (if no network connection can be established) or the remote one (if the actor
you are sending to does not exist at that point in time).

Dead Letters Which are (Usually) not Worrisome

Every time an actor does not terminate by its own decision, there is a chance that some messages which it sends
to itself are lost. There is one which happens quite easily in complex shutdown scenarios that is usually benign:
seeing a akka.dispatch.Terminate message dropped means that two termination requests were given, but
of course only one can succeed. In the same vein, you might see akka.actor.Terminated messages from
children while stopping a hierarchy of actors turning up in dead letters if the parent is still watching the child when
the parent terminates.

2.9 Configuration

You can start using Akka without defining any configuration, since sensible default values are provided. Later on
you might need to amend the settings to change the default behavior or adapt for specific runtime environments.
Typical examples of settings that you might amend:

• log level and logger backend

• enable remoting

• message serializers

• definition of routers

• tuning of dispatchers

Akka uses the Typesafe Config Library, which might also be a good choice for the configuration of your own ap-
plication or library built with or without Akka. This library is implemented in Java with no external dependencies;
you should have a look at its documentation (in particular about ConfigFactory), which is only summarized in the
following.

Warning: If you use Akka from the Scala REPL from the 2.9.x series, and you do not provide your own
ClassLoader to the ActorSystem, start the REPL with “-Yrepl-sync” to work around a deficiency in the REPLs
provided Context ClassLoader.

2.9.1 Where configuration is read from

All configuration for Akka is held within instances of ActorSystem, or put differently, as viewed from
the outside, ActorSystem is the only consumer of configuration information. While constructing an ac-
tor system, you can either pass in a Config object or not, where the second case is equivalent to passing
ConfigFactory.load() (with the right class loader). This means roughly that the default is to parse all
application.conf, application.json and application.properties found at the root of the
class path—please refer to the aforementioned documentation for details. The actor system then merges in all
reference.conf resources found at the root of the class path to form the fallback configuration, i.e. it inter-
nally uses

appConfig.withFallback(ConfigFactory.defaultReference(classLoader))

2.9. Configuration 33

https://github.com/typesafehub/config
http://typesafehub.github.com/config/latest/api/com/typesafe/config/ConfigFactory.html

Akka Scala Documentation, Release 2.2.5

The philosophy is that code never contains default values, but instead relies upon their presence in the
reference.conf supplied with the library in question.

Highest precedence is given to overrides given as system properties, see the HOCON specification (near the
bottom). Also noteworthy is that the application configuration—which defaults to application—may be
overridden using the config.resource property (there are more, please refer to the Config docs).

Note: If you are writing an Akka application, keep you configuration in application.conf at the root of
the class path. If you are writing an Akka-based library, keep its configuration in reference.conf at the root
of the JAR file.

2.9.2 When using JarJar, OneJar, Assembly or any jar-bundler

Warning: Akka’s configuration approach relies heavily on the notion of every module/jar having its own
reference.conf file, all of these will be discovered by the configuration and loaded. Unfortunately this also
means that if you put/merge multiple jars into the same jar, you need to merge all the reference.confs as well.
Otherwise all defaults will be lost and Akka will not function.

2.9.3 Custom application.conf

A custom application.conf might look like this:

In this file you can override any option defined in the reference files.
Copy in parts of the reference files and modify as you please.

akka {

Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.slf4j.Slf4jLogger"]

Log level used by the configured loggers (see "loggers") as soon
as they have been started; before that, see "stdout-loglevel"
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

Log level for the very basic logger activated during AkkaApplication startup
Options: OFF, ERROR, WARNING, INFO, DEBUG
stdout-loglevel = "DEBUG"

actor {
default-dispatcher {

Throughput for default Dispatcher, set to 1 for as fair as possible
throughput = 10

}
}

remote {
server {

The port clients should connect to. Default is 2552 (AKKA)
port = 2562

}
}

}

2.9. Configuration 34

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/README.md

Akka Scala Documentation, Release 2.2.5

2.9.4 Including files

Sometimes it can be useful to include another configuration file, for example if you have one
application.conf with all environment independent settings and then override some settings for specific
environments.

Specifying system property with -Dconfig.resource=/dev.conf will load the dev.conf file, which
includes the application.conf

dev.conf:

include "application"

akka {
loglevel = "DEBUG"

}

More advanced include and substitution mechanisms are explained in the HOCON specification.

2.9.5 Logging of Configuration

If the system or config property akka.log-config-on-start is set to on, then the complete configuration
at INFO level when the actor system is started. This is useful when you are uncertain of what configuration is
used.

If in doubt, you can also easily and nicely inspect configuration objects before or after using them to construct an
actor system:

Welcome to Scala version 2.10.2 (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_27).
Type in expressions to have them evaluated.
Type :help for more information.

scala> import com.typesafe.config._
import com.typesafe.config._

scala> ConfigFactory.parseString("a.b=12")
res0: com.typesafe.config.Config = Config(SimpleConfigObject({"a" : {"b" : 12}}))

scala> res0.root.render
res1: java.lang.String =
{

String: 1
"a" : {

String: 1
"b" : 12

}
}

The comments preceding every item give detailed information about the origin of the setting (file & line number)
plus possible comments which were present, e.g. in the reference configuration. The settings as merged with the
reference and parsed by the actor system can be displayed like this:

final ActorSystem system = ActorSystem.create();
System.out.println(system.settings());
// this is a shortcut for system.settings().config().root().render()

2.9.6 A Word About ClassLoaders

In several places of the configuration file it is possible to specify the fully-qualified class name of something to be
instantiated by Akka. This is done using Java reflection, which in turn uses a ClassLoader. Getting the right
one in challenging environments like application containers or OSGi bundles is not always trivial, the current

2.9. Configuration 35

https://github.com/typesafehub/config/blob/master/HOCON.md

Akka Scala Documentation, Release 2.2.5

approach of Akka is that each ActorSystem implementation stores the current thread’s context class loader
(if available, otherwise just its own loader as in this.getClass.getClassLoader) and uses that for all
reflective accesses. This implies that putting Akka on the boot class path will yield NullPointerException
from strange places: this is simply not supported.

2.9.7 Application specific settings

The configuration can also be used for application specific settings. A good practice is to place those settings in
an Extension, as described in:

• Scala API: Application specific settings

• Java API: extending-akka-java.settings

2.9.8 Configuring multiple ActorSystem

If you have more than one ActorSystem (or you’re writing a library and have an ActorSystem that may be
separate from the application’s) you may want to separate the configuration for each system.

Given that ConfigFactory.load() merges all resources with matching name from the whole class path, it
is easiest to utilize that functionality and differentiate actor systems within the hierarchy of the configuration:

myapp1 {
akka.loglevel = "WARNING"
my.own.setting = 43

}
myapp2 {

akka.loglevel = "ERROR"
app2.setting = "appname"

}
my.own.setting = 42
my.other.setting = "hello"

val config = ConfigFactory.load()
val app1 = ActorSystem("MyApp1", config.getConfig("myapp1").withFallback(config))
val app2 = ActorSystem("MyApp2",

config.getConfig("myapp2").withOnlyPath("akka").withFallback(config))

These two samples demonstrate different variations of the “lift-a-subtree” trick: in the first case, the configuration
accessible from within the actor system is this

akka.loglevel = "WARNING"
my.own.setting = 43
my.other.setting = "hello"
// plus myapp1 and myapp2 subtrees

while in the second one, only the “akka” subtree is lifted, with the following result

akka.loglevel = "ERROR"
my.own.setting = 42
my.other.setting = "hello"
// plus myapp1 and myapp2 subtrees

Note: The configuration library is really powerful, explaining all features exceeds the scope affordable here.
In particular not covered are how to include other configuration files within other files (see a small example at
Including files) and copying parts of the configuration tree by way of path substitutions.

You may also specify and parse the configuration programmatically in other ways when instantiating the
ActorSystem.

2.9. Configuration 36

Akka Scala Documentation, Release 2.2.5

import akka.actor.ActorSystem
import com.typesafe.config.ConfigFactory

val customConf = ConfigFactory.parseString("""
akka.actor.deployment {

/my-service {
router = round-robin
nr-of-instances = 3

}
}
""")

// ConfigFactory.load sandwiches customConfig between default reference
// config and default overrides, and then resolves it.
val system = ActorSystem("MySystem", ConfigFactory.load(customConf))

2.9.9 Reading configuration from a custom location

You can replace or supplement application.conf either in code or using system properties.

If you’re using ConfigFactory.load() (which Akka does by default) you can replace
application.conf by defining -Dconfig.resource=whatever, -Dconfig.file=whatever, or
-Dconfig.url=whatever.

From inside your replacement file specified with -Dconfig.resource and friends, you can include
"application" if you still want to use application.{conf,json,properties} as well. Settings
specified before include "application" would be overridden by the included file, while those after would
override the included file.

In code, there are many customization options.

There are several overloads of ConfigFactory.load(); these allow you to specify something to be sand-
wiched between system properties (which override) and the defaults (from reference.conf), replacing the
usual application.{conf,json,properties} and replacing -Dconfig.file and friends.

The simplest variant of ConfigFactory.load() takes a resource basename (instead of application);
myname.conf, myname.json, and myname.properties would then be used instead of
application.{conf,json,properties}.

The most flexible variant takes a Config object, which you can load using any method in ConfigFactory.
For example you could put a config string in code using ConfigFactory.parseString() or you could
make a map and ConfigFactory.parseMap(), or you could load a file.

You can also combine your custom config with the usual config, that might look like:

// make a Config with just your special setting
Config myConfig =

ConfigFactory.parseString("something=somethingElse");
// load the normal config stack (system props,
// then application.conf, then reference.conf)
Config regularConfig =

ConfigFactory.load();
// override regular stack with myConfig
Config combined =

myConfig.withFallback(regularConfig);
// put the result in between the overrides
// (system props) and defaults again
Config complete =

ConfigFactory.load(combined);
// create ActorSystem
ActorSystem system =

ActorSystem.create("myname", complete);

When working with Config objects, keep in mind that there are three “layers” in the cake:

• ConfigFactory.defaultOverrides() (system properties)

2.9. Configuration 37

Akka Scala Documentation, Release 2.2.5

• the app’s settings

• ConfigFactory.defaultReference() (reference.conf)

The normal goal is to customize the middle layer while leaving the other two alone.

• ConfigFactory.load() loads the whole stack

• the overloads of ConfigFactory.load() let you specify a different middle layer

• the ConfigFactory.parse() variations load single files or resources

To stack two layers, use override.withFallback(fallback); try to keep system props
(defaultOverrides()) on top and reference.conf (defaultReference()) on the bottom.

Do keep in mind, you can often just add another include statement in application.conf rather than writ-
ing code. Includes at the top of application.conf will be overridden by the rest of application.conf,
while those at the bottom will override the earlier stuff.

2.9.10 Listing of the Reference Configuration

Each Akka module has a reference configuration file with the default values.

akka-actor

####################################
Akka Actor Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
Akka version, checked against the runtime version of Akka.
version = "2.2.5"

Home directory of Akka, modules in the deploy directory will be loaded
home = ""

Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]

Deprecated, use akka.loggers.
event-handlers = []

Loggers are created and registered synchronously during ActorSystem
start-up, and since they are actors, this timeout is used to bound the
waiting time
logger-startup-timeout = 5s

Deprecated, use akka.logger-startup-timeout
event-handler-startup-timeout = -1s

Log level used by the configured loggers (see "loggers") as soon
as they have been started; before that, see "stdout-loglevel"
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "INFO"

Log level for the very basic logger activated during AkkaApplication startup
Options: OFF, ERROR, WARNING, INFO, DEBUG
stdout-loglevel = "WARNING"

2.9. Configuration 38

Akka Scala Documentation, Release 2.2.5

Log the complete configuration at INFO level when the actor system is started.
This is useful when you are uncertain of what configuration is used.
log-config-on-start = off

Log at info level when messages are sent to dead letters.
Possible values:
on: all dead letters are logged
off: no logging of dead letters
n: positive integer, number of dead letters that will be logged
log-dead-letters = 10

Possibility to turn off logging of dead letters while the actor system
is shutting down. Logging is only done when enabled by 'log-dead-letters'
setting.
log-dead-letters-during-shutdown = on

List FQCN of extensions which shall be loaded at actor system startup.
Should be on the format: 'extensions = ["foo", "bar"]' etc.
See the Akka Documentation for more info about Extensions
extensions = []

Toggles whether threads created by this ActorSystem should be daemons or not
daemonic = off

JVM shutdown, System.exit(-1), in case of a fatal error,
such as OutOfMemoryError
jvm-exit-on-fatal-error = on

actor {

FQCN of the ActorRefProvider to be used; the below is the built-in default,
another one is akka.remote.RemoteActorRefProvider in the akka-remote bundle.
provider = "akka.actor.LocalActorRefProvider"

The guardian "/user" will use this class to obtain its supervisorStrategy.
It needs to be a subclass of akka.actor.SupervisorStrategyConfigurator.
In addition to the default there is akka.actor.StoppingSupervisorStrategy.
guardian-supervisor-strategy = "akka.actor.DefaultSupervisorStrategy"

Timeout for ActorSystem.actorOf
creation-timeout = 20s

Frequency with which stopping actors are prodded in case they had to be
removed from their parents
reaper-interval = 5s

Serializes and deserializes (non-primitive) messages to ensure immutability,
this is only intended for testing.
serialize-messages = off

Serializes and deserializes creators (in Props) to ensure that they can be
sent over the network, this is only intended for testing. Purely local deployments
as marked with deploy.scope == LocalScope are exempt from verification.
serialize-creators = off

Timeout for send operations to top-level actors which are in the process
of being started. This is only relevant if using a bounded mailbox or the
CallingThreadDispatcher for a top-level actor.
unstarted-push-timeout = 10s

typed {
Default timeout for typed actor methods with non-void return type
timeout = 5s

2.9. Configuration 39

Akka Scala Documentation, Release 2.2.5

}

deployment {

deployment id pattern - on the format: /parent/child etc.
default {

The id of the dispatcher to use for this actor.
If undefined or empty the dispatcher specified in code
(Props.withDispatcher) is used, or default-dispatcher if not
specified at all.
dispatcher = ""

The id of the mailbox to use for this actor.
If undefined or empty the default mailbox of the configured dispatcher
is used or if there is no mailbox configuration the mailbox specified
in code (Props.withMailbox) is used.
If there is a mailbox defined in the configured dispatcher then that
overrides this setting.
mailbox = ""

routing (load-balance) scheme to use
- available: "from-code", "round-robin", "random", "smallest-mailbox",
"scatter-gather", "broadcast"
- or: Fully qualified class name of the router class.
The class must extend akka.routing.CustomRouterConfig and
have a public constructor with com.typesafe.config.Config
parameter.
- default is "from-code";
Whether or not an actor is transformed to a Router is decided in code
only (Props.withRouter). The type of router can be overridden in the
configuration; specifying "from-code" means that the values specified
in the code shall be used.
In case of routing, the actors to be routed to can be specified
in several ways:
- nr-of-instances: will create that many children
- routees.paths: will look the paths up using actorFor and route to
them, i.e. will not create children
- resizer: dynamically resizable number of routees as specified in
resizer below
router = "from-code"

number of children to create in case of a router;
this setting is ignored if routees.paths is given
nr-of-instances = 1

within is the timeout used for routers containing future calls
within = 5 seconds

number of virtual nodes per node for consistent-hashing router
virtual-nodes-factor = 10

routees {
Alternatively to giving nr-of-instances you can specify the full
paths of those actors which should be routed to. This setting takes
precedence over nr-of-instances
paths = []

}

Routers with dynamically resizable number of routees; this feature is
enabled by including (parts of) this section in the deployment
resizer {

2.9. Configuration 40

Akka Scala Documentation, Release 2.2.5

The fewest number of routees the router should ever have.
lower-bound = 1

The most number of routees the router should ever have.
Must be greater than or equal to lower-bound.
upper-bound = 10

Threshold used to evaluate if a routee is considered to be busy
(under pressure). Implementation depends on this value (default is 1).
0: number of routees currently processing a message.
1: number of routees currently processing a message has
some messages in mailbox.
> 1: number of routees with at least the configured pressure-threshold
messages in their mailbox. Note that estimating mailbox size of
default UnboundedMailbox is O(N) operation.
pressure-threshold = 1

Percentage to increase capacity whenever all routees are busy.
For example, 0.2 would increase 20% (rounded up), i.e. if current
capacity is 6 it will request an increase of 2 more routees.
rampup-rate = 0.2

Minimum fraction of busy routees before backing off.
For example, if this is 0.3, then we'll remove some routees only when
less than 30% of routees are busy, i.e. if current capacity is 10 and
3 are busy then the capacity is unchanged, but if 2 or less are busy
the capacity is decreased.
Use 0.0 or negative to avoid removal of routees.
backoff-threshold = 0.3

Fraction of routees to be removed when the resizer reaches the
backoffThreshold.
For example, 0.1 would decrease 10% (rounded up), i.e. if current
capacity is 9 it will request an decrease of 1 routee.
backoff-rate = 0.1

When the resizer reduce the capacity the abandoned routee actors are
stopped with PoisonPill after this delay. The reason for the delay is
to give concurrent messages a chance to be placed in mailbox before
sending PoisonPill.
Use 0s to skip delay.
stop-delay = 1s

Number of messages between resize operation.
Use 1 to resize before each message.
messages-per-resize = 10

}
}

}

default-dispatcher {
Must be one of the following
Dispatcher, (BalancingDispatcher, only valid when all actors using it are
of the same type), PinnedDispatcher, or a FQCN to a class inheriting
MessageDispatcherConfigurator with a public constructor with
both com.typesafe.config.Config parameter and
akka.dispatch.DispatcherPrerequisites parameters.
PinnedDispatcher must be used toghether with executor=thread-pool-executor.
type = "Dispatcher"

Which kind of ExecutorService to use for this dispatcher
Valid options:
- "fork-join-executor" requires a "fork-join-executor" section

2.9. Configuration 41

Akka Scala Documentation, Release 2.2.5

- "thread-pool-executor" requires a "thread-pool-executor" section
- A FQCN of a class extending ExecutorServiceConfigurator
executor = "fork-join-executor"

This will be used if you have set "executor = "fork-join-executor""
fork-join-executor {

Min number of threads to cap factor-based parallelism number to
parallelism-min = 8

The parallelism factor is used to determine thread pool size using the
following formula: ceil(available processors * factor). Resulting size
is then bounded by the parallelism-min and parallelism-max values.
parallelism-factor = 3.0

Max number of threads to cap factor-based parallelism number to
parallelism-max = 64

}

This will be used if you have set "executor = "thread-pool-executor""
thread-pool-executor {

Keep alive time for threads
keep-alive-time = 60s

Min number of threads to cap factor-based core number to
core-pool-size-min = 8

The core pool size factor is used to determine thread pool core size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the core-pool-size-min and
core-pool-size-max values.
core-pool-size-factor = 3.0

Max number of threads to cap factor-based number to
core-pool-size-max = 64

Minimum number of threads to cap factor-based max number to
(if using a bounded task queue)
max-pool-size-min = 8

Max no of threads (if using a bounded task queue) is determined by
calculating: ceil(available processors * factor)
max-pool-size-factor = 3.0

Max number of threads to cap factor-based max number to
(if using a bounded task queue)
max-pool-size-max = 64

Specifies the bounded capacity of the task queue (< 1 == unbounded)
task-queue-size = -1

Specifies which type of task queue will be used, can be "array" or
"linked" (default)
task-queue-type = "linked"

Allow core threads to time out
allow-core-timeout = on

}

How long time the dispatcher will wait for new actors until it shuts down
shutdown-timeout = 1s

Throughput defines the number of messages that are processed in a batch
before the thread is returned to the pool. Set to 1 for as fair as possible.

2.9. Configuration 42

Akka Scala Documentation, Release 2.2.5

throughput = 5

Throughput deadline for Dispatcher, set to 0 or negative for no deadline
throughput-deadline-time = 0ms

For BalancingDispatcher: If the balancing dispatcher should attempt to
schedule idle actors using the same dispatcher when a message comes in,
and the dispatchers ExecutorService is not fully busy already.
attempt-teamwork = on

If this dispatcher requires a specific type of mailbox, specify the
fully-qualified class name here; the actually created mailbox will
be a subtype of this type. The empty string signifies no requirement.
mailbox-requirement = ""

}

default-mailbox {
FQCN of the MailboxType. The Class of the FQCN must have a public
constructor with
(akka.actor.ActorSystem.Settings, com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedMailbox"

If the mailbox is bounded then it uses this setting to determine its
capacity. The provided value must be positive.
NOTICE:
Up to version 2.1 the mailbox type was determined based on this setting;
this is no longer the case, the type must explicitly be a bounded mailbox.
mailbox-capacity = 1000

If the mailbox is bounded then this is the timeout for enqueueing
in case the mailbox is full. Negative values signify infinite
timeout, which should be avoided as it bears the risk of dead-lock.
mailbox-push-timeout-time = 10s

For Actor with Stash: The default capacity of the stash.
If negative (or zero) then an unbounded stash is used (default)
If positive then a bounded stash is used and the capacity is set using
the property
stash-capacity = -1

}

mailbox {
Mapping between message queue semantics and mailbox configurations.
Used by akka.dispatch.RequiresMessageQueue[T] to enforce different
mailbox types on actors.
If your Actor implements RequiresMessageQueue[T], then when you create
an instance of that actor its mailbox type will be decided by looking
up a mailbox configuration via T in this mapping
requirements {

"akka.dispatch.UnboundedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-queue-based

"akka.dispatch.BoundedMessageQueueSemantics" =
akka.actor.mailbox.bounded-queue-based

"akka.dispatch.DequeBasedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-deque-based

"akka.dispatch.UnboundedDequeBasedMessageQueueSemantics" =
akka.actor.mailbox.unbounded-deque-based

"akka.dispatch.BoundedDequeBasedMessageQueueSemantics" =
akka.actor.mailbox.bounded-deque-based

"akka.dispatch.MultipleConsumerSemantics" =
akka.actor.mailbox.unbounded-queue-based

}

2.9. Configuration 43

Akka Scala Documentation, Release 2.2.5

unbounded-queue-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedMailbox"

}

bounded-queue-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.BoundedMailbox"

}

unbounded-deque-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox"

}

bounded-deque-based {
FQCN of the MailboxType, The Class of the FQCN must have a public
constructor with (akka.actor.ActorSystem.Settings,
com.typesafe.config.Config) parameters.
mailbox-type = "akka.dispatch.BoundedDequeBasedMailbox"

}
}

debug {
enable function of Actor.loggable(), which is to log any received message
at DEBUG level, see the “Testing Actor Systems” section of the Akka
Documentation at http://akka.io/docs
receive = off

enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill et.c.)
autoreceive = off

enable DEBUG logging of actor lifecycle changes
lifecycle = off

enable DEBUG logging of all LoggingFSMs for events, transitions and timers
fsm = off

enable DEBUG logging of subscription changes on the eventStream
event-stream = off

enable DEBUG logging of unhandled messages
unhandled = off

enable WARN logging of misconfigured routers
router-misconfiguration = off

}

Entries for pluggable serializers and their bindings.
serializers {

java = "akka.serialization.JavaSerializer"
bytes = "akka.serialization.ByteArraySerializer"

}

Class to Serializer binding. You only need to specify the name of an
interface or abstract base class of the messages. In case of ambiguity it
is using the most specific configured class, or giving a warning and

2.9. Configuration 44

Akka Scala Documentation, Release 2.2.5

choosing the “first” one.
#
To disable one of the default serializers, assign its class to "none", like
"java.io.Serializable" = none
serialization-bindings {

"[B" = bytes
"java.io.Serializable" = java

}

Configuration items which are used by the akka.actor.ActorDSL._ methods
dsl {

Maximum queue size of the actor created by newInbox(); this protects
against faulty programs which use select() and consistently miss messages
inbox-size = 1000

Default timeout to assume for operations like Inbox.receive et al
default-timeout = 5s

}
}

Used to set the behavior of the scheduler.
Changing the default values may change the system behavior drastically so make
sure you know what you're doing! See the Scheduler section of the Akka
Documentation for more details.
scheduler {
The LightArrayRevolverScheduler is used as the default scheduler in the
system. It does not execute the scheduled tasks on exact time, but on every
tick, it will run everything that is (over)due. You can increase or decrease
the accuracy of the execution timing by specifying smaller or larger tick
duration. If you are scheduling a lot of tasks you should consider increasing
the ticks per wheel.
Note that it might take up to 1 tick to stop the Timer, so setting the
tick-duration to a high value will make shutting down the actor system
take longer.
tick-duration = 10ms

The timer uses a circular wheel of buckets to store the timer tasks.
This should be set such that the majority of scheduled timeouts (for high
scheduling frequency) will be shorter than one rotation of the wheel
(ticks-per-wheel * ticks-duration)
THIS MUST BE A POWER OF TWO!
ticks-per-wheel = 512

This setting selects the timer implementation which shall be loaded at
system start-up. Built-in choices are:
- akka.actor.LightArrayRevolverScheduler
- akka.actor.DefaultScheduler (HWT) DEPRECATED
The class given here must implement the akka.actor.Scheduler interface
and offer a public constructor which takes three arguments:
1) com.typesafe.config.Config
2) akka.event.LoggingAdapter
3) java.util.concurrent.ThreadFactory
implementation = akka.actor.LightArrayRevolverScheduler

When shutting down the scheduler, there will typically be a thread which
needs to be stopped, and this timeout determines how long to wait for
that to happen. In case of timeout the shutdown of the actor system will
proceed without running possibly still enqueued tasks.
shutdown-timeout = 5s

}

io {

2.9. Configuration 45

Akka Scala Documentation, Release 2.2.5

By default the select loops run on dedicated threads, hence using a
PinnedDispatcher
pinned-dispatcher {

type = "PinnedDispatcher"
executor = "thread-pool-executor"
thread-pool-executor.allow-core-pool-timeout = off

}

tcp {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this TCP module; there is
no intrinsic general limit, this setting is meant to enable DoS
protection by limiting the number of concurrently connected clients.
Also note that this is a "soft" limit; in certain cases the implementation
will accept a few connections more or a few less than the number configured
here. Must be an integer > 0 or "unlimited".
max-channels = 256000

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment
this many times before giving up
selector-association-retries = 10

The maximum number of connection that are accepted in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
batch-accept-limit = 10

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The duration a connection actor waits for a `Register` message from
its commander before aborting the connection.
register-timeout = 5s

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
max-received-message-size = unlimited

Enable fine grained logging of what goes on inside the implementation.
Be aware that this may log more than once per message sent to the actors
of the tcp implementation.
trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration

2.9. Configuration 46

Akka Scala Documentation, Release 2.2.5

for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
on which file IO tasks are scheduled
file-io-dispatcher = "akka.actor.default-dispatcher"

The maximum number of bytes (or "unlimited") to transfer in one batch
when using `WriteFile` command which uses `FileChannel.transferTo` to
pipe files to a TCP socket. On some OS like Linux `FileChannel.transferTo`
may block for a long time when network IO is faster than file IO.
Decreasing the value may improve fairness while increasing may improve
throughput.
file-io-transferTo-limit = 512 KiB

The number of times to retry the `finishConnect` call after being notified about
OP_CONNECT. Retries are needed if the OP_CONNECT notification doesn't imply that
`finishConnect` will succeed, which is the case on Android.
finish-connect-retries = 5

}

udp {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this UDP module Generally
UDP does not require a large number of channels, therefore it is
recommended to keep this setting low.
max-channels = 4096

The select loop can be used in two modes:
- setting "infinite" will select without a timeout, hogging a thread
- setting a positive timeout will do a bounded select call,
enabling sharing of a single thread between multiple selectors
(in this case you will have to use a different configuration for the
selector-dispatcher, e.g. using "type=Dispatcher" with size 1)
- setting it to zero means polling, i.e. calling selectNow()
select-timeout = infinite

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment
this many times before giving up
selector-association-retries = 10

The maximum number of datagrams that are read in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
receive-throughput = 3

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
received-message-size-limit = unlimited

2.9. Configuration 47

Akka Scala Documentation, Release 2.2.5

Enable fine grained logging of what goes on inside the implementation.
Be aware that this may log more than once per message sent to the actors
of the tcp implementation.
trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

}

udp-connected {

The number of selectors to stripe the served channels over; each of
these will use one select loop on the selector-dispatcher.
nr-of-selectors = 1

Maximum number of open channels supported by this UDP module Generally
UDP does not require a large number of channels, therefore it is
recommended to keep this setting low.
max-channels = 4096

The select loop can be used in two modes:
- setting "infinite" will select without a timeout, hogging a thread
- setting a positive timeout will do a bounded select call,
enabling sharing of a single thread between multiple selectors
(in this case you will have to use a different configuration for the
selector-dispatcher, e.g. using "type=Dispatcher" with size 1)
- setting it to zero means polling, i.e. calling selectNow()
select-timeout = infinite

When trying to assign a new connection to a selector and the chosen
selector is at full capacity, retry selector choosing and assignment
this many times before giving up
selector-association-retries = 10

The maximum number of datagrams that are read in one go,
higher numbers decrease latency, lower numbers increase fairness on
the worker-dispatcher
receive-throughput = 3

The number of bytes per direct buffer in the pool used to read or write
network data from the kernel.
direct-buffer-size = 128 KiB

The maximal number of direct buffers kept in the direct buffer pool for
reuse.
direct-buffer-pool-limit = 1000

The maximum number of bytes delivered by a `Received` message. Before
more data is read from the network the connection actor will try to
do other work.
received-message-size-limit = unlimited

Enable fine grained logging of what goes on inside the implementation.

2.9. Configuration 48

Akka Scala Documentation, Release 2.2.5

Be aware that this may log more than once per message sent to the actors
of the tcp implementation.
trace-logging = off

Fully qualified config path which holds the dispatcher configuration
to be used for running the select() calls in the selectors
selector-dispatcher = "akka.io.pinned-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the read/write worker actors
worker-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
for the selector management actors
management-dispatcher = "akka.actor.default-dispatcher"

}

IMPORTANT NOTICE:
#
The following settings belong to the deprecated akka.actor.IO
implementation and will be removed once that is removed. They are not
taken into account by the akka.io.* implementation, which is configured
above!

In bytes, the size of the shared read buffer. In the span 0b..2GiB.
#
read-buffer-size = 8KiB

Specifies how many ops are done between every descriptor selection
select-interval = 100

Number of connections that are allowed in the backlog.
0 or negative means that the platform default will be used.
default-backlog = 1000

}

}

akka-remote

#####################################
Akka Remote Reference Config File
#####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

comments about akka.actor settings left out where they are already in akka-
actor.jar, because otherwise they would be repeated in config rendering.

akka {

actor {

serializers {
akka-containers = "akka.remote.serialization.MessageContainerSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
daemon-create = "akka.remote.serialization.DaemonMsgCreateSerializer"

}

2.9. Configuration 49

Akka Scala Documentation, Release 2.2.5

serialization-bindings {
Since com.google.protobuf.Message does not extend Serializable but
GeneratedMessage does, need to use the more specific one here in order
to avoid ambiguity
"akka.actor.SelectionPath" = akka-containers
"com.google.protobuf.GeneratedMessage" = proto
"akka.remote.DaemonMsgCreate" = daemon-create

}

deployment {

default {

if this is set to a valid remote address, the named actor will be
deployed at that node e.g. "akka://sys@host:port"
remote = ""

target {

A list of hostnames and ports for instantiating the children of a
router
The format should be on "akka://sys@host:port", where:
- sys is the remote actor system name
- hostname can be either hostname or IP address the remote actor
should connect to
- port should be the port for the remote server on the other node
The number of actor instances to be spawned is still taken from the
nr-of-instances setting as for local routers; the instances will be
distributed round-robin among the given nodes.
nodes = []

}
}

}
}

remote {

General settings

Timeout after which the startup of the remoting subsystem is considered
to be failed. Increase this value if your transport drivers (see the
enabled-transports section) need longer time to be loaded.
startup-timeout = 10 s

Timout after which the graceful shutdown of the remoting subsystem is
considered to be failed. After the timeout the remoting system is
forcefully shut down. Increase this value if your transport drivers
(see the enabled-transports section) need longer time to stop properly.
shutdown-timeout = 10 s

Before shutting down the drivers, the remoting subsystem attempts to flush
all pending writes. This setting controls the maximum time the remoting is
willing to wait before moving on to shut down the drivers.
flush-wait-on-shutdown = 2 s

Reuse inbound connections for outbound messages
use-passive-connections = on

Controls the backoff interval after a refused write is reattempted.
(Transports may refuse writes if their internal buffer is full)

2.9. Configuration 50

Akka Scala Documentation, Release 2.2.5

backoff-interval = 0.01 s

Acknowledgment timeout of management commands sent to the transport stack.
command-ack-timeout = 30 s

If set to a nonempty string remoting will use the given dispatcher for
its internal actors otherwise the default dispatcher is used. Please note
that since remoting can load arbitrary 3rd party drivers (see
"enabled-transport" and "adapters" entries) it is not guaranteed that
every module will respect this setting.
use-dispatcher = ""

Security settings

Enable untrusted mode for full security of server managed actors, prevents
system messages to be send by clients, e.g. messages like 'Create',
'Suspend', 'Resume', 'Terminate', 'Supervise', 'Link' etc.
untrusted-mode = off

Should the remote server require that its peers share the same
secure-cookie (defined in the 'remote' section)? Secure cookies are passed
between during the initial handshake. Connections are refused if the initial
message contains a mismatching cookie or the cookie is missing.
require-cookie = off

Generate your own with the script availbale in
'$AKKA_HOME/scripts/generate_config_with_secure_cookie.sh' or using
'akka.util.Crypt.generateSecureCookie'
secure-cookie = ""

Logging

If this is "on", Akka will log all inbound messages at DEBUG level,
if off then they are not logged
log-received-messages = off

If this is "on", Akka will log all outbound messages at DEBUG level,
if off then they are not logged
log-sent-messages = off

Sets the log granularity level at which Akka logs remoting events. This setting
can take the values OFF, ERROR, WARNING, INFO, DEBUG, or ON. For compatibility
reasons the setting "on" will default to "debug" level. Please note that the effective
logging level is still determined by the global logging level of the actor system:
for example debug level remoting events will be only logged if the system
is running with debug level logging.
Failures to deserialize received messages also fall under this flag.
log-remote-lifecycle-events = on

Logging of message types with payload size in bytes larger than
this value. Maximum detected size per message type is logged once,
with an increase threshold of 10%.
By default this feature is turned off. Activate it by setting the property to
a value in bytes, such as 1000b. Note that for all messages larger than this
limit there will be extra performance and scalability cost.
log-frame-size-exceeding = off

Failure detection and recovery

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used by the remoting subsystem to detect failed
connections.
transport-failure-detector {

2.9. Configuration 51

Akka Scala Documentation, Release 2.2.5

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 7.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 100

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 3 s

}

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used for remote death watch.
watch-failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 10.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 200

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.

2.9. Configuration 52

Akka Scala Documentation, Release 2.2.5

min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 4 s

How often to check for nodes marked as unreachable by the failure
detector
unreachable-nodes-reaper-interval = 1s

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 3 s

}

After failed to establish an outbound connection, the remoting will mark the
address as failed. This configuration option controls how much time should
be elapsed before reattempting a new connection. While the address is
gated, all messages sent to the address are delivered to dead-letters.
If this setting is 0, the remoting will always immediately reattempt
to establish a failed outbound connection and will buffer writes until
it succeeds.
retry-gate-closed-for = 0 s

If the retry gate function is disabled (see retry-gate-closed-for) the
remoting subsystem will always attempt to reestablish failed outbound
connections. The settings below together control the maximum number of
reattempts in a given time window. The number of reattempts during
a window of "retry-window" will be maximum "maximum-retries-in-window".
retry-window = 60 s
maximum-retries-in-window = 3

The length of time to gate an address whose name lookup has failed
or has explicitly signalled that it will not accept connections
(remote system is shutting down or the requesting system is quarantined).
No connection attempts will be made to an address while it remains
gated. Any messages sent to a gated address will be directed to dead
letters instead. Name lookups are costly, and the time to recovery
is typically large, therefore this setting should be a value in the
order of seconds or minutes.
gate-invalid-addresses-for = 60 s

This settings controls how long a system will be quarantined after
catastrophic communication failures that result in the loss of system
messages. Quarantining prevents communication with the remote system
of a given UID. This function can be disabled by setting the value
to "off".
quarantine-systems-for = 60s

This setting defines the maximum number of unacknowledged system messages
allowed for a remote system. If this limit is reached the remote system is
declared to be dead and its UID marked as tainted.
system-message-buffer-size = 1000

This setting defines the maximum idle time after an individual
acknowledgement for system messages is sent. System message delivery
is guaranteed by explicit acknowledgement messages. These acks are

2.9. Configuration 53

Akka Scala Documentation, Release 2.2.5

piggybacked on ordinary traffic messages. If no traffic is detected
during the time period configured here, the remoting will send out
an individual ack.
system-message-ack-piggyback-timeout = 1 s

This setting defines the time after messages that have not been
explicitly acknowledged or negatively acknowledged are resent.
Messages that were negatively acknowledged are always immediately
resent.
resend-interval = 1 s

Transports and adapters

List of the transport drivers that will be loaded by the remoting.
A list of fully qualified config paths must be provided where
the given configuration path contains a transport-class key
pointing to an implementation class of the Transport interface.
If multiple transports are provided, the address of the first
one will be used as a default address.
enabled-transports = ["akka.remote.netty.tcp"]

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters setting in the configuration of a
transport. The available adapters should be configured in this
section by providing a name, and the fully qualified name of
their corresponding implementation. The class given here
must implement akka.akka.remote.transport.TransportAdapterProvider
and have public constructor without parameters.
adapters {

gremlin = "akka.remote.transport.FailureInjectorProvider"
trttl = "akka.remote.transport.ThrottlerProvider"

}

Default configuration for the Netty based transport drivers

netty.tcp {
The class given here must implement the akka.remote.transport.Transport
interface and offer a public constructor which takes two arguments:
1) akka.actor.ExtendedActorSystem
2) com.typesafe.config.Config
transport-class = "akka.remote.transport.netty.NettyTransport"

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters list. The last adapter in the
list is the adapter immediately above the driver, while
the first one is the top of the stack below the standard
Akka protocol
applied-adapters = []

transport-protocol = tcp

The default remote server port clients should connect to.
Default is 2552 (AKKA), use 0 if you want a random available port
This port needs to be unique for each actor system on the same machine.
port = 2552

The hostname or ip to bind the remoting to,
InetAddress.getLocalHost.getHostAddress is used if empty
hostname = ""

Enables SSL support on this transport
enable-ssl = false

2.9. Configuration 54

Akka Scala Documentation, Release 2.2.5

Sets the connectTimeoutMillis of all outbound connections,
i.e. how long a connect may take until it is timed out
connection-timeout = 15 s

If set to "<id.of.dispatcher>" then the specified dispatcher
will be used to accept inbound connections, and perform IO. If "" then
dedicated threads will be used.
Please note that the Netty driver only uses this configuration and does
not read the "akka.remote.use-dispatcher" entry. Instead it has to be
configured manually to point to the same dispatcher if needed.
use-dispatcher-for-io = ""

Sets the high water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-high-water-mark = 0b

Sets the low water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-low-water-mark = 0b

Sets the send buffer size of the Sockets,
set to 0b for platform default
send-buffer-size = 256000b

Sets the receive buffer size of the Sockets,
set to 0b for platform default
receive-buffer-size = 256000b

Maximum message size the transport will accept, but at least
32000 bytes.
Please note that UDP does not support arbitrary large datagrams,
so this setting has to be chosen carefully when using UDP.
Both send-buffer-size and receive-buffer-size settings has to
be adjusted to be able to buffer messages of maximum size.
maximum-frame-size = 128000b

Sets the size of the connection backlog
backlog = 4096

Enables the TCP_NODELAY flag, i.e. disables Nagle’s algorithm
tcp-nodelay = on

Enables TCP Keepalive, subject to the O/S kernel’s configuration
tcp-keepalive = on

Enables SO_REUSEADDR, which determines when an ActorSystem can open
the specified listen port (the meaning differs between *nix and Windows)
Valid values are "on", "off" and "off-for-windows"
due to the following Windows bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378
"off-for-windows" of course means that it's "on" for all other platforms
tcp-reuse-addr = off-for-windows

Used to configure the number of I/O worker threads on server sockets
server-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

2.9. Configuration 55

Akka Scala Documentation, Release 2.2.5

Max number of threads to cap factor-based number to
pool-size-max = 2

}

Used to configure the number of I/O worker threads on client sockets
client-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

}

netty.udp = ${akka.remote.netty.tcp}
netty.udp {

transport-protocol = udp
}

netty.ssl = ${akka.remote.netty.tcp}
netty.ssl = {

Enable SSL/TLS encryption.
This must be enabled on both the client and server to work.
enable-ssl = true

security {
This is the Java Key Store used by the server connection
key-store = "keystore"

This password is used for decrypting the key store
key-store-password = "changeme"

This password is used for decrypting the key
key-password = "changeme"

This is the Java Key Store used by the client connection
trust-store = "truststore"

This password is used for decrypting the trust store
trust-store-password = "changeme"

Protocol to use for SSL encryption, choose from:
Java 6 & 7:
'SSLv3', 'TLSv1'
Java 7:
'TLSv1.1', 'TLSv1.2'
protocol = "TLSv1"

Example: ["TLS_RSA_WITH_AES_128_CBC_SHA", "TLS_RSA_WITH_AES_256_CBC_SHA"]
You need to install the JCE Unlimited Strength Jurisdiction Policy
Files to use AES 256.
More info here:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
enabled-algorithms = ["TLS_RSA_WITH_AES_128_CBC_SHA"]

2.9. Configuration 56

Akka Scala Documentation, Release 2.2.5

There are three options, in increasing order of security:
"" or SecureRandom => (default)
"SHA1PRNG" => Can be slow because of blocking issues on Linux
"AES128CounterSecureRNG" => fastest startup and based on AES encryption
algorithm
"AES256CounterSecureRNG"
The following use one of 3 possible seed sources, depending on
availability: /dev/random, random.org and SecureRandom (provided by Java)
"AES128CounterInetRNG"
"AES256CounterInetRNG" (Install JCE Unlimited Strength Jurisdiction
Policy Files first)
Setting a value here may require you to supply the appropriate cipher
suite (see enabled-algorithms section above)
random-number-generator = ""

}
}

Default configuration for the failure injector transport adapter

gremlin {
Enable debug logging of the failure injector transport adapter
debug = off

}

}

}

akka-testkit

######################################
Akka Testkit Reference Config File
######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
test {
factor by which to scale timeouts during tests, e.g. to account for shared
build system load
timefactor = 1.0

duration of EventFilter.intercept waits after the block is finished until
all required messages are received
filter-leeway = 3s

duration to wait in expectMsg and friends outside of within() block
by default
single-expect-default = 3s

The timeout that is added as an implicit by DefaultTimeout trait
default-timeout = 5s

calling-thread-dispatcher {
type = akka.testkit.CallingThreadDispatcherConfigurator

}
}

}

2.9. Configuration 57

Akka Scala Documentation, Release 2.2.5

akka-camel

####################################
Akka Camel Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
camel {
Whether JMX should be enabled or disabled for the Camel Context
jmx = off
enable/disable streaming cache on the Camel Context
streamingCache = on
consumer {

Configured setting which determines whether one-way communications
between an endpoint and this consumer actor
should be auto-acknowledged or application-acknowledged.
This flag has only effect when exchange is in-only.
auto-ack = on

When endpoint is out-capable (can produce responses) reply-timeout is the
maximum time the endpoint can take to send the response before the message
exchange fails. This setting is used for out-capable, in-only,
manually acknowledged communication.
reply-timeout = 1m

The duration of time to await activation of an endpoint.
activation-timeout = 10s

}

#Scheme to FQCN mappings for CamelMessage body conversions
conversions {

"file" = "java.io.InputStream"
}

}
}

akka-cluster

######################################
Akka Cluster Reference Config File
######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {

cluster {
Initial contact points of the cluster.
The nodes to join automatically at startup.
Comma separated full URIs defined by a string on the form of
"akka://system@hostname:port"
Leave as empty if the node is supposed to be joined manually.
seed-nodes = []

how long to wait for one of the seed nodes to reply to initial join request
seed-node-timeout = 5s

2.9. Configuration 58

Akka Scala Documentation, Release 2.2.5

If a join request fails it will be retried after this period.
Disable join retry by specifying "off".
retry-unsuccessful-join-after = 10s

Should the 'leader' in the cluster be allowed to automatically mark
unreachable nodes as DOWN?
Using auto-down implies that two separate clusters will automatically be
formed in case of network partition.
auto-down = off

The roles of this member. List of strings, e.g. roles = ["A", "B"].
The roles are part of the membership information and can be used by
routers or other services to distribute work to certain member types,
e.g. front-end and back-end nodes.
roles = []

role {
Minimum required number of members of a certain role before the leader
changes member status of 'Joining' members to 'Up'. Typically used together
with 'Cluster.registerOnMemberUp' to defer some action, such as starting
actors, until the cluster has reached a certain size.
E.g. to require 2 nodes with role 'frontend' and 3 nodes with role 'backend':
frontend.min-nr-of-members = 2
backend.min-nr-of-members = 3
#<role-name>.min-nr-of-members = 1

}

Minimum required number of members before the leader changes member status
of 'Joining' members to 'Up'. Typically used together with
'Cluster.registerOnMemberUp' to defer some action, such as starting actors,
until the cluster has reached a certain size.
min-nr-of-members = 1

Enable/disable info level logging of cluster events
log-info = on

Enable or disable JMX MBeans for management of the cluster
jmx.enabled = on

how long should the node wait before starting the periodic tasks
maintenance tasks?
periodic-tasks-initial-delay = 1s

how often should the node send out gossip information?
gossip-interval = 1s

how often should the leader perform maintenance tasks?
leader-actions-interval = 1s

how often should the node move nodes, marked as unreachable by the failure
detector, out of the membership ring?
unreachable-nodes-reaper-interval = 1s

How often the current internal stats should be published.
A value of 0s can be used to always publish the stats, when it happens.
Disable with "off".
publish-stats-interval = off

The id of the dispatcher to use for cluster actors. If not specified
default dispatcher is used.
If specified you need to define the settings of the actual dispatcher.
use-dispatcher = ""

2.9. Configuration 59

Akka Scala Documentation, Release 2.2.5

Gossip to random node with newer or older state information, if any with
this probability. Otherwise Gossip to any random live node.
Probability value is between 0.0 and 1.0. 0.0 means never, 1.0 means always.
gossip-different-view-probability = 0.8

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used by the cluster subsystem to detect unreachable
members.
failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 8.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 1000

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 3 s

Number of member nodes that each member will send heartbeat messages to,
i.e. each node will be monitored by this number of other nodes.
monitored-by-nr-of-members = 5

When a node stops sending heartbeats to another node it will end that
with this number of EndHeartbeat messages, which will remove the
monitoring from the failure detector.
nr-of-end-heartbeats = 8

When no expected heartbeat message has been received an explicit
heartbeat request is sent to the node that should emit heartbeats.
heartbeat-request {

Grace period until an explicit heartbeat request is sent
grace-period = 10 s

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 3 s

2.9. Configuration 60

Akka Scala Documentation, Release 2.2.5

Cleanup of obsolete heartbeat requests
time-to-live = 60 s

}
}

metrics {
Enable or disable metrics collector for load-balancing nodes.
enabled = on

FQCN of the metrics collector implementation.
It must implement akka.cluster.MetricsCollector and
have public constructor with akka.actor.ActorSystem parameter.
The default SigarMetricsCollector uses JMX and Hyperic SIGAR, if SIGAR
is on the classpath, otherwise only JMX.
collector-class = "akka.cluster.SigarMetricsCollector"

How often metrics are sampled on a node.
Shorter interval will collect the metrics more often.
collect-interval = 3s

How often a node publishes metrics information.
gossip-interval = 3s

How quickly the exponential weighting of past data is decayed compared to
new data. Set lower to increase the bias toward newer values.
The relevance of each data sample is halved for every passing half-life
duration, i.e. after 4 times the half-life, a data sample’s relevance is
reduced to 6% of its original relevance. The initial relevance of a data
sample is given by 1 - 0.5 ^ (collect-interval / half-life).
See http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
moving-average-half-life = 12s

}

If the tick-duration of the default scheduler is longer than the
tick-duration configured here a dedicated scheduler will be used for
periodic tasks of the cluster, otherwise the default scheduler is used.
See akka.scheduler settings for more details.
scheduler {

tick-duration = 33ms
ticks-per-wheel = 512

}

}

Default configuration for routers
actor.deployment.default {
MetricsSelector to use
- available: "mix", "heap", "cpu", "load"
- or: Fully qualified class name of the MetricsSelector class.
The class must extend akka.cluster.routing.MetricsSelector
and have a public constructor with com.typesafe.config.Config
parameter.
- default is "mix"
metrics-selector = mix

}
actor.deployment.default.cluster {
enable cluster aware router that deploys to nodes in the cluster
enabled = off

Maximum number of routees that will be deployed on each cluster
member node.
Note that nr-of-instances defines total number of routees, but
number of routees per node will not be exceeded, i.e. if you

2.9. Configuration 61

Akka Scala Documentation, Release 2.2.5

define nr-of-instances = 50 and max-nr-of-instances-per-node = 2
it will deploy 2 routees per new member in the cluster, up to
25 members.
max-nr-of-instances-per-node = 1

Defines if routees are allowed to be located on the same node as
the head router actor, or only on remote nodes.
Useful for master-worker scenario where all routees are remote.
allow-local-routees = on

Actor path of the routees to lookup with actorFor on the member
nodes in the cluster. E.g. "/user/myservice". If this isn't defined
the routees will be deployed instead of looked up.
max-nr-of-instances-per-node should not be configured (default value is 1)
when routees-path is defined.
routees-path = ""

Use members with specified role, or all members if undefined or empty.
use-role = ""

}

Protobuf serializer for cluster messages
actor {
serializers {

akka-cluster = "akka.cluster.protobuf.ClusterMessageSerializer"
}

serialization-bindings {
"akka.cluster.ClusterMessage" = akka-cluster

}
}

}

akka-transactor

###
Akka Transactor Reference Config File
###

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {
transactor {
The timeout used for coordinated transactions across actors
coordinated-timeout = 5s

}
}

akka-agent

####################################
Akka Agent Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

2.9. Configuration 62

Akka Scala Documentation, Release 2.2.5

akka {
agent {

The dispatcher used for agent-send-off actor
send-off-dispatcher {

executor = thread-pool-executor
type = PinnedDispatcher

}

The dispatcher used for agent-alter-off actor
alter-off-dispatcher {

executor = thread-pool-executor
type = PinnedDispatcher

}
}

}

akka-zeromq

#####################################
Akka ZeroMQ Reference Config File
#####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {

zeromq {

The default timeout for a poll on the actual zeromq socket.
poll-timeout = 100ms

Timeout for creating a new socket
new-socket-timeout = 5s

socket-dispatcher {
A zeromq socket needs to be pinned to the thread that created it.
Changing this value results in weird errors and race conditions within
zeromq
executor = thread-pool-executor
type = "PinnedDispatcher"
thread-pool-executor.allow-core-timeout = off

}
}

}

akka-file-mailbox

###
Akka File Mailboxes Reference Config File
###

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.
#
For more information see <https://github.com/robey/kestrel/>

akka {
actor {

2.9. Configuration 63

Akka Scala Documentation, Release 2.2.5

mailbox {
file-based {

directory below which this queue resides
directory-path = "./_mb"

attempting to add an item after the queue reaches this size (in items)
will fail.
max-items = 2147483647

attempting to add an item after the queue reaches this size (in bytes)
will fail.
max-size = 2147483647 bytes

attempting to add an item larger than this size (in bytes) will fail.
max-item-size = 2147483647 bytes

maximum expiration time for this queue (seconds).
max-age = 0s

maximum journal size before the journal should be rotated.
max-journal-size = 16 MiB

maximum size of a queue before it drops into read-behind mode.
max-memory-size = 128 MiB

maximum overflow (multiplier) of a journal file before we re-create it.
max-journal-overflow = 10

absolute maximum size of a journal file until we rebuild it,
no matter what.
max-journal-size-absolute = 9223372036854775807 bytes

whether to drop older items (instead of newer) when the queue is full
discard-old-when-full = on

whether to keep a journal file at all
keep-journal = on

whether to sync the journal after each transaction
sync-journal = off

circuit breaker configuration
circuit-breaker {
maximum number of failures before opening breaker
max-failures = 3

duration of time beyond which a call is assumed to be timed out and
considered a failure
call-timeout = 3 seconds

duration of time to wait until attempting to reset the breaker during
which all calls fail-fast
reset-timeout = 30 seconds

}
}

}
}

}

2.9. Configuration 64

CHAPTER

THREE

ACTORS

3.1 Actors

The Actor Model provides a higher level of abstraction for writing concurrent and distributed systems. It alleviates
the developer from having to deal with explicit locking and thread management, making it easier to write correct
concurrent and parallel systems. Actors were defined in the 1973 paper by Carl Hewitt but have been popularized
by the Erlang language, and used for example at Ericsson with great success to build highly concurrent and reliable
telecom systems.

The API of Akka’s Actors is similar to Scala Actors which has borrowed some of its syntax from Erlang.

3.1.1 Creating Actors

Note: Since Akka enforces parental supervision every actor is supervised and (potentially) the supervisor of its
children, it is advisable that you familiarize yourself with Actor Systems and Supervision and Monitoring and it
may also help to read Actor References, Paths and Addresses.

Defining an Actor class

Actor classes are implemented by extending the Actor class and implementing the receive method. The
receive method should define a series of case statements (which has the type PartialFunction[Any,
Unit]) that defines which messages your Actor can handle, using standard Scala pattern matching, along with
the implementation of how the messages should be processed.

Here is an example:

import akka.actor.Actor
import akka.actor.Props
import akka.event.Logging

class MyActor extends Actor {
val log = Logging(context.system, this)
def receive = {
case "test" ⇒ log.info("received test")
case _ ⇒ log.info("received unknown message")

}
}

Please note that the Akka Actor receive message loop is exhaustive, which is different compared to Erlang and
the late Scala Actors. This means that you need to provide a pattern match for all messages that it can accept
and if you want to be able to handle unknown messages then you need to have a default case as in the example
above. Otherwise an akka.actor.UnhandledMessage(message, sender, recipient) will be
published to the ActorSystem‘s EventStream.

Note further that the return type of the behavior defined above is Unit; if the actor shall reply to the received
message then this must be done explicitly as explained below.

65

http://en.wikipedia.org/wiki/Actor_model

Akka Scala Documentation, Release 2.2.5

The result of the receive method is a partial function object, which is stored within the actor as its “initial be-
havior”, see Become/Unbecome for further information on changing the behavior of an actor after its construction.

Props

Props is a configuration class to specify options for the creation of actors, think of it as an immutable and thus
freely shareable recipe for creating an actor including associated deployment information (e.g. which dispatcher
to use, see more below). Here are some examples of how to create a Props instance.

import akka.actor.Props

val props1 = Props[MyActor]
val props3 = Props(classOf[ActorWithArgs], "arg")

The last line shows how to pass constructor arguments to the Actor being created. The presence of a matching
constructor is verified during construction of the Props object, resulting in an IllegalArgumentEception
if no or multiple matching constructors are found.

Deprecated Variants

Up to Akka 2.1 there were also the following possibilities (which are retained for a migration period):

// DEPRECATED: old case class signature
val props4 = Props(

creator = { () ⇒ new MyActor },
dispatcher = "my-dispatcher")

// DEPRECATED due to duplicate functionality with Props.apply()
val props5 = props1.withCreator(new MyActor)

// DEPRECATED due to duplicate functionality with Props.apply()
val props6 = props1.withCreator(classOf[MyActor])

// NOT RECOMMENDED: encourages to close over enclosing class
val props7 = Props(new MyActor)

The first one is deprecated because the case class structure changed between Akka 2.1 and 2.2.

The two variants in the middle are deprecated because Props are primarily concerned with actor creation and
thus the “creator” part should be explicitly set when creating an instance. In case you want to deploy one actor in
the same was as another, simply use Props(...).withDeploy(otherProps.deploy).

The last one is not technically deprecated, but it is not recommended because it encourages to close over the
enclosing scope, resulting in non-serializable Props and possibly race conditions (breaking the actor encap-
sulation). We will provide a macro-based solution in a future release which allows similar syntax without the
headaches, at which point this variant will be properly deprecated.

There were two use-cases for these methods: passing constructor arguments to the actor—which is solved by
the newly introduced Props.apply(clazz, args) method above—and creating actors “on the spot” as
anonymous classes. The latter should be solved by making these actors named inner classes instead (if they are
not declared within a top-level object then the enclosing instance’s this reference needs to be passed as the
first argument).

Warning: Declaring one actor within another is very dangerous and breaks actor encapsulation. Never pass
an actor’s this reference into Props!

3.1. Actors 66

Akka Scala Documentation, Release 2.2.5

Recommended Practices

It is a good idea to provide factory methods on the companion object of each Actor which help keeping the
creation of suitable Props as close to the actor definition as possible, thus containing the gap in type-safety
introduced by reflective instantiation within a single class instead of spreading it out across a whole code-base.
This helps especially when refactoring the actor’s constructor signature at a later point, where compiler checks
will allow this modification to be done with greater confidence than without.

object DemoActor {
/**
* Create Props for an actor of this type.

* @param name The name to be passed to this actor’s constructor.

* @return a Props for creating this actor, which can then be further configured

* (e.g. calling `.withDispatcher()` on it)

*/
def props(name: String): Props = Props(classOf[DemoActor], name)

}

class DemoActor(name: String) extends Actor {
def receive = {
case x ⇒ // some behavior

}
}

// ...

context.actorOf(DemoActor.props("hello"))

Creating Actors with Props

Actors are created by passing a Props instance into the actorOf factory method which is available on
ActorSystem and ActorContext.

import akka.actor.ActorSystem

// ActorSystem is a heavy object: create only one per application
val system = ActorSystem("mySystem")
val myActor = system.actorOf(Props[MyActor], "myactor2")

Using the ActorSystem will create top-level actors, supervised by the actor system’s provided guardian actor,
while using an actor’s context will create a child actor.

class FirstActor extends Actor {
val child = context.actorOf(Props[MyActor], name = "myChild")
// plus some behavior ...

}

It is recommended to create a hierarchy of children, grand-children and so on such that it fits the logical failure-
handling structure of the application, see Actor Systems.

The call to actorOf returns an instance of ActorRef. This is a handle to the actor instance and the only way to
interact with it. The ActorRef is immutable and has a one to one relationship with the Actor it represents. The
ActorRef is also serializable and network-aware. This means that you can serialize it, send it over the wire and
use it on a remote host and it will still be representing the same Actor on the original node, across the network.

The name parameter is optional, but you should preferably name your actors, since that is used in log messages
and for identifying actors. The name must not be empty or start with $, but it may contain URL encoded char-
acters (eg. %20 for a blank space). If the given name is already in use by another child to the same parent an
InvalidActorNameException is thrown.

Actors are automatically started asynchronously when created.

3.1. Actors 67

Akka Scala Documentation, Release 2.2.5

Dependency Injection

If your Actor has a constructor that takes parameters then those need to be part of the Props as well, as described
above. But there are cases when a factory method must be used, for example when the actual constructor arguments
are determined by a dependency injection framework.

import akka.actor.IndirectActorProducer

class DependencyInjector(applicationContext: AnyRef, beanName: String)
extends IndirectActorProducer {

override def actorClass = classOf[Actor]
override def produce =
// obtain fresh Actor instance from DI framework ...

}

val actorRef = system.actorOf(
Props(classOf[DependencyInjector], applicationContext, "hello"),
"helloBean")

Warning: You might be tempted at times to offer an IndirectActorProducer which always returns
the same instance, e.g. by using a lazy val. This is not supported, as it goes against the meaning of an
actor restart, which is described here: What Restarting Means.
When using a dependency injection framework, actor beans MUST NOT have singleton scope.

Techniques for dependency injection and integration with dependency injection frameworks are described in more
depth in the Using Akka with Dependency Injection guideline and the Akka Java Spring tutorial in Typesafe
Activator.

The Actor DSL

Simple actors—for example one-off workers or even when trying things out in the REPL—can be created more
concisely using the Act trait. The supporting infrastructure is bundled in the following import:

import akka.actor.ActorDSL._
import akka.actor.ActorSystem

implicit val system = ActorSystem("demo")

This import is assumed for all code samples throughout this section. The implicit actor system serves as
ActorRefFactory for all examples below. To define a simple actor, the following is sufficient:

val a = actor(new Act {
become {
case "hello" ⇒ sender ! "hi"

}
})

Here, actor takes the role of either system.actorOf or context.actorOf, depending on which context
it is called in: it takes an implicit ActorRefFactory, which within an actor is available in the form of the
implicit val context: ActorContext. Outside of an actor, you’ll have to either declare an implicit
ActorSystem, or you can give the factory explicitly (see further below).

The two possible ways of issuing a context.become (replacing or adding the new behavior) are offered sepa-
rately to enable a clutter-free notation of nested receives:

val a = actor(new Act {
become { // this will replace the initial (empty) behavior
case "info" ⇒ sender ! "A"
case "switch" ⇒

becomeStacked { // this will stack upon the "A" behavior

3.1. Actors 68

http://letitcrash.com/post/55958814293/akka-dependency-injection
http://typesafe.com/activator/template/akka-java-spring

Akka Scala Documentation, Release 2.2.5

case "info" ⇒ sender ! "B"
case "switch" ⇒ unbecome() // return to the "A" behavior

}
case "lobotomize" ⇒ unbecome() // OH NOES: Actor.emptyBehavior

}
})

Please note that calling unbecome more often than becomeStacked results in the original behavior being
installed, which in case of the Act trait is the empty behavior (the outer become just replaces it during construc-
tion).

Life-cycle hooks are also exposed as DSL elements (see Start Hook and Stop Hook below), where later invocations
of the methods shown below will replace the contents of the respective hooks:

val a = actor(new Act {
whenStarting { testActor ! "started" }
whenStopping { testActor ! "stopped" }

})

The above is enough if the logical life-cycle of the actor matches the restart cycles (i.e. whenStopping is
executed before a restart and whenStarting afterwards). If that is not desired, use the following two hooks
(see Restart Hooks below):

val a = actor(new Act {
become {
case "die" ⇒ throw new Exception

}
whenFailing { case m @ (cause, msg) ⇒ testActor ! m }
whenRestarted { cause ⇒ testActor ! cause }

})

It is also possible to create nested actors, i.e. grand-children, like this:

// here we pass in the ActorRefFactory explicitly as an example
val a = actor(system, "fred")(new Act {

val b = actor("barney")(new Act {
whenStarting { context.parent ! ("hello from " + self.path) }

})
become {
case x ⇒ testActor ! x

}
})

Note: In some cases it will be necessary to explicitly pass the ActorRefFactory to the actor method (you
will notice when the compiler tells you about ambiguous implicits).

The grand-child will be supervised by the child; the supervisor strategy for this relationship can also be configured
using a DSL element (supervision directives are part of the Act trait):

superviseWith(OneForOneStrategy() {
case e: Exception if e.getMessage == "hello" ⇒ Stop
case _: Exception ⇒ Resume

})

Last but not least there is a little bit of convenience magic built-in, which detects if the runtime class of the statically
given actor subtype extends the RequiresMessageQueue trait via the Stash trait (this is a complicated way
of saying that new Act with Stash would not work because its runtime erased type is just an anonymous
subtype of Act). The purpose is to automatically use the appropriate deque-based mailbox type required by
Stash. If you want to use this magic, simply extend ActWithStash:

val a = actor(new ActWithStash {
become {
case 1 ⇒ stash()

3.1. Actors 69

Akka Scala Documentation, Release 2.2.5

case 2 ⇒
testActor ! 2; unstashAll(); becomeStacked {

case 1 ⇒ testActor ! 1; unbecome()
}

}
})

The Inbox

When writing code outside of actors which shall communicate with actors, the ask pattern can be a solution (see
below), but there are two thing it cannot do: receiving multiple replies (e.g. by subscribing an ActorRef to a
notification service) and watching other actors’ lifecycle. For these purposes there is the Inbox class:

implicit val i = inbox()
echo ! "hello"
i.receive() must be("hello")

There is an implicit conversion from inbox to actor reference which means that in this example the sender reference
will be that of the actor hidden away within the inbox. This allows the reply to be received on the last line.
Watching an actor is quite simple as well:

val target = // some actor
val i = inbox()
i watch target

3.1.2 Actor API

The Actor trait defines only one abstract method, the above mentioned receive, which implements the behav-
ior of the actor.

If the current actor behavior does not match a received message, unhandled is called, which by default publishes
an akka.actor.UnhandledMessage(message, sender, recipient) on the actor system’s event
stream (set configuration item akka.actor.debug.unhandled to on to have them converted into actual
Debug messages).

In addition, it offers:

• self reference to the ActorRef of the actor

• sender reference sender Actor of the last received message, typically used as described in Reply to mes-
sages

• supervisorStrategy user overridable definition the strategy to use for supervising child actors

This strategy is typically declared inside the actor in order to have access to the actor’s internal state within
the decider function: since failure is communicated as a message sent to the supervisor and processed like
other messages (albeit outside of the normal behavior), all values and variables within the actor are available,
as is the sender reference (which will be the immediate child reporting the failure; if the original failure
occurred within a distant descendant it is still reported one level up at a time).

• context exposes contextual information for the actor and the current message, such as:

– factory methods to create child actors (actorOf)

– system that the actor belongs to

– parent supervisor

– supervised children

– lifecycle monitoring

– hotswap behavior stack as described in Become/Unbecome

3.1. Actors 70

Akka Scala Documentation, Release 2.2.5

You can import the members in the context to avoid prefixing access with context.

class FirstActor extends Actor {
import context._
val myActor = actorOf(Props[MyActor], name = "myactor")
def receive = {
case x ⇒ myActor ! x

}
}

The remaining visible methods are user-overridable life-cycle hooks which are described in the following:

def preStart(): Unit = ()

def postStop(): Unit = ()

def preRestart(reason: Throwable, message: Option[Any]): Unit = {
context.children foreach { child ⇒
context.unwatch(child)
context.stop(child)

}
postStop()

}

def postRestart(reason: Throwable): Unit = {
preStart()

}

The implementations shown above are the defaults provided by the Actor trait.

Actor Lifecycle

3.1. Actors 71

Akka Scala Documentation, Release 2.2.5

A path in an actor system represents a “place” which might be occupied by a living actor. Initially (apart from
system initialized actors) a path is empty. When actorOf() is called it assigns an incarnation of the actor
described by the passed Props to the given path. An actor incarnation is identified by the path and a UID. A
restart only swaps the Actor instance defined by the Props but the incarnation and hence the UID remains the
same.

The lifecycle of an incarnation ends when the actor is stopped. At that point the appropriate lifecycle events are
called and watching actors are notified of the termination. After the incarnation is stopped, the path can be reused
again by creating an actor with actorOf(). In this case the name of the new incarnation will be the same as the
previous one but the UIDs will differ.

An ActorRef always represents an incarnation (path and UID) not just a given path. Therefore if an actor is
stopped and a new one with the same name is created an ActorRef of the old incarnation will not point to the
new one.

ActorSelection on the other hand points to the path (or multiple paths if wildcards are used) and is completely
oblivious to which incarnation is currently occupying it. ActorSelection cannot be watched for this reason.
It is possible to resolve the current incarnation’s ActorRef living under the path by sending an Identify
message to the ActorSelection which will be replied to with an ActorIdentity containing the correct
reference (see Identifying Actors via Actor Selection). This can also be done with the resolveOne method of
the ActorSelection, which returns a Future of the matching ActorRef.

Lifecycle Monitoring aka DeathWatch

In order to be notified when another actor terminates (i.e. stops permanently, not temporary failure and restart), an
actor may register itself for reception of the Terminatedmessage dispatched by the other actor upon termination
(see Stopping Actors). This service is provided by the DeathWatch component of the actor system.

Registering a monitor is easy:

import akka.actor.{ Actor, Props, Terminated }

class WatchActor extends Actor {
val child = context.actorOf(Props.empty, "child")
context.watch(child) // <-- this is the only call needed for registration
var lastSender = system.deadLetters

def receive = {
case "kill" ⇒
context.stop(child); lastSender = sender

case Terminated(`child`) ⇒ lastSender ! "finished"
}

}

It should be noted that the Terminated message is generated independent of the order in which registration and
termination occur. In particular, the watching actor will receive a Terminated message even if the watched
actor has already been terminated at the time of registration.

Registering multiple times does not necessarily lead to multiple messages being generated, but there is no guaran-
tee that only exactly one such message is received: if termination of the watched actor has generated and queued
the message, and another registration is done before this message has been processed, then a second message will
be queued, because registering for monitoring of an already terminated actor leads to the immediate generation of
the Terminated message.

It is also possible to deregister from watching another actor’s liveliness using context.unwatch(target).
This works even if the Terminated message has already been enqueued in the mailbox; after calling unwatch
no Terminated message for that actor will be processed anymore.

Start Hook

Right after starting the actor, its preStart method is invoked.

3.1. Actors 72

Akka Scala Documentation, Release 2.2.5

override def preStart() {
child = context.actorOf(Props[MyActor], "child")

}

This method is called when the actor is first created. During restarts it is called by the default implementation of
postRestart, which means that by overriding that method you can choose whether the initialization code in
this method is called only exactly once for this actor or for every restart. Initialization code which is part of the
actor’s constructor will always be called when an instance of the actor class is created, which happens at every
restart.

Restart Hooks

All actors are supervised, i.e. linked to another actor with a fault handling strategy. Actors may be restarted in
case an exception is thrown while processing a message (see Supervision and Monitoring). This restart involves
the hooks mentioned above:

1. The old actor is informed by calling preRestart with the exception which caused the restart and the
message which triggered that exception; the latter may be None if the restart was not caused by processing
a message, e.g. when a supervisor does not trap the exception and is restarted in turn by its supervisor, or if
an actor is restarted due to a sibling’s failure. If the message is available, then that message’s sender is also
accessible in the usual way (i.e. by calling sender).

This method is the best place for cleaning up, preparing hand-over to the fresh actor instance, etc. By default
it stops all children and calls postStop.

2. The initial factory from the actorOf call is used to produce the fresh instance.

3. The new actor’s postRestart method is invoked with the exception which caused the restart. By default
the preStart is called, just as in the normal start-up case.

An actor restart replaces only the actual actor object; the contents of the mailbox is unaffected by the restart,
so processing of messages will resume after the postRestart hook returns. The message that triggered the
exception will not be received again. Any message sent to an actor while it is being restarted will be queued to its
mailbox as usual.

Warning: Be aware that the ordering of failure notifications relative to user messages is not deterministic. In
particular, a parent might restart its child before it has processed the last messages sent by the child before the
failure. See Discussion: Message Ordering for details.

Stop Hook

After stopping an actor, its postStop hook is called, which may be used e.g. for deregistering this actor from
other services. This hook is guaranteed to run after message queuing has been disabled for this actor, i.e. messages
sent to a stopped actor will be redirected to the deadLetters of the ActorSystem.

3.1.3 Identifying Actors via Actor Selection

As described in Actor References, Paths and Addresses, each actor has a unique logical path, which is obtained
by following the chain of actors from child to parent until reaching the root of the actor system, and it has a
physical path, which may differ if the supervision chain includes any remote supervisors. These paths are used
by the system to look up actors, e.g. when a remote message is received and the recipient is searched, but they
are also useful more directly: actors may look up other actors by specifying absolute or relative paths—logical or
physical—and receive back an ActorSelection with the result:

// will look up this absolute path
context.actorSelection("/user/serviceA/aggregator")
// will look up sibling beneath same supervisor
context.actorSelection("../joe")

3.1. Actors 73

Akka Scala Documentation, Release 2.2.5

The supplied path is parsed as a java.net.URI, which basically means that it is split on / into path elements.
If the path starts with /, it is absolute and the look-up starts at the root guardian (which is the parent of "/user");
otherwise it starts at the current actor. If a path element equals .., the look-up will take a step “up” towards the
supervisor of the currently traversed actor, otherwise it will step “down” to the named child. It should be noted
that the .. in actor paths here always means the logical structure, i.e. the supervisor.

The path elements of an actor selection may contain wildcard patterns allowing for broadcasting of messages to
that section:

// will look all children to serviceB with names starting with worker
context.actorSelection("/user/serviceB/worker*")
// will look up all siblings beneath same supervisor
context.actorSelection("../*")

Messages can be sent via the ActorSelection and the path of the ActorSelection is looked up when
delivering each message. If the selection does not match any actors the message will be dropped.

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
sender reference of the reply from the actor. There is a built-in Identify message that all Actors will un-
derstand and automatically reply to with a ActorIdentity message containing the ActorRef. This message
is handled specially by the actors which are traversed in the sense that if a concrete name lookup fails (i.e. a
non-wildcard path element does not correspond to a live actor) then a negative result is generated. Please note that
this does not mean that delivery of that reply is guaranteed, it still is a normal message.

import akka.actor.{ Actor, Props, Identify, ActorIdentity, Terminated }

class Follower extends Actor {
val identifyId = 1
context.actorSelection("/user/another") ! Identify(identifyId)

def receive = {
case ActorIdentity(`identifyId`, Some(ref)) ⇒

context.watch(ref)
context.become(active(ref))

case ActorIdentity(`identifyId`, None) ⇒ context.stop(self)

}

def active(another: ActorRef): Actor.Receive = {
case Terminated(`another`) ⇒ context.stop(self)

}
}

You can also acquire an ActorRef for an ActorSelection with the resolveOne method of the
ActorSelection. It returns a Future of the matching ActorRef if such an actor exists. It is completed
with failure [[akka.actor.ActorNotFound]] if no such actor exists or the identification didn’t complete within the
supplied timeout.

Remote actor addresses may also be looked up, if remoting is enabled:

context.actorSelection("akka.tcp://app@otherhost:1234/user/serviceB")

An example demonstrating actor look-up is given in Remote Lookup.

Note: actorFor is deprecated in favor of actorSelection because actor references acquired with
actorFor behaves different for local and remote actors. In the case of a local actor reference, the named
actor needs to exist before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This
will be true even if an actor with that exact path is created after acquiring the actor reference. For remote actor
references acquired with actorFor the behaviour is different and sending messages to such a reference will under
the hood look up the actor by path on the remote system for every message send.

3.1. Actors 74

Akka Scala Documentation, Release 2.2.5

3.1.4 Messages and immutability

IMPORTANT: Messages can be any kind of object but have to be immutable. Scala can’t enforce immutability
(yet) so this has to be by convention. Primitives like String, Int, Boolean are always immutable. Apart from these
the recommended approach is to use Scala case classes which are immutable (if you don’t explicitly expose the
state) and works great with pattern matching at the receiver side.

Here is an example:

// define the case class
case class Register(user: User)

// create a new case class message
val message = Register(user)

3.1.5 Send messages

Messages are sent to an Actor through one of the following methods.

• ! means “fire-and-forget”, e.g. send a message asynchronously and return immediately. Also known as
tell.

• ? sends a message asynchronously and returns a Future representing a possible reply. Also known as
ask.

Message ordering is guaranteed on a per-sender basis.

Note: There are performance implications of using ask since something needs to keep track of when it times
out, there needs to be something that bridges a Promise into an ActorRef and it also needs to be reachable
through remoting. So always prefer tell for performance, and only ask if you must.

Tell: Fire-forget

This is the preferred way of sending messages. No blocking waiting for a message. This gives the best concurrency
and scalability characteristics.

actorRef ! message

If invoked from within an Actor, then the sending actor reference will be implicitly passed along with the message
and available to the receiving Actor in its sender: ActorRef member field. The target actor can use this to
reply to the original sender, by using sender ! replyMsg.

If invoked from an instance that is not an Actor the sender will be deadLetters actor reference by default.

Ask: Send-And-Receive-Future

The ask pattern involves actors as well as futures, hence it is offered as a use pattern rather than a method on
ActorRef:

import akka.pattern.{ ask, pipe }
import system.dispatcher // The ExecutionContext that will be used
case class Result(x: Int, s: String, d: Double)
case object Request

implicit val timeout = Timeout(5 seconds) // needed for `?` below

val f: Future[Result] =
for {
x ← ask(actorA, Request).mapTo[Int] // call pattern directly
s ← (actorB ask Request).mapTo[String] // call by implicit conversion

3.1. Actors 75

Akka Scala Documentation, Release 2.2.5

d ← (actorC ? Request).mapTo[Double] // call by symbolic name
} yield Result(x, s, d)

f pipeTo actorD // .. or ..
pipe(f) to actorD

This example demonstrates ask together with the pipeTo pattern on futures, because this is likely to be a com-
mon combination. Please note that all of the above is completely non-blocking and asynchronous: ask produces
a Future, three of which are composed into a new future using the for-comprehension and then pipeTo installs
an onComplete-handler on the future to affect the submission of the aggregated Result to another actor.

Using ask will send a message to the receiving Actor as with tell, and the receiving actor must reply with
sender ! reply in order to complete the returned Future with a value. The ask operation involves
creating an internal actor for handling this reply, which needs to have a timeout after which it is destroyed in order
not to leak resources; see more below.

Warning: To complete the future with an exception you need send a Failure message to the sender. This is
not done automatically when an actor throws an exception while processing a message.

try {
val result = operation()
sender ! result

} catch {
case e: Exception ⇒
sender ! akka.actor.Status.Failure(e)
throw e

}

If the actor does not complete the future, it will expire after the timeout period, completing it with an
AskTimeoutException. The timeout is taken from one of the following locations in order of precedence:

1. explicitly given timeout as in:

import scala.concurrent.duration._
import akka.pattern.ask
val future = myActor.ask("hello")(5 seconds)

2. implicit argument of type akka.util.Timeout, e.g.

import scala.concurrent.duration._
import akka.util.Timeout
import akka.pattern.ask
implicit val timeout = Timeout(5 seconds)
val future = myActor ? "hello"

See Futures for more information on how to await or query a future.

The onComplete, onSuccess, or onFailure methods of the Future can be used to register a callback to
get a notification when the Future completes. Gives you a way to avoid blocking.

Warning: When using future callbacks, such as onComplete, onSuccess, and onFailure, inside ac-
tors you need to carefully avoid closing over the containing actor’s reference, i.e. do not call methods or access
mutable state on the enclosing actor from within the callback. This would break the actor encapsulation and
may introduce synchronization bugs and race conditions because the callback will be scheduled concurrently
to the enclosing actor. Unfortunately there is not yet a way to detect these illegal accesses at compile time. See
also: Actors and shared mutable state

Forward message

You can forward a message from one actor to another. This means that the original sender address/reference is
maintained even though the message is going through a ‘mediator’. This can be useful when writing actors that

3.1. Actors 76

Akka Scala Documentation, Release 2.2.5

work as routers, load-balancers, replicators etc.

target forward message

3.1.6 Receive messages

An Actor has to implement the receive method to receive messages:

type Receive = PartialFunction[Any, Unit]

def receive: Actor.Receive

This method returns a PartialFunction, e.g. a ‘match/case’ clause in which the message can be matched
against the different case clauses using Scala pattern matching. Here is an example:

import akka.actor.Actor
import akka.actor.Props
import akka.event.Logging

class MyActor extends Actor {
val log = Logging(context.system, this)
def receive = {
case "test" ⇒ log.info("received test")
case _ ⇒ log.info("received unknown message")

}
}

3.1.7 Reply to messages

If you want to have a handle for replying to a message, you can use sender, which gives you an ActorRef.
You can reply by sending to that ActorRef with sender ! replyMsg. You can also store the ActorRef for
replying later, or passing on to other actors. If there is no sender (a message was sent without an actor or future
context) then the sender defaults to a ‘dead-letter’ actor ref.

case request =>
val result = process(request)
sender ! result // will have dead-letter actor as default

3.1.8 Receive timeout

The ActorContext setReceiveTimeout defines the inactivity timeout after which the sending of a Re-
ceiveTimeout message is triggered. When specified, the receive function should be able to handle an
akka.actor.ReceiveTimeout message. 1 millisecond is the minimum supported timeout.

Please note that the receive timeout might fire and enqueue the ReceiveTimeout message right after another mes-
sage was enqueued; hence it is not guaranteed that upon reception of the receive timeout there must have been
an idle period beforehand as configured via this method.

Once set, the receive timeout stays in effect (i.e. continues firing repeatedly after inactivity periods). Pass in
Duration.Undefined to switch off this feature.

import akka.actor.ReceiveTimeout
import scala.concurrent.duration._
class MyActor extends Actor {

// To set an initial delay
context.setReceiveTimeout(30 milliseconds)
def receive = {
case "Hello" ⇒
// To set in a response to a message
context.setReceiveTimeout(100 milliseconds)

3.1. Actors 77

Akka Scala Documentation, Release 2.2.5

case ReceiveTimeout ⇒
// To turn it off
context.setReceiveTimeout(Duration.Undefined)
throw new RuntimeException("Receive timed out")

}
}

3.1.9 Stopping actors

Actors are stopped by invoking the stop method of a ActorRefFactory, i.e. ActorContext or
ActorSystem. Typically the context is used for stopping child actors and the system for stopping top level
actors. The actual termination of the actor is performed asynchronously, i.e. stop may return before the actor is
stopped.

Processing of the current message, if any, will continue before the actor is stopped, but additional messages in the
mailbox will not be processed. By default these messages are sent to the deadLetters of the ActorSystem,
but that depends on the mailbox implementation.

Termination of an actor proceeds in two steps: first the actor suspends its mailbox processing and sends a stop
command to all its children, then it keeps processing the internal termination notifications from its children until
the last one is gone, finally terminating itself (invoking postStop, dumping mailbox, publishing Terminated
on the DeathWatch, telling its supervisor). This procedure ensures that actor system sub-trees terminate in an
orderly fashion, propagating the stop command to the leaves and collecting their confirmation back to the stopped
supervisor. If one of the actors does not respond (i.e. processing a message for extended periods of time and
therefore not receiving the stop command), this whole process will be stuck.

Upon ActorSystem.shutdown, the system guardian actors will be stopped, and the aforementioned process
will ensure proper termination of the whole system.

The postStop hook is invoked after an actor is fully stopped. This enables cleaning up of resources:

override def postStop() {
// clean up some resources ...

}

Note: Since stopping an actor is asynchronous, you cannot immediately reuse the name of the child you just
stopped; this will result in an InvalidActorNameException. Instead, watch the terminating actor and
create its replacement in response to the Terminated message which will eventually arrive.

PoisonPill

You can also send an actor the akka.actor.PoisonPill message, which will stop the actor when the mes-
sage is processed. PoisonPill is enqueued as ordinary messages and will be handled after messages that were
already queued in the mailbox.

Graceful Stop

gracefulStop is useful if you need to wait for termination or compose ordered termination of several actors:

import akka.pattern.gracefulStop
import scala.concurrent.Await

try {
val stopped: Future[Boolean] = gracefulStop(actorRef, 5 seconds)
Await.result(stopped, 6 seconds)
// the actor has been stopped

} catch {
// the actor wasn't stopped within 5 seconds

3.1. Actors 78

Akka Scala Documentation, Release 2.2.5

case e: akka.pattern.AskTimeoutException ⇒
}

When gracefulStop() returns successfully, the actor’s postStop() hook will have been executed: there
exists a happens-before edge between the end of postStop() and the return of gracefulStop().

Warning: Keep in mind that an actor stopping and its name being deregistered are separate events which
happen asynchronously from each other. Therefore it may be that you will find the name still in use after
gracefulStop() returned. In order to guarantee proper deregistration, only reuse names from within a
supervisor you control and only in response to a Terminated message, i.e. not for top-level actors.

3.1.10 Become/Unbecome

Upgrade

Akka supports hotswapping the Actor’s message loop (e.g. its implementation) at runtime: invoke the
context.become method from within the Actor. become takes a PartialFunction[Any, Unit] that
implements the new message handler. The hotswapped code is kept in a Stack which can be pushed and popped.

Warning: Please note that the actor will revert to its original behavior when restarted by its Supervisor.

To hotswap the Actor behavior using become:

class HotSwapActor extends Actor {
import context._
def angry: Receive = {
case "foo" ⇒ sender ! "I am already angry?"
case "bar" ⇒ become(happy)

}

def happy: Receive = {
case "bar" ⇒ sender ! "I am already happy :-)"
case "foo" ⇒ become(angry)

}

def receive = {
case "foo" ⇒ become(angry)
case "bar" ⇒ become(happy)

}
}

This variant of the become method is useful for many different things, such as to implement a Finite State
Machine (FSM, for an example see Dining Hakkers). It will replace the current behavior (i.e. the top of the
behavior stack), which means that you do not use unbecome, instead always the next behavior is explicitly
installed.

The other way of using become does not replace but add to the top of the behavior stack. In this case care must
be taken to ensure that the number of “pop” operations (i.e. unbecome) matches the number of “push” ones in
the long run, otherwise this amounts to a memory leak (which is why this behavior is not the default).

case object Swap
class Swapper extends Actor {

import context._
val log = Logging(system, this)

def receive = {
case Swap ⇒

log.info("Hi")
become({

3.1. Actors 79

http://github.com/akka/akka/tree/v2.2.5/akka-samples/akka-sample-fsm/src/main/scala/DiningHakkersOnBecome.scala

Akka Scala Documentation, Release 2.2.5

case Swap ⇒
log.info("Ho")
unbecome() // resets the latest 'become' (just for fun)

}, discardOld = false) // push on top instead of replace
}

}

object SwapperApp extends App {
val system = ActorSystem("SwapperSystem")
val swap = system.actorOf(Props[Swapper], name = "swapper")
swap ! Swap // logs Hi
swap ! Swap // logs Ho
swap ! Swap // logs Hi
swap ! Swap // logs Ho
swap ! Swap // logs Hi
swap ! Swap // logs Ho

}

Encoding Scala Actors nested receives without accidentally leaking memory

See this Unnested receive example.

3.1.11 Stash

The Stash trait enables an actor to temporarily stash away messages that can not or should not be handled
using the actor’s current behavior. Upon changing the actor’s message handler, i.e., right before invoking
context.become or context.unbecome, all stashed messages can be “unstashed”, thereby prepending
them to the actor’s mailbox. This way, the stashed messages can be processed in the same order as they have been
received originally.

Note: The trait Stash extends the marker trait RequiresMessageQueue[DequeBasedMessageQueueSemantics]
which requests the system to automatically choose a deque based mailbox implementation for the actor. If you
want more control over the mailbox, see the documentation on mailboxes: Mailboxes.

Here is an example of the Stash in action:

import akka.actor.Stash
class ActorWithProtocol extends Actor with Stash {

def receive = {
case "open" ⇒
unstashAll()
context.become({

case "write" ⇒ // do writing...
case "close" ⇒
unstashAll()
context.unbecome()

case msg ⇒ stash()
}, discardOld = false) // stack on top instead of replacing

case msg ⇒ stash()
}

}

Invoking stash() adds the current message (the message that the actor received last) to the actor’s stash.
It is typically invoked when handling the default case in the actor’s message handler to stash messages that
aren’t handled by the other cases. It is illegal to stash the same message twice; to do so results in an
IllegalStateException being thrown. The stash may also be bounded in which case invoking stash()
may lead to a capacity violation, which results in a StashOverflowException. The capacity of the stash
can be configured using the stash-capacity setting (an Int) of the dispatcher’s configuration.

3.1. Actors 80

http://github.com/akka/akka/tree/v2.2.5/akka-docs/rst/scala/code/docs/actor/UnnestedReceives.scala

Akka Scala Documentation, Release 2.2.5

Invoking unstashAll() enqueues messages from the stash to the actor’s mailbox until the capacity of the mail-
box (if any) has been reached (note that messages from the stash are prepended to the mailbox). In case a bounded
mailbox overflows, a MessageQueueAppendFailedException is thrown. The stash is guaranteed to be
empty after calling unstashAll().

The stash is backed by a scala.collection.immutable.Vector. As a result, even a very large number
of messages may be stashed without a major impact on performance.

Warning: Note that the Stash trait must be mixed into (a subclass of) the Actor trait before any trait/class
that overrides the preRestart callback. This means it’s not possible to write Actor with MyActor
with Stash if MyActor overrides preRestart.

Note that the stash is part of the ephemeral actor state, unlike the mailbox. Therefore, it should be managed like
other parts of the actor’s state which have the same property. The Stash trait’s implementation of preRestart
will call unstashAll(), which is usually the desired behavior.

Note: If you want to enforce that your actor can only work with an unbounded stash, then you should use the
UnboundedStash trait instead.

3.1.12 Killing an Actor

You can kill an actor by sending a Kill message. This will cause the actor to throw a
ActorKilledException, triggering a failure. The actor will suspend operation and its supervisor will be
asked how to handle the failure, which may mean resuming the actor, restarting it or terminating it completely.
See What Supervision Means for more information.

Use Kill like this:

// kill the 'victim' actor
victim ! Kill

3.1.13 Actors and exceptions

It can happen that while a message is being processed by an actor, that some kind of exception is thrown, e.g. a
database exception.

What happens to the Message

If an exception is thrown while a message is being processed (i.e. taken out of its mailbox and handed over to the
current behavior), then this message will be lost. It is important to understand that it is not put back on the mailbox.
So if you want to retry processing of a message, you need to deal with it yourself by catching the exception and
retry your flow. Make sure that you put a bound on the number of retries since you don’t want a system to livelock
(so consuming a lot of cpu cycles without making progress). Another possibility would be to have a look at the
PeekMailbox pattern.

What happens to the mailbox

If an exception is thrown while a message is being processed, nothing happens to the mailbox. If the actor is
restarted, the same mailbox will be there. So all messages on that mailbox will be there as well.

What happens to the actor

If code within an actor throws an exception, that actor is suspended and the supervision process is started (see Su-
pervision and Monitoring). Depending on the supervisor’s decision the actor is resumed (as if nothing happened),
restarted (wiping out its internal state and starting from scratch) or terminated.

3.1. Actors 81

Akka Scala Documentation, Release 2.2.5

3.1.14 Extending Actors using PartialFunction chaining

A bit advanced but very useful way of defining a base message handler and then extend that, either through
inheritance or delegation, is to use PartialFunction.orElse chaining.

abstract class GenericActor extends Actor {
// to be defined in subclassing actor
def specificMessageHandler: Receive

// generic message handler
def genericMessageHandler: Receive = {
case event ⇒ printf("generic: %s\n", event)

}

def receive = specificMessageHandler orElse genericMessageHandler
}

class SpecificActor extends GenericActor {
def specificMessageHandler = {
case event: MyMsg ⇒ printf("specific: %s\n", event.subject)

}
}

case class MyMsg(subject: String)

Or:

class PartialFunctionBuilder[A, B] {
import scala.collection.immutable.Vector

// Abbreviate to make code fit
type PF = PartialFunction[A, B]

private var pfsOption: Option[Vector[PF]] = Some(Vector.empty)

private def mapPfs[C](f: Vector[PF] ⇒ (Option[Vector[PF]], C)): C = {
pfsOption.fold(throw new IllegalStateException("Already built"))(f) match {

case (newPfsOption, result) ⇒ {
pfsOption = newPfsOption
result

}
}

}

def +=(pf: PF): Unit =
mapPfs { case pfs ⇒ (Some(pfs :+ pf), ()) }

def result(): PF =
mapPfs { case pfs ⇒ (None, pfs.foldLeft[PF](Map.empty) { _ orElse _ }) }

}

trait ComposableActor extends Actor {
protected lazy val receiveBuilder = new PartialFunctionBuilder[Any, Unit]
final def receive = receiveBuilder.result()

}

trait TheirComposableActor extends ComposableActor {
receiveBuilder += {
case "foo" ⇒ sender ! "foo received"

}
}

class MyComposableActor extends TheirComposableActor {

3.1. Actors 82

Akka Scala Documentation, Release 2.2.5

receiveBuilder += {
case "bar" ⇒ sender ! "bar received"

}
}

3.1.15 Initialization patterns

The rich lifecycle hooks of Actors provide a useful toolkit to implement various initialization patterns. During the
lifetime of an ActorRef, an actor can potentially go through several restarts, where the old instance is replaced
by a fresh one, invisibly to the outside observer who only sees the ActorRef.

One may think about the new instances as “incarnations”. Initialization might be necessary for every incarnation
of an actor, but sometimes one needs initialization to happen only at the birth of the first instance when the
ActorRef is created. The following sections provide patterns for different initialization needs.

Initialization via constructor

Using the constructor for initialization has various benefits. First of all, it makes it possible to use val fields to
store any state that does not change during the life of the actor instance, making the implementation of the actor
more robust. The constructor is invoked for every incarnation of the actor, therefore the internals of the actor can
always assume that proper initialization happened. This is also the drawback of this approach, as there are cases
when one would like to avoid reinitializing internals on restart. For example, it is often useful to preserve child
actors across restarts. The following section provides a pattern for this case.

Initialization via preStart

The method preStart() of an actor is only called once directly during the initialization of the first instance,
that is, at creation of its ActorRef. In the case of restarts, preStart() is called from postRestart(),
therefore if not overridden, preStart() is called on every incarnation. However, overriding postRestart()
one can disable this behavior, and ensure that there is only one call to preStart().

One useful usage of this pattern is to disable creation of new ActorRefs for children during restarts. This can
be achieved by overriding preRestart():

override def preStart(): Unit = {
// Initialize children here

}

// Overriding postRestart to disable the call to preStart()
// after restarts
override def postRestart(reason: Throwable): Unit = ()

// The default implementation of preRestart() stops all the children
// of the actor. To opt-out from stopping the children, we
// have to override preRestart()
override def preRestart(reason: Throwable, message: Option[Any]): Unit = {

// Keep the call to postStop(), but no stopping of children
postStop()

}

Please note, that the child actors are still restarted, but no new ActorRef is created. One can recursively apply
the same principles for the children, ensuring that their preStart() method is called only at the creation of
their refs.

For more information see What Restarting Means.

3.1. Actors 83

Akka Scala Documentation, Release 2.2.5

Initialization via message passing

There are cases when it is impossible to pass all the information needed for actor initialization in the constructor,
for example in the presence of circular dependencies. In this case the actor should listen for an initialization
message, and use become() or a finite state-machine state transition to encode the initialized and uninitialized
states of the actor.

var initializeMe: Option[String] = None

override def receive = {
case "init" ⇒
initializeMe = Some("Up and running")
context.become(initialized, discardOld = true)

}

def initialized: Receive = {
case "U OK?" ⇒ initializeMe foreach { sender ! _ }

}

If the actor may receive messages before it has been initialized, a useful tool can be the Stash to save messages
until the initialization finishes, and replaying them after the actor became initialized.

Warning: This pattern should be used with care, and applied only when none of the patterns above are
applicable. One of the potential issues is that messages might be lost when sent to remote actors. Also,
publishing an ActorRef in an uninitialized state might lead to the condition that it receives a user message
before the initialization has been done.

3.2 Typed Channels (EXPERIMENTAL)

Note: This is a preview of the upcoming Typed Channels support, its API may change during development up to
the released version where the EXPERIMENTAL label is removed.

3.2.1 Motivation

Actors derive great strength from their strong encapsulation, which enables internal restarts as well as changing
behavior and also composition. The last one is enabled by being able to inject an actor into a message exchange
transparently, because all either side ever sees is an ActorRef. The straight-forward way to implement this
encapsulation is to keep the actor references untyped, and before the advent of macros in Scala 2.10 this was the
only tractable way.

As a motivation for change consider the following simple example:

trait Request
case class Command(msg: String) extends Request

trait Reply
case object CommandSuccess extends Reply
case class CommandFailure(msg: String) extends Reply

val requestProcessor = someActor
requestProcessor ! Command

This is an error which is quite common, and the reason is that the compiler does not catch it and cannot warn
about it. Now if there were some type restrictions on which messages the commandProcessor can process,
that would be a different story:

3.2. Typed Channels (EXPERIMENTAL) 84

Akka Scala Documentation, Release 2.2.5

val requestProcessor = new ChannelRef[(Request, Reply) :+: TNil](someActor)
requestProcessor <-!- Command // this does not compile

The ChannelRef wraps a normal untyped ActorRef, but it expresses a type constraint, namely that this
channel accepts only messages of type Request, to which it may reply with messages of type Reply. The
types do not express any guarantees on how many messages will be exchanged, whether they will be received or
processed, or whether a reply will actually be sent. They only restrict those actions which are known to be doomed
already at compile time. In this case the second line would flag an error, since the companion object Command is
not an instance of type Request.

While this example looks pretty simple, the implications are profound. In order to be useful, the system must be
as reliable as you would expect a type system to be. This means that unless you step outside of it (i.e. doing the
equivalent of .asInstanceOf[_]) you shall be protected, failures shall be recognized and flagged. There are
a number of challenges included in this requirement, which are discussed in The Design Background below.

3.2.2 Terminology

type Channel[I, O] = (I, O)
A Channel is a pair of an input type and and output type. The input type is the type of message accepted by
the channel, the output type is the possible reply type and may be Nothing to signify that no reply is sent.
The input type cannot be Nothing.

type ChannelList
A ChannelList is an ordered collection of Channels, without further restriction on the input or output types
of these. This means that a single input type may be associated with multiple output types within the same
ChannelList.

type TNil <: ChannelList
The empty ChannelList.

type :+:[Channel, ChannelList] <: ChannelList
This binary type constructor is used to build up lists of Channels, for which infix notation will be most
convenient:

(MsgA, MsgB) :+: (MsgC, MsgD) :+: TNil

class ChannelRef[T <: ChannelList]
A ChannelRef is what is referred to above as the channel reference, it bears the ChannelList which de-
scribes all input and output types and their relation for the referenced actor. It also contains the underlying
ActorRef.

trait Channels[P <: ChannelList, C <: ChannelList]
A mixin for the Actor trait which is parameterized in the channel requirements this actor has for its
parentChannel (P) and its selfChannel (C) (corresponding to context.parent and self for untyped
Actors, respectively).

selfChannel
An Actor with Channels[P, C] has a selfChannel of type ChannelRef[C]. This is the
same type of channel reference which is obtained by creating an instance of this actor.

parentChannel
An Actor with Channels[P, C] has a parentChannel of type ChannelRef[P].

type ReplyChannels[T <: ChannelList] <: ChannelList
Within an Actor with Channels[_, _] which takes a fully generic channel, i.e. a type argument T
<: ChannelList which is part of its selfChannel type, this channel’s reply types are not known. The
definition of this channel uses the ReplyChannels type to abstractly refer to this unknown set of channels in
order to forward a reply from a ChannelRef[T] back to the original sender. This operation’s type-safety
is ensured at the sender’s site by way of the ping-pong analysis described below.

class WrappedMessage[T <: ChannelList, LUB]
Scala’s type system cannot directly express type unions. Asking an actor with a given input type may result

3.2. Typed Channels (EXPERIMENTAL) 85

Akka Scala Documentation, Release 2.2.5

in multiple possible reply types, hence the Future holding this reply will contain the value wrapped inside
a container which carries this type (only at compile-time). The type parameter LUB is the least upper bound
of all input channels contained in the ChannelList T.

3.2.3 Sending Messages across Channels

Sending messages is best demonstrated in a quick overview of the basic operations:

implicit val dummySender: ChannelRef[(Any, Nothing) :+: TNil] = ???
implicit val timeout: Timeout = ??? // for the ask operations

val channelA: ChannelRef[(MsgA, MsgB) :+: TNil] = ???
val channelA2: ChannelRef[(MsgA, MsgB) :+: (MsgA, MsgC) :+: TNil] = ???
val channelB: ChannelRef[(MsgB, MsgC) :+: TNil] = ???
val channelC: ChannelRef[(MsgC, MsgD) :+: TNil] = ???

val a = new MsgA
val fA = Future { new MsgA }

channelA <-!- a // send a to channelA
a -!-> channelA // same thing as above

channelA <-!- fA // eventually send the future’s value to channelA
fA -!-> channelA // same thing as above

val fB: Future[MsgB] = channelA <-?- a // ask the actor
a -?-> channelA // same thing as above

// ask the actor with multiple reply types
// return type given in full for illustration
val fM: Future[WrappedMessage[//
(MsgB, Nothing) :+: (MsgC, Nothing) :+: TNil, Msg]] = channelA2 <-?- a
val fMunwrapped: Future[Msg] = fM.lub

channelA <-?- fA // eventually ask the actor, return the future
fA -?-> channelA // same thing as above

// chaining works as well
a -?-> channelA -?-> channelB -!-> channelC

The first line is included so that the code compiles, since all message sends including ! will check the implicitly
found selfChannel for compatibility with the target channel’s reply types. In this case we want to demonstrate just
the syntax of sending, hence the dummy sender which accepts everything and replies never.

Presupposing three channel references of chainable types (and a fourth one for demonstrating multiple reply type),
an input value a and a Future holding such a value, we demonstrate the two basic operations which are well known
from untyped actors: tell/! and ask/?. The type of the Future returned by the ask operation on channelA2 may
seem surprising at first, but keeping track of all possible reply types is necessary to enable sending of replies to
other actors which do support all possibilities. This is especially handy in situations like the one demonstrated on
the last line. What the last line does is the following:

• it asks channelA, which returns a Future

• a callback is installed on the Future which will use the reply value of channelA and ask channelB with it,
returning another Future

• a callback is installed on that Future to send the reply value of channelB to channelC, returning a Future
with that previously sent value (using andThen)

This example also motivates the introduction of the “turned-around” syntax where messages flow more naturally
from left to right, instead of the standard object-oriented view of having the tell method operate on the ActorRef
given to the left.

This example informally introduced what is more precisely specified in the following subsection.

3.2. Typed Channels (EXPERIMENTAL) 86

Akka Scala Documentation, Release 2.2.5

The Rules

Operations on typed channels are composable and obey a few simple rules:

• the message to be sent can be one of three things:

– a Future[_], in which case the contained value will be sent once available; the value will be un-
wrapped if it is a WrappedMessage[_, _]

– a WrappedMessage[_, _], which will be unwrapped (i.e. only the value is sent)

– everything else is sent as is

• the operators are fully symmetric, i.e. -!-> and <-!- do the same thing provided the arguments also
switch places

• sending with -?-> or <-?- returns a Future[WrappedMessage[_, _]] representing all possible
reply channels if there is more than one (use .lub to get a Future[_] with the most precise single type
for the value)

• sending a Future[_] with -!-> or <-!- returns a new Future[_] which will be completed with the
value after it has been sent; sending a strict value returns that value

3.2.4 Declaring an Actor with Channels

The declaration of an Actor with Channels is done like this:

class AC extends Actor with Channels[TNil, (Request, Reply) :+: TNil] {
channel[Request] { (req, snd) ⇒
req match {

case Command("ping") ⇒ snd <-!- CommandSuccess
case _ ⇒

}
}

}

It should be noted that it is impossible to declare channels which are not part of the channel list given as the second
type argument to the Channels trait. It is also checked—albeit at runtime—that when the actor’s construction
is complete (i.e. its constructor and preStart hook have run) every channel listed in the selfChannel type
parameter has been declared. This can in general not be done at compile time, both due to the possibility of
overriding subclasses as well as the problem that the compiler cannot determine whether a channel[] statement
will be called in the course of execution due to external inputs (e.g. if conditionally executed).

It should also be noted that the type of req in this example is Request, hence it would be a compile-time error to
try to match against the Command companion object. The snd reference is the sender channel reference, which in
this example is of type ChannelRef[(Reply, UnknownDoNotWriteMeDown) :+: TNil], meaning
that sending back a reply which is not of type Reply would be a compile-time error.

The last thing to note is that an actor is not obliged to reply to an incoming message, even if that was successfully
delivered to it: it might not be appropriate, or it might be impossible, the actor might have failed before executing
the replying message send, etc. And as always, the snd reference may be used more than once, and even stored
away for later. It must not leave the actor within it was created, however, because that would defeat the ping-pong
check; this is the reason for the curious name of the fabricated reply type UnknownDoNotWriteMeDown; if
you find yourself declaring that type as part of a message or similar you know that you are cheating.

Declaration of Subchannels

It can be convenient to carve out subchannels for special treatment like so:

class ACSub extends Actor with Channels[TNil, (Request, Reply) :+: TNil] {
channel[Command] { (cmd, snd) ⇒ snd <-!- CommandSuccess }
channel[Request] { (req, snd) ⇒
if (ThreadLocalRandom.current.nextBoolean) snd <-!- CommandSuccess

3.2. Typed Channels (EXPERIMENTAL) 87

Akka Scala Documentation, Release 2.2.5

else snd <-!- CommandFailure("no luck")
}

}

This means that all Command requests will be positively answered while all others may or may not be lucky. This
dispatching between the two declarations does not depend on their order but is solely done based on which type is
more specific—but see the restrictions imposed by JVM type erasure below.

Forwarding Messages

Forwarding messages has been hinted at in the last sample already, but here is a more complete sample actor:

import scala.reflect.runtime.universe.TypeTag

class Latch[T1: TypeTag, T2: TypeTag](target: ChannelRef[(T1, T2) :+: TNil])
extends Actor with Channels[TNil, (Request, Reply) :+: (T1, T2) :+: TNil] {

implicit val timeout = Timeout(5.seconds)

// become ...
channel[T1] { (t, snd) ⇒ t -?-> target -!-> snd }

}

This actor declares a single-Channel parametric type which it forwards to a target actor, handing replies back to
the original sender using the ask/pipe pattern.

Note: It is important not to forget the TypeTag context bound for all type arguments which are used in channel
declarations, otherwise the not very helpful error “Predef is not an enclosing class” will haunt you.

Changing Behavior at Runtime

The actor from the previous example gets a lot more interesting when implementing its control channel:

import scala.reflect.runtime.universe.TypeTag

class Latch[T1: TypeTag, T2: TypeTag](target: ChannelRef[(T1, T2) :+: TNil])
extends Actor with Channels[TNil, (Request, Reply) :+: (T1, T2) :+: TNil] {

implicit val timeout = Timeout(5.seconds)

channel[Request] {

case (Command("close"), snd) ⇒
channel[T1] { (t, s) ⇒ t -?-> target -!-> s }
snd <-!- CommandSuccess

case (Command("open"), snd) ⇒
channel[T1] { (_, _) ⇒ }
snd <-!- CommandSuccess

}

channel[T1] { (t, snd) ⇒ t -?-> target -!-> snd }
}

This shows all elements of the toolkit in action: calling channel[T1] again during the lifetime of the actor
will alter its behavior on that channel. In this case a latch or gate is modeled which when closed will permit the
messages to flow through and when not will drop the messages to the floor.

3.2. Typed Channels (EXPERIMENTAL) 88

Akka Scala Documentation, Release 2.2.5

Creating Actors with Channels

Creating top-level actors with channels is done using the ChannelExt extension:

implicit val selfChannel: ChannelRef[(Any, Nothing) :+: TNil] = _self
val target: ChannelRef[(String, Int) :+: TNil] = _target // some actor

// type given just for demonstration purposes
val latch: ChannelRef[(Request, Reply) :+: (String, Int) :+: TNil] =

ChannelExt(system).actorOf(new Latch(target), "latch")

"hello" -!-> latch
// processing ...
expectMsg(5) // this is a TestKit-based example

Command("open") -!-> latch
expectMsg(CommandSuccess)

"world" -!-> latch
// processing ...
expectNoMsg(500.millis)

Inside an actor with channels children are created using the createChild method:

case class Stats(b: Request)
case object GetChild
case class ChildRef(child: ChannelRef[(Request, Reply) :+: TNil])

class Child extends Actor
with Channels[(Stats, Nothing) :+: TNil, (Request, Reply) :+: TNil] {

channel[Request] { (x, snd) ⇒
parentChannel <-!- Stats(x)
snd <-!- CommandSuccess

}
}

class Parent extends Actor
with Channels[TNil, (Stats, Nothing) :+: (GetChild.type, ChildRef) :+: TNil] {

val child = createChild(new Child)

channel[GetChild.type] { (_, snd) ⇒ ChildRef(child) -!-> snd }

channel[Stats] { (x, _) ⇒
// collect some stats

}
}

//
// then it is used somewhat like this:
//

val parent = ChannelExt(system).actorOf(new Parent, "parent")
parent <-!- GetChild
val child = expectMsgType[ChildRef].child // this assumes TestKit context

child <-!- Command("hey there")
expectMsg(CommandSuccess)

In this example we create a simple child actor which responds to requests, but also keeps its parent informed about
what it is doing. The parent channel within the child is thus declared to accept Stats messages, and the parent
must consequently declare such a channel in order to be able to create such a child. The parent’s job then is to

3.2. Typed Channels (EXPERIMENTAL) 89

Akka Scala Documentation, Release 2.2.5

create the child, make it available to the outside via properly typed messages and collect the statistics coming in
from the child.

Stepping Outside of Type-Safety

In much the same was as Scala’s type system can be circumvented by using .asInstanceOf[_] typed chan-
nels can also be circumvented. Casting them to alter the type arguments would be an obvious way of doing that,
but there are less obvious ways which are therefore enumerated here:

• explicitly constructing ChannelRef instances by hand allows using arbitrary types as arguments

• sending to the actorRef member of the ChannelRef; this is a normal untyped actor reference without
any compile-time checks, which is the reason for choosing visibly different operator names for typed and
untyped message send operations

• using the context.parent reference instead of parentChannel

• using the untyped sender reference instead of the second argument to a channel’s behavior function

Sending unforeseen messages will be flagged as a type error as long as none of these techniques are used within
an application.

Implementation Restrictions

As described below, incoming messages are dispatched to declared channels based on their runtime class informa-
tion. This erasure-based dispatch of messages requires all declared channels to have unique JVM type represen-
tations, i.e. it is not possible to have two channel declarations with types List[A] and List[B] because both
would at runtime only be known as List[_].

The specific dispatch mechanism also requires the declaration of all channels or subchannels during the actor’s
construction, independent of whether they shall later change behavior or not. Changing behavior for a subchannel
is only possible if that subchannel was declared up-front.

TypeTags are currently (Scala 2.10.0) not serializable, hence narrowing of ActorRef does not work for remote
references.

3.2.5 The Design Background

This section outlines the most prominent challenges encountered during the development of Typed Channels and
the rationale for their solutions. It is not necessary to understand this material in order to use Typed Channels, but
it may be useful to explain why certain things are as they are.

The Type Pollution Problem

What if an actor accepts two different types of messages? It might be a main communications channel which
is forwarded to worker actors for performing some long-running and/or dangerous task, plus an administrative
channel for the routing of requests. Or it might be a generic message throttler which accepts a generic channel
for passing it through (which delay where appropriate) and a management channel for setting the throttling rate.
In the second case it is especially easy to see that those two channels will probably not be related, their types will
not be derived from a meaningful common supertype; instead the least upper bound will probably be AnyRef. If
a typed channel reference only had the capability to express a single type, this type would then be no restriction
anymore. This loss of type safety caused by the need of handling multiple disjoint sets of types is called “type
pollution”, the term was coined by Prof. Philip Wadler.

One solution to this is to never expose references describing more than one channel at a time. But where would
these references come from? It would be very difficult to make this construction process type-safe, and it would
also be an inconvenient restriction, since message ordering guarantees only apply for the same sender–receive
pair: if there are relations between the messages sent on multiple channels then implementing this mixed-channel

3.2. Typed Channels (EXPERIMENTAL) 90

Akka Scala Documentation, Release 2.2.5

communication would incur programmatic and runtime overhead compared to just sending to the same untyped
reference.

The other solution thus is to express multiple channel types by a single channel reference, which requires the
implementation of type lists and computations on these. And as we will see below it also requires the specification
of possibly multiple reply channels per input type, hence a type map. The implementation chosen uses type lists
like this:

(MsgA, MsgB) :+: (MsgC, MsgD) :+: TNil

This type expresses two channels: type A may stimulate replies of type B, while type C may evoke replies of type
D. The type operator :+: is a binary type constructor which forms a list of these channel definitions, and like
every good list it ends with an empty tail TNil.

The Reply Problem

Akka actors have the power to reply to any message they receive, which is also a message send and shall also be
covered by typed channels. Since the sending actor is the one which will also receive the reply, this needs to be
verified. The solution to this problem is that in addition to the self reference, which is implicitly picked up as the
sender for untyped actor interactions, there is also a selfChannel which describes the typed channels handled
by this actor. Thus at the call site of the message send it must be verified that this actor can actually handle the
reply for that given message send.

The Sender Ping-Pong Problem

After successfully sending a message to an actor over a typed channel, that actor will have a reference to the
message’s sender, because normal Akka message processing rules apply. For this sender reference there must
exist a typed channel reference which describes the possible reply types which are applicable for each of the
incoming message channels. We will see below how this reference is provided in the code, the problem we want
to highlight here is a different one: the nature of any sender reference is that it is highly dynamic, the compiler
cannot possibly know who sent the message we are currently processing.

But this does not mean that all hope is lost: the solution is to do all type-checking at the call site of the message
send. The receiving actor just needs to declare its channel descriptions in its own type, and channel references are
derived at construction from this type (implying the existence of a typed actorOf). Then the actor knows for
each received message type which the allowed reply types are. The typed channel for the sender reference hence
has the reply types for the current input channel as its own input types, but what should the reply types be? This
is the ping-pong problem:

• ActorA sends MsgA to ActorB

• ActorB replies with MsgB

• ActorA replies with MsgC

Every “reply” uses the sender channel, which is dynamic and hence only known partially. But ActorB did not
know who sent the message it just replied to and hence it cannot check that it can process the possible replies
following that message send. Only ActorA could have known, because it knows its own channels as well as
ActorB’s channels completely. The solution is thus to recursively verify the message send, following all reply
channels until all possible message types to be sent have been verified. This sounds horribly complex, but the
algorithm for doing so actually has a worst-case complexity of O(N) where N is the number of input channels of
ActorA or ActorB, whoever has fewer.

The Parent Problem

There is one other actor reference which is available to every actor: its parent. Since the child–parent relationship
is established permanently when the child is created by the parent, this problem is easily solvable by encoding the
requirements of the child for its parent channel in its type signature and having the typed variant of actorOf
verify this against the selfChannel.

3.2. Typed Channels (EXPERIMENTAL) 91

Akka Scala Documentation, Release 2.2.5

Anecdotally, since the guardian actor does not care at all about messages sent to it, top-level actors with typed
channels must declare their parent channel to be empty.

The Exposure/Restriction Problem

An actor may provide more than one service, either itself or by proxy, each with their own set of channels. Only
having references for the full set of channels leads to a too wide spread of capabilities: in the example of the
message rate throttling actor its management channel is only meant to be used by the actor which inserted it,
not by the two actors between it was inserted. Hence the manager will have to create a channel reference which
excludes the management channels before handing out the reference to other actors.

Another variant of this problem is an actor which handles a channel whose input type is a supertype for a number
of derived channels. It should be allowed to use the “superchannel” in place of any of the subchannels, but not the
other way around. The intuitive approach would be to model this by making the channel reference contravariant in
its channel types and define those channel types accordingly. This does not work nicely, however, because Scala’s
type system is not well-suited to modeling such calculations on unordered type lists; it might be possible but its
implementation would be forbiddingly complex.

Therefore this topic gained traction as macros became available: being able to write down type calculations using
standard collections and their transformations reduces the implementation to a handful of lines. The “narrow”
operation implemented this way allows narrowing of input channels and widening of output channels down to
(Nothing, Any) (which is to say that channels may be narrowed or just plain removed from a channel list).

The Forwarding Problem

One important feature of actors mentioned above is their composability which is enabled by being able to forward
or delegate messages. It is the nature of this process that the sending party is not aware of the true destination of
the message, it only sees the façade in front of it. Above we have seen that the sender ping-pong problem requires
all verification to be performed at the sender’s end, but if the sender does not know the final recipient, how can it
check that the message exchange is type-safe?

The forwarding party—the middle-man—is also not in the position to make this call, since all it has is the incom-
plete sender channel which is lacking reply type information. The problem which arises lies precisely in these
reply sequences: the ping-pong scheme was verified against the middle-man, and if the final recipient would reply
to the forwarded request, that sender reference would belong to a different channel and there is no single location
in the source code where all these pieces are known at compile time.

The solution to this problem is to not allow forwarding in the normal untyped ActorRef sense. Replies must
always be sent by the recipient of the original message in order for the type checks at the sender site to be effective.
Since forwarding is an important communication pattern among actors, support for it is thus provided in the form
of the ask pattern combined with the pipe pattern, which both are not add-ons but fully integrated operations
among typed channels.

The JVM Erasure Problem

When an actor with typed channels receives a message, this message needs to be dispatched internally to the
right channel, so that the right sender channel can be presented and so on. This dispatch needs to work with the
information contained in the message, which due to the erasure of generic type information is an incomplete image
of the true channel types. Those full types exist only at compile-time and reifying them into TypeTags at runtime
for every message send would be prohibitively expensive. This means that channels which erase to the same JVM
type cannot coexist within the same actor, messages would not be routable reliably in that case.

The Actor Lookup Problem

Everything up to this point has assumed that channel references are passed from their point of creation to their point
of use directly and in the regime of strong, unerased types. This can also happen between actors by embedding
them in case classes with proper type information. But one particular useful feature of Akka actors is that they

3.2. Typed Channels (EXPERIMENTAL) 92

Akka Scala Documentation, Release 2.2.5

have a stable identity by which they can be found, a unique name. This name is represented as a String and
naturally does not bear any type information concerning the actor’s channels. Thus, when looking up an actor
with system.actorSelection(...) followed by an Identify request you will only get an untyped
ActorRef and not a channel reference. This ActorRef can of course manually be wrapped in a channel
reference bearing the desired channels, but this is not a type-safe operation.

The solution in this case must be a runtime check. There is an operation to “narrow” an ActorRef to a channel
reference of given type, which behind the scenes will send a message to the designated actor with a TypeTag
representing the requested channels. The actor will check these against its own TypeTag and reply with the
verification result. This check uses the same code as the compile-time “narrow” operation introduced above.

3.2.6 How to read The Types

In case of errors in your code the compiler will try to inform you in the most precise way it can, and that will then
contain types like this:

akka.channels.:+:[(com.example.Request, com.example.Reply),
akka.channels.:+:[(com.example.Command, Nothing), TNil]]

These types look unwieldy because of two things: they use fully qualified names for all the types (thankfully using
the () sugar for Tuple2), and they do not employ infix notation. That same type there might look like this in
your source code:

(Request, Reply) :+: (Command, Nothing) :+: TNil

As soon as someone finds the time, it would be nice if the IDEs learned to print types making use of the file’s
import statements and infix notation.

3.3 Typed Actors

Akka Typed Actors is an implementation of the Active Objects pattern. Essentially turning method invocations
into asynchronous dispatch instead of synchronous that has been the default way since Smalltalk came out.

Typed Actors consist of 2 “parts”, a public interface and an implementation, and if you’ve done any work in
“enterprise” Java, this will be very familiar to you. As with normal Actors you have an external API (the public
interface instance) that will delegate methodcalls asynchronously to a private instance of the implementation.

The advantage of Typed Actors vs. Actors is that with TypedActors you have a static contract, and don’t need to
define your own messages, the downside is that it places some limitations on what you can do and what you can’t,
i.e. you cannot use become/unbecome.

Typed Actors are implemented using JDK Proxies which provide a pretty easy-worked API to intercept method
calls.

Note: Just as with regular Akka Actors, Typed Actors process one call at a time.

3.3.1 When to use Typed Actors

Typed actors are nice for bridging between actor systems (the “inside”) and non-actor code (the “outside”), because
they allow you to write normal OO-looking code on the outside. Think of them like doors: their practicality lies
in interfacing between private sphere and the public, but you don’t want that many doors inside your house, do
you? For a longer discussion see this blog post.

A bit more background: TypedActors can very easily be abused as RPC, and that is an abstraction which is well-
known to be leaky. Hence TypedActors are not what we think of first when we talk about making highly scalable
concurrent software easier to write correctly. They have their niche, use them sparingly.

3.3. Typed Actors 93

http://en.wikipedia.org/wiki/Active_object
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Proxy.html
http://letitcrash.com/post/19074284309/when-to-use-typedactors
http://doc.akka.io/docs/misc/smli_tr-94-29.pdf
http://doc.akka.io/docs/misc/smli_tr-94-29.pdf

Akka Scala Documentation, Release 2.2.5

3.3.2 The tools of the trade

Before we create our first Typed Actor we should first go through the tools that we have at our disposal, it’s located
in akka.actor.TypedActor.

import akka.actor.TypedActor

//Returns the Typed Actor Extension
val extension = TypedActor(system) //system is an instance of ActorSystem

//Returns whether the reference is a Typed Actor Proxy or not
TypedActor(system).isTypedActor(someReference)

//Returns the backing Akka Actor behind an external Typed Actor Proxy
TypedActor(system).getActorRefFor(someReference)

//Returns the current ActorContext,
// method only valid within methods of a TypedActor implementation
val c: ActorContext = TypedActor.context

//Returns the external proxy of the current Typed Actor,
// method only valid within methods of a TypedActor implementation
val s: Squarer = TypedActor.self[Squarer]

//Returns a contextual instance of the Typed Actor Extension
//this means that if you create other Typed Actors with this,
//they will become children to the current Typed Actor.
TypedActor(TypedActor.context)

Warning: Same as not exposing this of an Akka Actor, it’s important not to expose this of a Typed
Actor, instead you should pass the external proxy reference, which is obtained from within your Typed Actor
as TypedActor.self, this is your external identity, as the ActorRef is the external identity of an Akka
Actor.

3.3.3 Creating Typed Actors

To create a Typed Actor you need to have one or more interfaces, and one implementation.

Our example interface:

trait Squarer {
def squareDontCare(i: Int): Unit //fire-forget

def square(i: Int): Future[Int] //non-blocking send-request-reply

def squareNowPlease(i: Int): Option[Int] //blocking send-request-reply

def squareNow(i: Int): Int //blocking send-request-reply
}

Alright, now we’ve got some methods we can call, but we need to implement those in SquarerImpl.

class SquarerImpl(val name: String) extends Squarer {

def this() = this("default")
def squareDontCare(i: Int): Unit = i * i //Nobody cares :(

def square(i: Int): Future[Int] = Future.successful(i * i)

def squareNowPlease(i: Int): Option[Int] = Some(i * i)

3.3. Typed Actors 94

Akka Scala Documentation, Release 2.2.5

def squareNow(i: Int): Int = i * i
}

Excellent, now we have an interface and an implementation of that interface, and we know how to create a Typed
Actor from that, so let’s look at calling these methods.

The most trivial way of creating a Typed Actor instance of our Squarer:

val mySquarer: Squarer =
TypedActor(system).typedActorOf(TypedProps[SquarerImpl]())

First type is the type of the proxy, the second type is the type of the implementation. If you need to call a specific
constructor you do it like this:

val otherSquarer: Squarer =
TypedActor(system).typedActorOf(TypedProps(classOf[Squarer],
new SquarerImpl("foo")), "name")

Since you supply a Props, you can specify which dispatcher to use, what the default timeout should be used and
more.

3.3.4 Method dispatch semantics

Methods returning:

• Unit will be dispatched with fire-and-forget semantics, exactly like ActorRef.tell

• scala.concurrent.Future[_] will use send-request-reply semantics, exactly like
ActorRef.ask

• scala.Option[_] or akka.japi.Option<?> will use send-request-reply semantics, but
will block to wait for an answer, and return None if no answer was produced within the timeout, or
scala.Some/akka.japi.Some containing the result otherwise. Any exception that was thrown during this
call will be rethrown.

• Any other type of value will use send-request-reply semantics, but will block to wait for an an-
swer, throwing java.util.concurrent.TimeoutException if there was a timeout or rethrow
any exception that was thrown during this call.

3.3.5 Messages and immutability

While Akka cannot enforce that the parameters to the methods of your Typed Actors are immutable, we strongly
recommend that parameters passed are immutable.

One-way message send

mySquarer.squareDontCare(10)

As simple as that! The method will be executed on another thread; asynchronously.

Request-reply message send

val oSquare = mySquarer.squareNowPlease(10) //Option[Int]

This will block for as long as the timeout that was set in the Props of the Typed Actor, if needed. It will return
None if a timeout occurs.

val iSquare = mySquarer.squareNow(10) //Int

3.3. Typed Actors 95

Akka Scala Documentation, Release 2.2.5

This will block for as long as the timeout that was set in the Props of the Typed Actor, if needed. It will throw a
java.util.concurrent.TimeoutException if a timeout occurs.

Request-reply-with-future message send

val fSquare = mySquarer.square(10) //A Future[Int]

This call is asynchronous, and the Future returned can be used for asynchronous composition.

3.3.6 Stopping Typed Actors

Since Akkas Typed Actors are backed by Akka Actors they must be stopped when they aren’t needed anymore.

TypedActor(system).stop(mySquarer)

This asynchronously stops the Typed Actor associated with the specified proxy ASAP.

TypedActor(system).poisonPill(otherSquarer)

This asynchronously stops the Typed Actor associated with the specified proxy after it’s done with all calls that
were made prior to this call.

3.3.7 Typed Actor Hierarchies

Since you can obtain a contextual Typed Actor Extension by passing in an ActorContext you can create child
Typed Actors by invoking typedActorOf(..) on that:

//Inside your Typed Actor
val childSquarer: Squarer =

TypedActor(TypedActor.context).typedActorOf(TypedProps[SquarerImpl]())
//Use "childSquarer" as a Squarer

You can also create a child Typed Actor in regular Akka Actors by giving the ActorContext as an input
parameter to TypedActor.get(. . .).

3.3.8 Supervisor Strategy

By having your Typed Actor implementation class implement TypedActor.Supervisor you can define the
strategy to use for supervising child actors, as described in Supervision and Monitoring and Fault Tolerance.

3.3.9 Lifecycle callbacks

By having your Typed Actor implementation class implement any and all of the following:

• TypedActor.PreStart

• TypedActor.PostStop

• TypedActor.PreRestart

• TypedActor.PostRestart

You can hook into the lifecycle of your Typed Actor.

3.3. Typed Actors 96

Akka Scala Documentation, Release 2.2.5

3.3.10 Receive arbitrary messages

If your implementation class of your TypedActor extends akka.actor.TypedActor.Receiver, all mes-
sages that are not MethodCall‘‘s will be passed into the ‘‘onReceive-method.

This allows you to react to DeathWatch Terminated-messages and other types of messages, e.g. when inter-
facing with untyped actors.

3.3.11 Proxying

You can use the typedActorOf that takes a TypedProps and an ActorRef to proxy the given ActorRef as a
TypedActor. This is usable if you want to communicate remotely with TypedActors on other machines, just pass
the ActorRef to typedActorOf.

Note: The ActorRef needs to accept MethodCall messages.

3.3.12 Lookup & Remoting

Since TypedActors are backed by Akka Actors, you can use typedActorOf to proxy ActorRefs
potentially residing on remote nodes.

val typedActor: Foo with Bar =
TypedActor(system).
typedActorOf(

TypedProps[FooBar],
actorRefToRemoteActor)

//Use "typedActor" as a FooBar

3.3.13 Supercharging

Here’s an example on how you can use traits to mix in behavior in your Typed Actors.

trait Foo {
def doFoo(times: Int): Unit = println("doFoo(" + times + ")")

}

trait Bar {
def doBar(str: String): Future[String] =
Future.successful(str.toUpperCase)

}

class FooBar extends Foo with Bar

val awesomeFooBar: Foo with Bar =
TypedActor(system).typedActorOf(TypedProps[FooBar]())

awesomeFooBar.doFoo(10)
val f = awesomeFooBar.doBar("yes")

TypedActor(system).poisonPill(awesomeFooBar)

3.4 Fault Tolerance

As explained in Actor Systems each actor is the supervisor of its children, and as such each actor defines fault
handling supervisor strategy. This strategy cannot be changed afterwards as it is an integral part of the actor
system’s structure.

3.4. Fault Tolerance 97

Akka Scala Documentation, Release 2.2.5

3.4.1 Fault Handling in Practice

First, let us look at a sample that illustrates one way to handle data store errors, which is a typical source of failure
in real world applications. Of course it depends on the actual application what is possible to do when the data
store is unavailable, but in this sample we use a best effort re-connect approach.

Read the following source code. The inlined comments explain the different pieces of the fault handling and why
they are added. It is also highly recommended to run this sample as it is easy to follow the log output to understand
what is happening in runtime.

Diagrams of the Fault Tolerance Sample

The above diagram illustrates the normal message flow.

Normal flow:

3.4. Fault Tolerance 98

Akka Scala Documentation, Release 2.2.5

Step Description
1 The progress Listener starts the work.
2 The Worker schedules work by sending Do messages periodically to itself
3,
4, 5

When receiving Do the Worker tells the CounterService to increment the counter, three times.
The Increment message is forwarded to the Counter, which updates its counter variable and sends
current value to the Storage.

6, 7 The Worker asks the CounterService of current value of the counter and pipes the result back to
the Listener.

The above diagram illustrates what happens in case of storage failure.

Failure flow:

3.4. Fault Tolerance 99

Akka Scala Documentation, Release 2.2.5

Step Description
1 The Storage throws StorageException.
2 The CounterService is supervisor of the Storage and restarts the Storage when

StorageException is thrown.
3, 4,
5, 6

The Storage continues to fail and is restarted.

7 After 3 failures and restarts within 5 seconds the Storage is stopped by its supervisor, i.e. the
CounterService.

8 The CounterService is also watching the Storage for termination and receives the
Terminated message when the Storage has been stopped ...

9, 10,
11

and tells the Counter that there is no Storage.

12 The CounterService schedules a Reconnect message to itself.
13,
14

When it receives the Reconnect message it creates a new Storage ...

15,
16

and tells the Counter to use the new Storage

Full Source Code of the Fault Tolerance Sample

import akka.actor._
import akka.actor.SupervisorStrategy._
import scala.concurrent.duration._
import akka.util.Timeout
import akka.event.LoggingReceive
import akka.pattern.{ ask, pipe }
import com.typesafe.config.ConfigFactory

/**
* Runs the sample

*/
object FaultHandlingDocSample extends App {

import Worker._

val config = ConfigFactory.parseString("""
akka.loglevel = "DEBUG"
akka.actor.debug {

receive = on
lifecycle = on

}
""")

val system = ActorSystem("FaultToleranceSample", config)
val worker = system.actorOf(Props[Worker], name = "worker")
val listener = system.actorOf(Props[Listener], name = "listener")
// start the work and listen on progress
// note that the listener is used as sender of the tell,
// i.e. it will receive replies from the worker
worker.tell(Start, sender = listener)

}

/**
* Listens on progress from the worker and shuts down the system when enough

* work has been done.

*/
class Listener extends Actor with ActorLogging {

import Worker._
// If we don't get any progress within 15 seconds then the service is unavailable
context.setReceiveTimeout(15 seconds)

3.4. Fault Tolerance 100

Akka Scala Documentation, Release 2.2.5

def receive = {
case Progress(percent) ⇒

log.info("Current progress: {} %", percent)
if (percent >= 100.0) {

log.info("That's all, shutting down")
context.system.shutdown()

}

case ReceiveTimeout ⇒
// No progress within 15 seconds, ServiceUnavailable
log.error("Shutting down due to unavailable service")
context.system.shutdown()

}
}

object Worker {
case object Start
case object Do
case class Progress(percent: Double)

}

/**
* Worker performs some work when it receives the `Start` message.

* It will continuously notify the sender of the `Start` message

* of current ``Progress``. The `Worker` supervise the `CounterService`.

*/
class Worker extends Actor with ActorLogging {

import Worker._
import CounterService._
implicit val askTimeout = Timeout(5 seconds)

// Stop the CounterService child if it throws ServiceUnavailable
override val supervisorStrategy = OneForOneStrategy() {
case _: CounterService.ServiceUnavailable ⇒ Stop

}

// The sender of the initial Start message will continuously be notified
// about progress
var progressListener: Option[ActorRef] = None
val counterService = context.actorOf(Props[CounterService], name = "counter")
val totalCount = 51
import context.dispatcher // Use this Actors' Dispatcher as ExecutionContext

def receive = LoggingReceive {
case Start if progressListener.isEmpty ⇒
progressListener = Some(sender)
context.system.scheduler.schedule(Duration.Zero, 1 second, self, Do)

case Do ⇒
counterService ! Increment(1)
counterService ! Increment(1)
counterService ! Increment(1)

// Send current progress to the initial sender
counterService ? GetCurrentCount map {

case CurrentCount(_, count) ⇒ Progress(100.0 * count / totalCount)
} pipeTo progressListener.get

}
}

object CounterService {
case class Increment(n: Int)
case object GetCurrentCount

3.4. Fault Tolerance 101

Akka Scala Documentation, Release 2.2.5

case class CurrentCount(key: String, count: Long)
class ServiceUnavailable(msg: String) extends RuntimeException(msg)

private case object Reconnect
}

/**
* Adds the value received in `Increment` message to a persistent

* counter. Replies with `CurrentCount` when it is asked for `CurrentCount`.

* `CounterService` supervise `Storage` and `Counter`.

*/
class CounterService extends Actor {

import CounterService._
import Counter._
import Storage._

// Restart the storage child when StorageException is thrown.
// After 3 restarts within 5 seconds it will be stopped.
override val supervisorStrategy = OneForOneStrategy(maxNrOfRetries = 3,
withinTimeRange = 5 seconds) {

case _: Storage.StorageException ⇒ Restart
}

val key = self.path.name
var storage: Option[ActorRef] = None
var counter: Option[ActorRef] = None
var backlog = IndexedSeq.empty[(ActorRef, Any)]
val MaxBacklog = 10000

import context.dispatcher // Use this Actors' Dispatcher as ExecutionContext

override def preStart() {
initStorage()

}

/**
* The child storage is restarted in case of failure, but after 3 restarts,

* and still failing it will be stopped. Better to back-off than continuously

* failing. When it has been stopped we will schedule a Reconnect after a delay.

* Watch the child so we receive Terminated message when it has been terminated.

*/
def initStorage() {
storage = Some(context.watch(context.actorOf(Props[Storage], name = "storage")))
// Tell the counter, if any, to use the new storage
counter foreach { _ ! UseStorage(storage) }
// We need the initial value to be able to operate
storage.get ! Get(key)

}

def receive = LoggingReceive {

case Entry(k, v) if k == key && counter == None ⇒
// Reply from Storage of the initial value, now we can create the Counter
val c = context.actorOf(Props(classOf[Counter], key, v))
counter = Some(c)
// Tell the counter to use current storage
c ! UseStorage(storage)
// and send the buffered backlog to the counter
for ((replyTo, msg) ← backlog) c.tell(msg, sender = replyTo)
backlog = IndexedSeq.empty

case msg @ Increment(n) ⇒ forwardOrPlaceInBacklog(msg)

3.4. Fault Tolerance 102

Akka Scala Documentation, Release 2.2.5

case msg @ GetCurrentCount ⇒ forwardOrPlaceInBacklog(msg)

case Terminated(actorRef) if Some(actorRef) == storage ⇒
// After 3 restarts the storage child is stopped.
// We receive Terminated because we watch the child, see initStorage.
storage = None
// Tell the counter that there is no storage for the moment
counter foreach { _ ! UseStorage(None) }
// Try to re-establish storage after while
context.system.scheduler.scheduleOnce(10 seconds, self, Reconnect)

case Reconnect ⇒
// Re-establish storage after the scheduled delay
initStorage()

}

def forwardOrPlaceInBacklog(msg: Any) {
// We need the initial value from storage before we can start delegate to
// the counter. Before that we place the messages in a backlog, to be sent
// to the counter when it is initialized.
counter match {

case Some(c) ⇒ c forward msg
case None ⇒

if (backlog.size >= MaxBacklog)
throw new ServiceUnavailable(
"CounterService not available, lack of initial value")

backlog :+= (sender -> msg)
}

}

}

object Counter {
case class UseStorage(storage: Option[ActorRef])

}

/**
* The in memory count variable that will send current

* value to the `Storage`, if there is any storage

* available at the moment.

*/
class Counter(key: String, initialValue: Long) extends Actor {

import Counter._
import CounterService._
import Storage._

var count = initialValue
var storage: Option[ActorRef] = None

def receive = LoggingReceive {
case UseStorage(s) ⇒

storage = s
storeCount()

case Increment(n) ⇒
count += n
storeCount()

case GetCurrentCount ⇒
sender ! CurrentCount(key, count)

}

3.4. Fault Tolerance 103

Akka Scala Documentation, Release 2.2.5

def storeCount() {
// Delegate dangerous work, to protect our valuable state.
// We can continue without storage.
storage foreach { _ ! Store(Entry(key, count)) }

}

}

object Storage {
case class Store(entry: Entry)
case class Get(key: String)
case class Entry(key: String, value: Long)
class StorageException(msg: String) extends RuntimeException(msg)

}

/**
* Saves key/value pairs to persistent storage when receiving `Store` message.

* Replies with current value when receiving `Get` message.

* Will throw StorageException if the underlying data store is out of order.

*/
class Storage extends Actor {

import Storage._

val db = DummyDB

def receive = LoggingReceive {
case Store(Entry(key, count)) ⇒ db.save(key, count)
case Get(key) ⇒ sender ! Entry(key, db.load(key).getOrElse(0L))

}
}

object DummyDB {
import Storage.StorageException
private var db = Map[String, Long]()

@throws(classOf[StorageException])
def save(key: String, value: Long): Unit = synchronized {
if (11 <= value && value <= 14)

throw new StorageException("Simulated store failure " + value)
db += (key -> value)

}

@throws(classOf[StorageException])
def load(key: String): Option[Long] = synchronized {
db.get(key)

}
}

3.4.2 Creating a Supervisor Strategy

The following sections explain the fault handling mechanism and alternatives in more depth.

For the sake of demonstration let us consider the following strategy:

import akka.actor.OneForOneStrategy
import akka.actor.SupervisorStrategy._
import scala.concurrent.duration._

override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
case _: ArithmeticException ⇒ Resume
case _: NullPointerException ⇒ Restart

3.4. Fault Tolerance 104

Akka Scala Documentation, Release 2.2.5

case _: IllegalArgumentException ⇒ Stop
case _: Exception ⇒ Escalate

}

I have chosen a few well-known exception types in order to demonstrate the application of the fault handling
directives described in Supervision and Monitoring. First off, it is a one-for-one strategy, meaning that each child
is treated separately (an all-for-one strategy works very similarly, the only difference is that any decision is applied
to all children of the supervisor, not only the failing one). There are limits set on the restart frequency, namely
maximum 10 restarts per minute; each of these settings could be left out, which means that the respective limit
does not apply, leaving the possibility to specify an absolute upper limit on the restarts or to make the restarts
work infinitely.

The match statement which forms the bulk of the body is of type Decider, which is a
PartialFunction[Throwable, Directive]. This is the piece which maps child failure types to their
corresponding directives.

Note: If the strategy is declared inside the supervising actor (as opposed to within a companion object) its decider
has access to all internal state of the actor in a thread-safe fashion, including obtaining a reference to the currently
failed child (available as the sender of the failure message).

Default Supervisor Strategy

Escalate is used if the defined strategy doesn’t cover the exception that was thrown.

When the supervisor strategy is not defined for an actor the following exceptions are handled by default:

• ActorInitializationException will stop the failing child actor

• ActorKilledException will stop the failing child actor

• Exception will restart the failing child actor

• Other types of Throwable will be escalated to parent actor

If the exception escalate all the way up to the root guardian it will handle it in the same way as the default strategy
defined above.

You can combine your own strategy with the default strategy:

import akka.actor.OneForOneStrategy
import akka.actor.SupervisorStrategy._
import scala.concurrent.duration._

override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
case _: ArithmeticException ⇒ Resume
case t ⇒
super.supervisorStrategy.decider.applyOrElse(t, (_: Any) ⇒ Escalate)

}

Stopping Supervisor Strategy

Closer to the Erlang way is the strategy to just stop children when they fail and then take cor-
rective action in the supervisor when DeathWatch signals the loss of the child. This strategy is
also provided pre-packaged as SupervisorStrategy.stoppingStrategy with an accompanying
StoppingSupervisorStrategy configurator to be used when you want the "/user" guardian to apply it.

Logging of Actor Failures

By default the SupervisorStrategy logs failures unless they are escalated. Escalated failures are supposed
to be handled, and potentially logged, at a level higher in the hierarchy.

3.4. Fault Tolerance 105

Akka Scala Documentation, Release 2.2.5

You can mute the default logging of a SupervisorStrategy by setting loggingEnabled to false when
instantiating it. Customized logging can be done inside the Decider. Note that the reference to the currently
failed child is available as the sender when the SupervisorStrategy is declared inside the supervising
actor.

You may also customize the logging in your own SupervisorStrategy implementation by overriding the
logFailure method.

3.4.3 Supervision of Top-Level Actors

Toplevel actors means those which are created using system.actorOf(), and they are children of the User
Guardian. There are no special rules applied in this case, the guardian simply applies the configured strategy.

3.4.4 Test Application

The following section shows the effects of the different directives in practice, wherefor a test setup is needed. First
off, we need a suitable supervisor:

import akka.actor.Actor

class Supervisor extends Actor {
import akka.actor.OneForOneStrategy
import akka.actor.SupervisorStrategy._
import scala.concurrent.duration._

override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {

case _: ArithmeticException ⇒ Resume
case _: NullPointerException ⇒ Restart
case _: IllegalArgumentException ⇒ Stop
case _: Exception ⇒ Escalate

}

def receive = {
case p: Props ⇒ sender ! context.actorOf(p)

}
}

class Child extends Actor {
var state = 0
def receive = {

case ex: Exception ⇒ throw ex
case x: Int ⇒ state = x
case "get" ⇒ sender ! state

}
}

}

class FaultHandlingDocSpec extends AkkaSpec with ImplicitSender {

import FaultHandlingDocSpec._

"A supervisor" must {

"apply the chosen strategy for its child" in {

val supervisor = system.actorOf(Props[Supervisor], "supervisor")

supervisor ! Props[Child]
val child = expectMsgType[ActorRef] // retrieve answer from TestKit’s testActor
EventFilter.warning(occurrences = 1) intercept {

3.4. Fault Tolerance 106

Akka Scala Documentation, Release 2.2.5

child ! 42 // set state to 42
child ! "get"
expectMsg(42)

child ! new ArithmeticException // crash it
child ! "get"
expectMsg(42)

}
EventFilter[NullPointerException](occurrences = 1) intercept {

child ! new NullPointerException // crash it harder
child ! "get"
expectMsg(0)

}
EventFilter[IllegalArgumentException](occurrences = 1) intercept {

watch(child) // have testActor watch “child”
child ! new IllegalArgumentException // break it
expectMsgPF() { case Terminated(`child`) ⇒ () }

}
EventFilter[Exception]("CRASH", occurrences = 2) intercept {

supervisor ! Props[Child] // create new child
val child2 = expectMsgType[ActorRef]

watch(child2)
child2 ! "get" // verify it is alive
expectMsg(0)

child2 ! new Exception("CRASH") // escalate failure
expectMsgPF() {
case t @ Terminated(`child2`) if t.existenceConfirmed ⇒ ()

}
val supervisor2 = system.actorOf(Props[Supervisor2], "supervisor2")

supervisor2 ! Props[Child]
val child3 = expectMsgType[ActorRef]

child3 ! 23
child3 ! "get"
expectMsg(23)

child3 ! new Exception("CRASH")
child3 ! "get"
expectMsg(0)

}
// code here

}
}

}

This supervisor will be used to create a child, with which we can experiment:

import akka.actor.Actor

class Child extends Actor {
var state = 0
def receive = {
case ex: Exception ⇒ throw ex
case x: Int ⇒ state = x
case "get" ⇒ sender ! state

}
}

The test is easier by using the utilities described in Testing Actor Systems, where AkkaSpec is a convenient
mixture of TestKit with WordSpec with MustMatchers

3.4. Fault Tolerance 107

Akka Scala Documentation, Release 2.2.5

import akka.testkit.{ AkkaSpec, ImplicitSender, EventFilter }
import akka.actor.{ ActorRef, Props, Terminated }

class FaultHandlingDocSpec extends AkkaSpec with ImplicitSender {

"A supervisor" must {

"apply the chosen strategy for its child" in {
// code here

}
}

}

Let us create actors:

val supervisor = system.actorOf(Props[Supervisor], "supervisor")

supervisor ! Props[Child]
val child = expectMsgType[ActorRef] // retrieve answer from TestKit’s testActor

The first test shall demonstrate the Resume directive, so we try it out by setting some non-initial state in the actor
and have it fail:

child ! 42 // set state to 42
child ! "get"
expectMsg(42)

child ! new ArithmeticException // crash it
child ! "get"
expectMsg(42)

As you can see the value 42 survives the fault handling directive. Now, if we change the failure to a more serious
NullPointerException, that will no longer be the case:

child ! new NullPointerException // crash it harder
child ! "get"
expectMsg(0)

And finally in case of the fatal IllegalArgumentException the child will be terminated by the supervisor:

watch(child) // have testActor watch “child”
child ! new IllegalArgumentException // break it
expectMsgPF() { case Terminated(`child`) ⇒ () }

Up to now the supervisor was completely unaffected by the child’s failure, because the directives set did handle it.
In case of an Exception, this is not true anymore and the supervisor escalates the failure.

supervisor ! Props[Child] // create new child
val child2 = expectMsgType[ActorRef]

watch(child2)
child2 ! "get" // verify it is alive
expectMsg(0)

child2 ! new Exception("CRASH") // escalate failure
expectMsgPF() {

case t @ Terminated(`child2`) if t.existenceConfirmed ⇒ ()
}

The supervisor itself is supervised by the top-level actor provided by the ActorSystem, which
has the default policy to restart in case of all Exception cases (with the notable exceptions of
ActorInitializationException and ActorKilledException). Since the default directive in case
of a restart is to kill all children, we expected our poor child not to survive this failure.

3.4. Fault Tolerance 108

Akka Scala Documentation, Release 2.2.5

In case this is not desired (which depends on the use case), we need to use a different supervisor which overrides
this behavior.

class Supervisor2 extends Actor {
import akka.actor.OneForOneStrategy
import akka.actor.SupervisorStrategy._
import scala.concurrent.duration._

override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {

case _: ArithmeticException ⇒ Resume
case _: NullPointerException ⇒ Restart
case _: IllegalArgumentException ⇒ Stop
case _: Exception ⇒ Escalate

}

def receive = {
case p: Props ⇒ sender ! context.actorOf(p)

}
// override default to kill all children during restart
override def preRestart(cause: Throwable, msg: Option[Any]) {}

}

With this parent, the child survives the escalated restart, as demonstrated in the last test:

val supervisor2 = system.actorOf(Props[Supervisor2], "supervisor2")

supervisor2 ! Props[Child]
val child3 = expectMsgType[ActorRef]

child3 ! 23
child3 ! "get"
expectMsg(23)

child3 ! new Exception("CRASH")
child3 ! "get"
expectMsg(0)

3.5 Dispatchers

An Akka MessageDispatcher is what makes Akka Actors “tick”, it is the engine of the machine so to speak.
All MessageDispatcher implementations are also an ExecutionContext, which means that they can be
used to execute arbitrary code, for instance Futures.

3.5.1 Default dispatcher

Every ActorSystem will have a default dispatcher that will be used in case nothing else is configured for an
Actor. The default dispatcher can be configured, and is by default a Dispatcher with a “fork-join-executor”,
which gives excellent performance in most cases.

3.5.2 Looking up a Dispatcher

Dispatchers implement the ExecutionContext interface and can thus be used to run Future invocations etc.

// for use with Futures, Scheduler, etc.
implicit val executionContext = system.dispatchers.lookup("my-dispatcher")

3.5. Dispatchers 109

Akka Scala Documentation, Release 2.2.5

3.5.3 Setting the dispatcher for an Actor

So in case you want to give your Actor a different dispatcher than the default, you need to do two things, of
which the first is to configure the dispatcher:

my-dispatcher {
Dispatcher is the name of the event-based dispatcher
type = Dispatcher
What kind of ExecutionService to use
executor = "fork-join-executor"
Configuration for the fork join pool
fork-join-executor {
Min number of threads to cap factor-based parallelism number to
parallelism-min = 2
Parallelism (threads) ... ceil(available processors * factor)
parallelism-factor = 2.0
Max number of threads to cap factor-based parallelism number to
parallelism-max = 10

}
Throughput defines the maximum number of messages to be
processed per actor before the thread jumps to the next actor.
Set to 1 for as fair as possible.
throughput = 100

}

And here’s another example that uses the “thread-pool-executor”:

my-thread-pool-dispatcher {
Dispatcher is the name of the event-based dispatcher
type = Dispatcher
What kind of ExecutionService to use
executor = "thread-pool-executor"
Configuration for the thread pool
thread-pool-executor {
minimum number of threads to cap factor-based core number to
core-pool-size-min = 2
No of core threads ... ceil(available processors * factor)
core-pool-size-factor = 2.0
maximum number of threads to cap factor-based number to
core-pool-size-max = 10

}
Throughput defines the maximum number of messages to be
processed per actor before the thread jumps to the next actor.
Set to 1 for as fair as possible.
throughput = 100

}

For more options, see the default-dispatcher section of the Configuration.

Then you create the actor as usual and define the dispatcher in the deployment configuration.

import akka.actor.Props
val myActor = context.actorOf(Props[MyActor], "myactor")

akka.actor.deployment {
/myactor {
dispatcher = my-dispatcher

}
}

An alternative to the deployment configuration is to define the dispatcher in code. If you define the dispatcher
in the deployment configuration then this value will be used instead of programmatically provided parameter.

3.5. Dispatchers 110

Akka Scala Documentation, Release 2.2.5

import akka.actor.Props
val myActor =

context.actorOf(Props[MyActor].withDispatcher("my-dispatcher"), "myactor1")

Note: The dispatcher you specify in withDispatcher and the dispatcher property in the deploy-
ment configuration is in fact a path into your configuration. So in this example it’s a top-level section, but
you could for instance put it as a sub-section, where you’d use periods to denote sub-sections, like this:
"foo.bar.my-dispatcher"

3.5.4 Types of dispatchers

There are 4 different types of message dispatchers:

• Dispatcher

– This is an event-based dispatcher that binds a set of Actors to a thread pool. It is the default dispatcher
used if one is not specified.

– Sharability: Unlimited

– Mailboxes: Any, creates one per Actor

– Use cases: Default dispatcher, Bulkheading

– Driven by: java.util.concurrent.ExecutorService specify using “ex-
ecutor” using “fork-join-executor”, “thread-pool-executor” or the FQCN of an
akka.dispatcher.ExecutorServiceConfigurator

• PinnedDispatcher

– This dispatcher dedicates a unique thread for each actor using it; i.e. each actor will have its own
thread pool with only one thread in the pool.

– Sharability: None

– Mailboxes: Any, creates one per Actor

– Use cases: Bulkheading

– Driven by: Any akka.dispatch.ThreadPoolExecutorConfigurator by default a
“thread-pool-executor”

• BalancingDispatcher

– This is an executor based event driven dispatcher that will try to redistribute work from busy actors to
idle actors.

– All the actors share a single Mailbox that they get their messages from.

– It is assumed that all actors using the same instance of this dispatcher can process all messages that
have been sent to one of the actors; i.e. the actors belong to a pool of actors, and to the client there is
no guarantee about which actor instance actually processes a given message.

– Sharability: Actors of the same type only

– Mailboxes: Any, creates one for all Actors

– Use cases: Work-sharing

– Driven by: java.util.concurrent.ExecutorService specify using “ex-
ecutor” using “fork-join-executor”, “thread-pool-executor” or the FQCN of an
akka.dispatcher.ExecutorServiceConfigurator

– Note that you can not use a BalancingDispatcher as a Router Dispatcher. (You can however
use it for the Routees)

• CallingThreadDispatcher

3.5. Dispatchers 111

Akka Scala Documentation, Release 2.2.5

– This dispatcher runs invocations on the current thread only. This dispatcher does not create any new
threads, but it can be used from different threads concurrently for the same actor. See CallingThread-
Dispatcher for details and restrictions.

– Sharability: Unlimited

– Mailboxes: Any, creates one per Actor per Thread (on demand)

– Use cases: Testing

– Driven by: The calling thread (duh)

More dispatcher configuration examples

Configuring a PinnedDispatcher:

my-pinned-dispatcher {
executor = "thread-pool-executor"
type = PinnedDispatcher

}

And then using it:

val myActor =
context.actorOf(Props[MyActor].withDispatcher("my-pinned-dispatcher"), "myactor2")

Note that thread-pool-executor configuration as per the above my-thread-pool-dispatcher
example is NOT applicable. This is because every actor will have its own thread pool when using
PinnedDispatcher, and that pool will have only one thread.

Note that it’s not guaranteed that the same thread is used over time, since the core pool timeout is used for
PinnedDispatcher to keep resource usage down in case of idle actors. To use the same thread all the
time you need to add thread-pool-executor.allow-core-timeout=off to the configuration of the
PinnedDispatcher.

3.6 Mailboxes

An Akka Mailbox holds the messages that are destined for an Actor. Normally each Actor has its own
mailbox, but with for example a BalancingDispatcher all actors with the same BalancingDispatcher
will share a single instance.

3.6.1 Mailbox Selection

Requiring a Message Queue Type for an Actor

It is possible to require a certain type of message queue for a certain type of actor by having that actor extend the
parameterized trait RequiresMessageQueue. Here is an example:

import akka.dispatch.RequiresMessageQueue
import akka.dispatch.BoundedMessageQueueSemantics

class MyBoundedActor extends MyActor
with RequiresMessageQueue[BoundedMessageQueueSemantics]

The type parameter to the RequiresMessageQueue trait needs to be mapped to a mailbox in configuration
like this:

3.6. Mailboxes 112

Akka Scala Documentation, Release 2.2.5

bounded-mailbox {
mailbox-type = "akka.dispatch.BoundedMailbox"
mailbox-capacity = 1000
mailbox-push-timeout-time = 10s

}

akka.actor.mailbox.requirements {
"akka.dispatch.BoundedMessageQueueSemantics" = bounded-mailbox

}

Now every time you create an actor of type MyBoundedActor it will try to get a bounded mailbox. If the actor
has a different mailbox configured in deployment, either directly or via a dispatcher with a specified mailbox type,
then that will override this mapping.

Note: The type of the queue in the mailbox created for an actor will be checked against the required type in the
trait and if the queue doesn’t implement the required type then actor creation will fail.

Requiring a Message Queue Type for a Dispatcher

A dispatcher may also have a requirement for the mailbox type used by the actors running on it. An example is
the BalancingDispatcher which requires a message queue that is thread-safe for multiple concurrent consumers.
Such a requirement is formulated within the dispatcher configuration section like this:

my-dispatcher {
mailbox-requirement = org.example.MyInterface

}

The given requirement names a class or interface which will then be ensured to be a supertype of the message
queue’s implementation. In case of a conflict—e.g. if the actor requires a mailbox type which does not satisfy this
requirement—then actor creation will fail.

How the Mailbox Type is Selected

When an actor is created, the ActorRefProvider first determines the dispatcher which will execute it. Then
the mailbox is determined as follows:

1. If the actor’s deployment configuration section contains a mailbox key then that names a configuration
section describing the mailbox type to be used.

2. If the actor’s Props contains a mailbox selection—i.e. withMailbox was called on it—then that names
a configuration section describing the mailbox type to be used.

3. If the dispatcher’s configuration section contains a mailbox-type key the same section will be used to
configure the mailbox type.

4. If the actor requires a mailbox type as described above then the mapping for that requirement will be used
to determine the mailbox type to be used; if that fails then the dispatcher’s requirement—if any—will be
tried instead.

5. If the dispatcher requires a mailbox type as described above then the mapping for that requirement will be
used to determine the mailbox type to be used.

6. The default mailbox akka.actor.default-mailbox will be used.

Default Mailbox

When the mailbox is not specified as described above the default mailbox is used. By default it is an unbounded
mailbox, which is backed by a java.util.concurrent.ConcurrentLinkedQueue.

3.6. Mailboxes 113

Akka Scala Documentation, Release 2.2.5

SingleConsumerOnlyUnboundedMailbox is an even more efficient mailbox, and it can be used as the
default mailbox, but it cannot be used with a BalancingDispatcher.

Configuration of SingleConsumerOnlyUnboundedMailbox as default mailbox:

akka.actor.default-mailbox {
mailbox-type = "akka.dispatch.SingleConsumerOnlyUnboundedMailbox"

}

Which Configuration is passed to the Mailbox Type

Each mailbox type is implemented by a class which extends MailboxType and takes two constructor arguments:
a ActorSystem.Settings object and a Config section. The latter is computed by obtaining the named
configuration section from the actor system’s configuration, overriding its id key with the configuration path of
the mailbox type and adding a fall-back to the default mailbox configuration section.

3.6.2 Builtin implementations

Akka comes shipped with a number of mailbox implementations:

• UnboundedMailbox - The default mailbox

– Backed by a java.util.concurrent.ConcurrentLinkedQueue

– Blocking: No

– Bounded: No

– Configuration name: “unbounded” or “akka.dispatch.UnboundedMailbox”

• SingleConsumerOnlyUnboundedMailbox

– Backed by a very efficient Multiple Producer Single Consumer queue, cannot be used with Balanc-
ingDispatcher

– Blocking: No

– Bounded: No

– Configuration name: “akka.dispatch.SingleConsumerOnlyUnboundedMailbox”

• BoundedMailbox

– Backed by a java.util.concurrent.LinkedBlockingQueue

– Blocking: Yes

– Bounded: Yes

– Configuration name: “bounded” or “akka.dispatch.BoundedMailbox”

• UnboundedPriorityMailbox

– Backed by a java.util.concurrent.PriorityBlockingQueue

– Blocking: Yes

– Bounded: No

– Configuration name: “akka.dispatch.UnboundedPriorityMailbox”

• BoundedPriorityMailbox

– Backed by a java.util.PriorityBlockingQueue wrapped in an
akka.util.BoundedBlockingQueue

– Blocking: Yes

– Bounded: Yes

3.6. Mailboxes 114

Akka Scala Documentation, Release 2.2.5

– Configuration name: “akka.dispatch.BoundedPriorityMailbox”

• Durable mailboxes, see Durable Mailboxes.

3.6.3 Mailbox configuration examples

How to create a PriorityMailbox:

import akka.dispatch.PriorityGenerator
import akka.dispatch.UnboundedPriorityMailbox
import com.typesafe.config.Config

// We inherit, in this case, from UnboundedPriorityMailbox
// and seed it with the priority generator
class MyPrioMailbox(settings: ActorSystem.Settings, config: Config)

extends UnboundedPriorityMailbox(
// Create a new PriorityGenerator, lower prio means more important
PriorityGenerator {

// 'highpriority messages should be treated first if possible
case 'highpriority ⇒ 0

// 'lowpriority messages should be treated last if possible
case 'lowpriority ⇒ 2

// PoisonPill when no other left
case PoisonPill ⇒ 3

// We default to 1, which is in between high and low
case otherwise ⇒ 1

})

And then add it to the configuration:

prio-dispatcher {
mailbox-type = "docs.dispatcher.DispatcherDocSpec$MyPrioMailbox"
//Other dispatcher configuration goes here

}

And then an example on how you would use it:

// We create a new Actor that just prints out what it processes
class Logger extends Actor {

val log: LoggingAdapter = Logging(context.system, this)

self ! 'lowpriority
self ! 'lowpriority
self ! 'highpriority
self ! 'pigdog
self ! 'pigdog2
self ! 'pigdog3
self ! 'highpriority
self ! PoisonPill

def receive = {
case x ⇒ log.info(x.toString)

}
}
val a = system.actorOf(Props(classOf[Logger], this).withDispatcher(

"prio-dispatcher"))

/*
* Logs:

* 'highpriority

3.6. Mailboxes 115

Akka Scala Documentation, Release 2.2.5

* 'highpriority

* 'pigdog

* 'pigdog2

* 'pigdog3

* 'lowpriority

* 'lowpriority

*/

It is also possible to configure a mailbox type directly like this:

prio-mailbox {
mailbox-type = "docs.dispatcher.DispatcherDocSpec$MyPrioMailbox"
//Other mailbox configuration goes here

}

akka.actor.deployment {
/priomailboxactor {
mailbox = prio-mailbox

}
}

And then use it either from deployment like this:

import akka.actor.Props
val myActor = context.actorOf(Props[MyActor], "priomailboxactor")

Or code like this:

import akka.actor.Props
val myActor = context.actorOf(Props[MyActor].withMailbox("prio-mailbox"))

3.6.4 Creating your own Mailbox type

An example is worth a thousand quacks:

import akka.actor.ActorRef
import akka.actor.ActorSystem
import akka.dispatch.Envelope
import akka.dispatch.MailboxType
import akka.dispatch.MessageQueue
import akka.dispatch.ProducesMessageQueue
import com.typesafe.config.Config
import java.util.concurrent.ConcurrentLinkedQueue
import scala.Option

// Marker trait used for mailbox requirements mapping
trait MyUnboundedMessageQueueSemantics

object MyUnboundedMailbox {
// This is the MessageQueue implementation
class MyMessageQueue extends MessageQueue
with MyUnboundedMessageQueueSemantics {

private final val queue = new ConcurrentLinkedQueue[Envelope]()

// these must be implemented; queue used as example
def enqueue(receiver: ActorRef, handle: Envelope): Unit =

queue.offer(handle)
def dequeue(): Envelope = queue.poll()
def numberOfMessages: Int = queue.size
def hasMessages: Boolean = !queue.isEmpty
def cleanUp(owner: ActorRef, deadLetters: MessageQueue) {

3.6. Mailboxes 116

Akka Scala Documentation, Release 2.2.5

while (hasMessages) {
deadLetters.enqueue(owner, dequeue())

}
}

}
}

// This is the Mailbox implementation
class MyUnboundedMailbox extends MailboxType

with ProducesMessageQueue[MyUnboundedMailbox.MyMessageQueue] {

import MyUnboundedMailbox._

// This constructor signature must exist, it will be called by Akka
def this(settings: ActorSystem.Settings, config: Config) = {
// put your initialization code here
this()

}

// The create method is called to create the MessageQueue
final override def create(owner: Option[ActorRef],

system: Option[ActorSystem]): MessageQueue =
new MyMessageQueue()

}

And then you just specify the FQCN of your MailboxType as the value of the “mailbox-type” in the dispatcher
configuration, or the mailbox configuration.

Note: Make sure to include a constructor which takes akka.actor.ActorSystem.Settings and
com.typesafe.config.Config arguments, as this constructor is invoked reflectively to construct your
mailbox type. The config passed in as second argument is that section from the configuration which describes
the dispatcher or mailbox setting using this mailbox type; the mailbox type will be instantiated once for each
dispatcher or mailbox setting using it.

You can also use the mailbox as a requirement on the dispatcher like this:

custom-dispatcher {
mailbox-requirement =
"docs.dispatcher.MyUnboundedJMessageQueueSemantics"

}

akka.actor.mailbox.requirements {
"docs.dispatcher.MyUnboundedJMessageQueueSemantics" =
custom-dispatcher-mailbox

}

custom-dispatcher-mailbox {
mailbox-type = "docs.dispatcher.MyUnboundedJMailbox"

}

Or by defining the requirement on your actor class like this:

class MySpecialActor extends Actor
with RequiresMessageQueue[MyUnboundedMessageQueueSemantics] {
// ...

}

3.6.5 Special Semantics of system.actorOf

In order to make system.actorOf both synchronous and non-blocking while keeping the return type
ActorRef (and the semantics that the returned ref is fully functional), special handling takes place for this

3.6. Mailboxes 117

Akka Scala Documentation, Release 2.2.5

case. Behind the scenes, a hollow kind of actor reference is constructed, which is sent to the system’s guardian
actor who actually creates the actor and its context and puts those inside the reference. Until that has happened,
messages sent to the ActorRef will be queued locally, and only upon swapping the real filling in will they be
transferred into the real mailbox. Thus,

val props: Props = ...
// this actor uses MyCustomMailbox, which is assumed to be a singleton
system.actorOf(props.withDispatcher("myCustomMailbox")) ! "bang"
assert(MyCustomMailbox.instance.getLastEnqueuedMessage == "bang")

will probably fail; you will have to allow for some time to pass and retry the check à la TestKit.awaitCond.

3.7 Routing

A Router is an actor that receives messages and efficiently routes them to other actors, known as its routees.

Different routing strategies can be used, according to your application’s needs. Akka comes with several useful
routing strategies right out of the box. But, as you will see in this chapter, it is also possible to create your own.

The routers shipped with Akka are:

• akka.routing.RoundRobinRouter

• akka.routing.RandomRouter

• akka.routing.SmallestMailboxRouter

• akka.routing.BroadcastRouter

• akka.routing.ScatterGatherFirstCompletedRouter

• akka.routing.ConsistentHashingRouter

3.7.1 Routers in Action

Sending a message to a router is easy.

router ! MyMsg

A router actor forwards messages to its routees according to its routing policy.

Note: In general, any message sent to a router will be sent onwards to its routees. But there are a few exceptions.
These are documented in the Handling for Special Messages section below.

Creating a Router

Routers and routees are closely intertwined. Router actors are created by specifying the desired routee Props
then attaching the router’s RouterConfig. When you create a router actor it will create routees, as needed, as
its children.

For example, the following code and configuration snippets show how to create a round-robin router that forwards
messages to five ExampleActor routees. The routees will be created as the router’s children.

akka.actor.deployment {
/myrouter1 {
router = round-robin
nr-of-instances = 5

}
}

3.7. Routing 118

Akka Scala Documentation, Release 2.2.5

val router = system.actorOf(Props[ExampleActor].withRouter(FromConfig()),
"myrouter1")

Here is the same example, but with the router configuration provided programmatically instead of from configu-
ration.

val router1 = system.actorOf(Props[ExampleActor1].withRouter(
RoundRobinRouter(nrOfInstances = 5)))

Sometimes, rather than having the router create its routees, it is desirable to create routees separately and provide
them to the router for its use. You can do this by passing an Iterable of routees to the router’s configuration.

The example below shows how to create a router by providing it with the ActorRefs of three routee actors.

val actor1 = system.actorOf(Props[ExampleActor1])
val actor2 = system.actorOf(Props[ExampleActor1])
val actor3 = system.actorOf(Props[ExampleActor1])
val routees = Vector[ActorRef](actor1, actor2, actor3)
val router2 = system.actorOf(Props.empty.withRouter(

RoundRobinRouter(routees = routees)))

Routees can also be specified by providing their path strings instead of their ActorRefs.

val actor1 = system.actorOf(Props[ExampleActor1], "actor1")
val actor2 = system.actorOf(Props[ExampleActor1], "actor2")
val actor3 = system.actorOf(Props[ExampleActor1], "actor3")
val routees = Vector[String]("/user/actor1", "/user/actor2", "/user/actor3")
val router = system.actorOf(

Props.empty.withRouter(RoundRobinRouter(routees = routees)))

In addition to being able to supply looked-up remote actors as routees, you can ask the router to deploy its created
children on a set of remote hosts. Routees will be deployed in round-robin fashion. In order to deploy routees
remotely, wrap the router configuration in a RemoteRouterConfig, attaching the remote addresses of the
nodes to deploy to. Remote deployment requires the akka-remote module to be included in the classpath.

import akka.actor.{ Address, AddressFromURIString }
val addresses = Seq(

Address("akka", "remotesys", "otherhost", 1234),
AddressFromURIString("akka://othersys@anotherhost:1234"))

val routerRemote = system.actorOf(Props[ExampleActor1].withRouter(
RemoteRouterConfig(RoundRobinRouter(5), addresses)))

There are a few gotchas to be aware of when creating routers:

• If you define the router in the configuration file then this value will be used instead of any programmati-
cally provided parameters.

• Although routers can be configured in the configuration file, they must still be created programmatically,
i.e. you cannot make a router through external configuration alone.

• If you provide the routees in the router configuration then the value of nrOfInstances, if provided,
will be disregarded.

• When you provide routees programmatically the router will generally ignore the routee Props, as it does
not need to create routees. However, if you use a resizable router then the routee Props will be used
whenever the resizer creates new routees.

Routers, Routees and Senders

The router forwards messages onto its routees without changing the original sender. When a routee replies to a
routed message, the reply will be sent to the original sender, not to the router.

When a router creates routees, they are created as the routers children. This gives each routee its own identity in
the actor system.

3.7. Routing 119

Akka Scala Documentation, Release 2.2.5

By default, when a routee sends a message, it will implicitly set itself as the sender.

sender ! x // replies will go to this actor

However, it is often useful for routees to set the router as a sender. For example, you might want to set the router
as the sender if you want to hide the details of the routees behind the router. The following code snippet shows
how to set the parent router as sender.

sender.tell("reply", context.parent) // replies will go back to parent
sender.!("reply")(context.parent) // alternative syntax (beware of the parens!)

Note that different code would be needed if the routees were not children of the router, i.e. if they were provided
when the router was created.

3.7.2 Routers and Supervision

Routees can be created by a router or provided to the router when it is created. Any routees that are created by a
router will be created as the router’s children. The router is therefore also the children’s supervisor.

The supervision strategy of the router actor can be configured with the
RouterConfig.supervisorStrategy property. If no configuration is provided, routers default to
a strategy of “always escalate”. This means that errors are passed up to the router’s supervisor for handling. The
router’s supervisor will decide what to do about any errors.

Note the router’s supervisor will treat the error as an error with the router itself. Therefore a directive to stop or
restart will cause the router itself to stop or restart. The router, in turn, will cause its children to stop and restart.

It should be mentioned that the router’s restart behavior has been overridden so that a restart, while still re-creating
the children, will still preserve the same number of actors in the pool.

This means that if you have not specified supervisorStrategy of the router or its parent a failure in a routee
will escalate to the parent of the router, which will by default restart the router, which will restart all routees (it
uses Escalate and does not stop routees during restart). The reason is to make the default behave such that adding
withRouter to a child’s definition does not change the supervision strategy applied to the child. This might be
an inefficiency that you can avoid by specifying the strategy when defining the router.

Setting the strategy is easily done:

val escalator = OneForOneStrategy() {
// custom strategy ...

}
val router = system.actorOf(Props.empty.withRouter(

RoundRobinRouter(1, supervisorStrategy = escalator)))

Note: If the child of a router terminates, the router will not automatically spawn a new child. In the event that
all children of a router have terminated the router will terminate itself unless it is a dynamic router, e.g. using a
resizer.

3.7.3 Router usage

In this section we will describe how to use the different router types. First we need to create some actors that will
be used in the examples:

class PrintlnActor extends Actor {
def receive = {
case msg ⇒

println("Received message '%s' in actor %s".format(msg, self.path.name))
}

}

and

3.7. Routing 120

Akka Scala Documentation, Release 2.2.5

class FibonacciActor extends Actor {
def receive = {
case FibonacciNumber(nbr) ⇒ sender ! fibonacci(nbr)

}

private def fibonacci(n: Int): Int = {
@tailrec
def fib(n: Int, b: Int, a: Int): Int = n match {

case 0 ⇒ a
case _ ⇒ fib(n - 1, a + b, b)

}

fib(n, 1, 0)
}

}

RoundRobinRouter

Routes in a round-robin fashion to its routees. Code example:

val roundRobinRouter =
context.actorOf(Props[PrintlnActor].withRouter(RoundRobinRouter(5)), "router")

1 to 10 foreach {
i ⇒ roundRobinRouter ! i

}

When run you should see a similar output to this:

Received message '1' in actor $b
Received message '2' in actor $c
Received message '3' in actor $d
Received message '6' in actor $b
Received message '4' in actor $e
Received message '8' in actor $d
Received message '5' in actor $f
Received message '9' in actor $e
Received message '10' in actor $f
Received message '7' in actor $c

If you look closely to the output you can see that each of the routees received two messages which is exactly what
you would expect from a round-robin router to happen. (The name of an actor is automatically created in the
format $letter unless you specify it - hence the names printed above.)

This is an example of how to define a round-robin router in configuration:

akka.actor.deployment {
/myrouter1 {
router = round-robin
nr-of-instances = 5

}
}

RandomRouter

As the name implies this router type selects one of its routees randomly and forwards the message it receives to
this routee. This procedure will happen each time it receives a message. Code example:

val randomRouter =
context.actorOf(Props[PrintlnActor].withRouter(RandomRouter(5)), "router")

1 to 10 foreach {

3.7. Routing 121

http://en.wikipedia.org/wiki/Round-robin

Akka Scala Documentation, Release 2.2.5

i ⇒ randomRouter ! i
}

When run you should see a similar output to this:

Received message '1' in actor $e
Received message '2' in actor $c
Received message '4' in actor $b
Received message '5' in actor $d
Received message '3' in actor $e
Received message '6' in actor $c
Received message '7' in actor $d
Received message '8' in actor $e
Received message '9' in actor $d
Received message '10' in actor $d

The result from running the random router should be different, or at least random, every time you run it. Try to
run it a couple of times to verify its behavior if you don’t trust us.

This is an example of how to define a random router in configuration:

akka.actor.deployment {
/myrouter3 {
router = random
nr-of-instances = 5

}
}

SmallestMailboxRouter

A Router that tries to send to the non-suspended routee with fewest messages in mailbox. The selection is done in
this order:

• pick any idle routee (not processing message) with empty mailbox

• pick any routee with empty mailbox

• pick routee with fewest pending messages in mailbox

• pick any remote routee, remote actors are consider lowest priority, since their mailbox size is unknown

Code example:

val smallestMailboxRouter = context.actorOf(Props[PrintlnActor].
withRouter(SmallestMailboxRouter(5)), "router")

1 to 10 foreach {
i ⇒ smallestMailboxRouter ! i

}

This is an example of how to define a smallest-mailbox router in configuration:

akka.actor.deployment {
/myrouter4 {
router = smallest-mailbox
nr-of-instances = 5

}
}

BroadcastRouter

A broadcast router forwards the message it receives to all its routees. Code example:

3.7. Routing 122

Akka Scala Documentation, Release 2.2.5

val broadcastRouter =
context.actorOf(Props[PrintlnActor].withRouter(BroadcastRouter(5)), "router")

broadcastRouter ! "this is a broadcast message"

When run you should see a similar output to this:

Received message 'this is a broadcast message' in actor $f
Received message 'this is a broadcast message' in actor $d
Received message 'this is a broadcast message' in actor $e
Received message 'this is a broadcast message' in actor $c
Received message 'this is a broadcast message' in actor $b

As you can see here above each of the routees, five in total, received the broadcast message.

This is an example of how to define a broadcast router in configuration:

akka.actor.deployment {
/myrouter5 {
router = broadcast
nr-of-instances = 5

}
}

Note: Broadcast routers always broadcast every message to their routees. If you do not want to broadcast every
message, then you can use a non-broadcasting router and use Broadcast Messages as needed.

ScatterGatherFirstCompletedRouter

The ScatterGatherFirstCompletedRouter will send the message on to all its routees as a future. It then waits for
first result it gets back. This result will be sent back to original sender. Code example:

val scatterGatherFirstCompletedRouter = context.actorOf(
Props[FibonacciActor].withRouter(ScatterGatherFirstCompletedRouter(
nrOfInstances = 5, within = 2 seconds)), "router")

implicit val timeout = Timeout(5 seconds)
val futureResult = scatterGatherFirstCompletedRouter ? FibonacciNumber(10)
val result = Await.result(futureResult, timeout.duration)

When run you should see this:

The result of calculating Fibonacci for 10 is 55

From the output above you can’t really see that all the routees performed the calculation, but they did! The result
you see is from the first routee that returned its calculation to the router.

This is an example of how to define a scatter-gather router in configuration:

akka.actor.deployment {
/myrouter6 {
router = scatter-gather
nr-of-instances = 5
within = 10 seconds

}
}

ConsistentHashingRouter

The ConsistentHashingRouter uses consistent hashing to select a connection based on the sent message. This
article gives good insight into how consistent hashing is implemented.

There is 3 ways to define what data to use for the consistent hash key.

3.7. Routing 123

http://en.wikipedia.org/wiki/Consistent_hashing
http://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.html

Akka Scala Documentation, Release 2.2.5

• You can define hashMapping of the router to map incoming messages to their consistent hash key. This
makes the decision transparent for the sender.

• The messages may implement akka.routing.ConsistentHashingRouter.ConsistentHashable.
The key is part of the message and it’s convenient to define it together with the message definition.

• The messages can be be wrapped in a akka.routing.ConsistentHashingRouter.ConsistentHashableEnvelope
to define what data to use for the consistent hash key. The sender knows the key to use.

These ways to define the consistent hash key can be use together and at the same time for one router. The
hashMapping is tried first.

Code example:

import akka.actor.Actor
import akka.routing.ConsistentHashingRouter.ConsistentHashable

class Cache extends Actor {
var cache = Map.empty[String, String]

def receive = {
case Entry(key, value) ⇒ cache += (key -> value)
case Get(key) ⇒ sender ! cache.get(key)
case Evict(key) ⇒ cache -= key

}
}

case class Evict(key: String)

case class Get(key: String) extends ConsistentHashable {
override def consistentHashKey: Any = key

}

case class Entry(key: String, value: String)

import akka.actor.Props
import akka.routing.ConsistentHashingRouter
import akka.routing.ConsistentHashingRouter.ConsistentHashMapping
import akka.routing.ConsistentHashingRouter.ConsistentHashableEnvelope

def hashMapping: ConsistentHashMapping = {
case Evict(key) ⇒ key

}

val cache = system.actorOf(Props[Cache].withRouter(ConsistentHashingRouter(10,
hashMapping = hashMapping)), name = "cache")

cache ! ConsistentHashableEnvelope(
message = Entry("hello", "HELLO"), hashKey = "hello")

cache ! ConsistentHashableEnvelope(
message = Entry("hi", "HI"), hashKey = "hi")

cache ! Get("hello")
expectMsg(Some("HELLO"))

cache ! Get("hi")
expectMsg(Some("HI"))

cache ! Evict("hi")
cache ! Get("hi")
expectMsg(None)

In the above example you see that the Get message implements ConsistentHashable itself, while the
Entry message is wrapped in a ConsistentHashableEnvelope. The Evict message is handled by
the hashMapping partial function.

3.7. Routing 124

Akka Scala Documentation, Release 2.2.5

This is an example of how to define a consistent-hashing router in configuration:

akka.actor.deployment {
/myrouter7 {
router = consistent-hashing
nr-of-instances = 5
virtual-nodes-factor = 10

}
}

3.7.4 Handling for Special Messages

Most messages sent to routers will be forwarded according to the routers’ usual routing rules. However there are
a few types of messages that have special behavior.

Broadcast Messages

A Broadcast message can be used to send a message to all of a router’s routees. When a router receives a
Broadcast message, it will broadcast that message’s payload to all routees, no matter how that router would
normally route its messages.

The example below shows how you would use a Broadcast message to send a very important message to every
routee of a router.

import akka.routing.Broadcast
router ! Broadcast("Watch out for Davy Jones' locker")

In this example the router receives the Broadcast message, extracts its payload
("Watch out for Davy Jones’ locker"), and then sends the payload on to all of the router’s
routees. It is up to each each routee actor to handle the received payload message.

PoisonPill Messages

A PoisonPill message has special handling for all actors, including for routers. When any actor receives a
PoisonPill message, that actor will be stopped. See the PoisonPill documentation for details.

import akka.actor.PoisonPill
router ! PoisonPill

For a router, which normally passes on messages to routees, it is important to realised that PoisonPillmessages
are processed by the router only. PoisonPill messages sent to a router will not be sent on to routees.

However, a PoisonPill message sent to a router may still affect its routees, because it will stop the router and
when the router stops it also stops its children. Stopping children is normal actor behavior. The router will stop
routees that it has created as children. Each child will process its current message and then tstop. This may lead
to some messages being unprocessed. See the documentation on Stopping actors for more information.

If you wish to stop a router and its routees, but you would like the routees to first process all the messages
currently in their mailboxes, then you should not send a PoisonPill message to the router. Instead you should
wrap a PoisonPill message inside a broadcast message so that each routee will the PoisonPill message
directly. Note that this will stop all routees, even if the routees aren’t children of the router, i.e. even routees
programmatically provided to the router.

import akka.actor.PoisonPill
import akka.routing.Broadcast
router ! Broadcast(PoisonPill)

With the code shown above, each routee will receive a PoisonPill message. Each routee will continue to
process its messages as normal, eventually processing the PoisonPill. This will cause the routee to stop. After

3.7. Routing 125

Akka Scala Documentation, Release 2.2.5

all routees have stopped the router will itself be stopped automatically unless it is a dynamic router, e.g. using a
resizer.

Note: Brendan W McAdams’ excellent blog post Distributing Akka Workloads - And Shutting Down Afterwards
discusses in more detail how PoisonPill messages can be used to shut down routers and routees.

Kill Messages

Kill messages are another type of message that has special handling. See Killing an Actor for general informa-
tion about how actors handle Kill messages.

When a Kill message is sent to a router the router processes the message internally, and does not send it on to its
routees. The router will throw an ActorKilledException and fail. It will then be either resumed, restarted
or terminated, depending how it is supervised.

Routees that are children of the router will also be suspended, and will be affected by the supervision directive
that is applied to the router. Routees that are not the routers children, i.e. those that were created externally to the
router, will not be affected.

import akka.actor.Kill
router ! Kill

As with the PoisonPill message, there is a distinction between killing a router, which indirectly kills its
children (who happen to be routees), and killing routees directly (some of whom may not be children.) To kill
routees directly the router should be sent a Kill message wrapped in a Broadcast message.

import akka.actor.Kill
import akka.routing.Broadcast
router ! Broadcast(Kill)

3.7.5 Dynamically Resizable Routers

All routers can be used with a fixed number of routees or with a resize strategy to adjust the number of routees
dynamically.

This is an example of how to create a resizable router that is defined in configuration:

akka.actor.deployment {
/myrouter2 {
router = round-robin
resizer {

lower-bound = 2
upper-bound = 15

}
}

}

val router = system.actorOf(Props[ExampleActor].withRouter(FromConfig()),
"myrouter2")

Several more configuration options are available and described in akka.actor.deployment.default.resizer
section of the reference Configuration.

This is an example of how to programmatically create a resizable router:

val resizer = DefaultResizer(lowerBound = 2, upperBound = 15)
val router3 = system.actorOf(Props[ExampleActor1].withRouter(

RoundRobinRouter(resizer = Some(resizer))))

It is also worth pointing out that if you define the ‘‘router‘‘ in the configuration file then this value will be used
instead of any programmatically sent parameters.

3.7. Routing 126

http://blog.evilmonkeylabs.com/2013/01/17/Distributing_Akka_Workloads_And_Shutting_Down_After/

Akka Scala Documentation, Release 2.2.5

Note: Resizing is triggered by sending messages to the actor pool, but it is not completed synchronously;
instead a message is sent to the “head” Router to perform the size change. Thus you cannot rely on resizing
to instantaneously create new workers when all others are busy, because the message just sent will be queued to
the mailbox of a busy actor. To remedy this, configure the pool to use a balancing dispatcher, see Configuring
Dispatchers for more information.

3.7.6 How Routing is Designed within Akka

On the surface routers look like normal actors, but they are actually implemented differently. Routers are designed
to be extremely efficient at receiving messages and passing them quickly on to routees.

A normal actor can be used for routing messages, but an actor’s single-threaded processing can become a bottle-
neck. Routers can achieve much higher throughput with an optimization to the usual message-processing pipeline
that allows concurrent routing. This is achieved by embedding routers’ routing logic directly in their ActorRef
rather than in the router actor. Messages sent to a router’s ActorRef can be immediately routed to the routee,
bypassing the single-threaded router actor entirely.

The cost to this is, of course, that the internals of routing code are more complicated than if routers were im-
plemented with normal actors. Fortunately all of this complexity is invisible to consumers of the routing API.
However, it is something to be aware of when implementing your own routers.

3.7.7 Custom Router

You can create your own router should you not find any of the ones provided by Akka sufficient for your needs.
In order to roll your own router you have to fulfill certain criteria which are explained in this section.

Before creating your own router you should consider whether a normal actor with router-like behavior might do
the job just as well as a full-blown router. As explained above, the primary benefit of routers over normal actors
is their higher performance. But they are somewhat more complicated to write than normal actors. Therefore if
lower maximum throughput is acceptable in your application you may wish to stick with traditional actors. This
section, however, assumes that you wish to get maximum performance and so demonstrates how you can create
your own router.

The router created in this example is a simple vote counter. It will route the votes to specific vote counter actors.
In this case we only have two parties the Republicans and the Democrats. We would like a router that forwards all
democrat related messages to the Democrat actor and all republican related messages to the Republican actor.

We begin with defining the class:

case class VoteCountRouter() extends RouterConfig {

def routerDispatcher: String = Dispatchers.DefaultDispatcherId
def supervisorStrategy: SupervisorStrategy = SupervisorStrategy.defaultStrategy

// crRoute ...

}

The next step is to implement the createRoute method in the class just defined:

def createRoute(routeeProvider: RouteeProvider): Route = {
val democratActor =
routeeProvider.context.actorOf(Props(new DemocratActor()), "d")

val republicanActor =
routeeProvider.context.actorOf(Props(new RepublicanActor()), "r")

val routees = Vector[ActorRef](democratActor, republicanActor)

routeeProvider.registerRoutees(routees)

3.7. Routing 127

Akka Scala Documentation, Release 2.2.5

{
case (sender, message) ⇒

message match {
case DemocratVote | DemocratCountResult ⇒
List(Destination(sender, democratActor))

case RepublicanVote | RepublicanCountResult ⇒
List(Destination(sender, republicanActor))

}
}

}

As you can see above we start off by creating the routees and put them in a collection.

Make sure that you don’t miss to implement the line below as it is really important. It registers the routees
internally and failing to call this method will cause a ActorInitializationException to be thrown when
the router is used. Therefore always make sure to do the following in your custom router:

routeeProvider.registerRoutees(routees)

The routing logic is where your magic sauce is applied. In our example it inspects the message types and forwards
to the correct routee based on this:

{
case (sender, message) ⇒
message match {

case DemocratVote | DemocratCountResult ⇒
List(Destination(sender, democratActor))

case RepublicanVote | RepublicanCountResult ⇒
List(Destination(sender, republicanActor))

}
}

As you can see above what’s returned in the partial function is a List of Destination(sender, routee).
The sender is what “parent” the routee should see - changing this could be useful if you for example want another
actor than the original sender to intermediate the result of the routee (if there is a result). For more information
about how to alter the original sender we refer to the source code of ScatterGatherFirstCompletedRouter

All in all the custom router looks like this:

case object DemocratVote
case object DemocratCountResult
case object RepublicanVote
case object RepublicanCountResult

class DemocratActor extends Actor {
var counter = 0

def receive = {
case DemocratVote ⇒ counter += 1
case DemocratCountResult ⇒ sender ! counter

}
}

class RepublicanActor extends Actor {
var counter = 0

def receive = {
case RepublicanVote ⇒ counter += 1
case RepublicanCountResult ⇒ sender ! counter

}
}

case class VoteCountRouter() extends RouterConfig {

3.7. Routing 128

https://github.com/akka/akka/blob/master/akka-actor/src/main/scala/akka/routing/Routing.scala#L375

Akka Scala Documentation, Release 2.2.5

def routerDispatcher: String = Dispatchers.DefaultDispatcherId
def supervisorStrategy: SupervisorStrategy = SupervisorStrategy.defaultStrategy

def createRoute(routeeProvider: RouteeProvider): Route = {
val democratActor =

routeeProvider.context.actorOf(Props(new DemocratActor()), "d")
val republicanActor =

routeeProvider.context.actorOf(Props(new RepublicanActor()), "r")
val routees = Vector[ActorRef](democratActor, republicanActor)

routeeProvider.registerRoutees(routees)

{
case (sender, message) ⇒

message match {
case DemocratVote | DemocratCountResult ⇒

List(Destination(sender, democratActor))
case RepublicanVote | RepublicanCountResult ⇒

List(Destination(sender, republicanActor))
}

}
}

}

If you are interested in how to use the VoteCountRouter you can have a look at the test class RoutingSpec

Caution: When creating a cutom router the resulting RoutedActorRef optimizes the sending of the message
so that it does NOT go through the router’s mailbox unless the route returns an empty recipient set.
This means that the route function defined in the RouterConfig or the function returned from
CreateCustomRoute in CustomRouterConfig is evaluated concurrently without protection by the
RoutedActorRef: either provide a reentrant (i.e. pure) implementation or do the locking yourself!

Configured Custom Router

It is possible to define configuration properties for custom routers. In the router property of the deploy-
ment configuration you define the fully qualified class name of the router class. The router class must extend
akka.routing.RouterConfig and have constructor with one com.typesafe.config.Config pa-
rameter. The deployment section of the configuration is passed to the constructor.

Custom Resizer

A router with dynamically resizable number of routees is implemented by provid-
ing a akka.routing.Resizer in resizer method of the RouterConfig. See
akka.routing.DefaultResizer for inspiration of how to write your own resize strategy.

3.7.8 Configuring Dispatchers

The dispatcher for created children of the router will be taken from Props as described in Dispatchers. For a
dynamic pool it makes sense to configure the BalancingDispatcher if the precise routing is not so impor-
tant (i.e. no consistent hashing or round-robin is required); this enables newly created routees to pick up work
immediately by stealing it from their siblings.

Note: If you provide a collection of actors to route to, then they will still use the same dispatcher that was
configured for them in their Props, it is not possible to change an actors dispatcher after it has been created.

3.7. Routing 129

https://github.com/akka/akka/blob/master/akka-actor-tests/src/test/scala/akka/routing/RoutingSpec.scala

Akka Scala Documentation, Release 2.2.5

The “head” router cannot always run on the same dispatcher, because it does not process the same type
of messages, hence this special actor does not use the dispatcher configured in Props, but takes the
routerDispatcher from the RouterConfig instead, which defaults to the actor system’s default dis-
patcher. All standard routers allow setting this property in their constructor or factory method, custom routers
have to implement the method in a suitable way.

val router: ActorRef = system.actorOf(Props[MyActor]
// “head” will run on "router" dispatcher
.withRouter(RoundRobinRouter(5, routerDispatcher = "router"))
// MyActor workers will run on "workers" dispatcher
.withDispatcher("workers"))

Note: It is not allowed to configure the routerDispatcher to be a BalancingDispatcher since the
messages meant for the special router actor cannot be processed by any other actor.

At first glance there seems to be an overlap between the BalancingDispatcher and Routers, but they com-
plement each other. The balancing dispatcher is in charge of running the actors while the routers are in charge
of deciding which message goes where. A router can also have children that span multiple actor systems, even
remote ones, but a dispatcher lives inside a single actor system.

When using a RoundRobinRouter with a BalancingDispatcher there are some configuration settings
to take into account.

• There can only be nr-of-instances messages being processed at the same time no matter how many
threads are configured for the BalancingDispatcher.

• Having throughput set to a low number makes no sense since you will only be handing off to another
actor that processes the same MailBox as yourself, which can be costly. Either the message just got into
the mailbox and you can receive it as well as anybody else, or everybody else is busy and you are the only
one available to receive the message.

• Resizing the number of routees only introduce inertia, since resizing is performed at specified intervals, but
work stealing is instantaneous.

3.8 FSM

3.8.1 Overview

The FSM (Finite State Machine) is available as a mixin for the akka Actor and is best described in the Erlang
design principles

A FSM can be described as a set of relations of the form:

State(S) x Event(E) -> Actions (A), State(S’)

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a transition to
the state S’.

3.8.2 A Simple Example

To demonstrate most of the features of the FSM trait, consider an actor which shall receive and queue messages
while they arrive in a burst and send them on after the burst ended or a flush request is received.

First, consider all of the below to use these import statements:

import akka.actor.{ Actor, ActorRef, FSM }
import scala.concurrent.duration._

3.8. FSM 130

http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html
http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html

Akka Scala Documentation, Release 2.2.5

The contract of our “Buncher” actor is that it accepts or produces the following messages:

// received events
case class SetTarget(ref: ActorRef)
case class Queue(obj: Any)
case object Flush

// sent events
case class Batch(obj: immutable.Seq[Any])

SetTarget is needed for starting it up, setting the destination for the Batches to be passed on; Queue will
add to the internal queue while Flush will mark the end of a burst.

// states
sealed trait State
case object Idle extends State
case object Active extends State

sealed trait Data
case object Uninitialized extends Data
case class Todo(target: ActorRef, queue: immutable.Seq[Any]) extends Data

The actor can be in two states: no message queued (aka Idle) or some message queued (aka Active). It will
stay in the active state as long as messages keep arriving and no flush is requested. The internal state data of the
actor is made up of the target actor reference to send the batches to and the actual queue of messages.

Now let’s take a look at the skeleton for our FSM actor:

class Buncher extends Actor with FSM[State, Data] {

startWith(Idle, Uninitialized)

when(Idle) {
case Event(SetTarget(ref), Uninitialized) ⇒

stay using Todo(ref, Vector.empty)
}

// transition elided ...

when(Active, stateTimeout = 1 second) {
case Event(Flush | StateTimeout, t: Todo) ⇒

goto(Idle) using t.copy(queue = Vector.empty)
}

// unhandled elided ...

initialize()
}

The basic strategy is to declare the actor, mixing in the FSM trait and specifying the possible states and data values
as type parameters. Within the body of the actor a DSL is used for declaring the state machine:

• startsWith defines the initial state and initial data

• then there is one when(<state>) { ... } declaration per state to be handled (could potentially be
multiple ones, the passed PartialFunction will be concatenated using orElse)

• finally starting it up using initialize, which performs the transition into the initial state and sets up
timers (if required).

In this case, we start out in the Idle and Uninitialized state, where only the SetTarget() message
is handled; stay prepares to end this event’s processing for not leaving the current state, while the using
modifier makes the FSM replace the internal state (which is Uninitialized at this point) with a fresh Todo()
object containing the target actor reference. The Active state has a state timeout declared, which means that
if no message is received for 1 second, a FSM.StateTimeout message will be generated. This has the same

3.8. FSM 131

Akka Scala Documentation, Release 2.2.5

effect as receiving the Flush command in this case, namely to transition back into the Idle state and resetting
the internal queue to the empty vector. But how do messages get queued? Since this shall work identically in
both states, we make use of the fact that any event which is not handled by the when() block is passed to the
whenUnhandled() block:

whenUnhandled {
// common code for both states
case Event(Queue(obj), t @ Todo(_, v)) ⇒
goto(Active) using t.copy(queue = v :+ obj)

case Event(e, s) ⇒
log.warning("received unhandled request {} in state {}/{}", e, stateName, s)
stay

}

The first case handled here is adding Queue() requests to the internal queue and going to the Active state
(this does the obvious thing of staying in the Active state if already there), but only if the FSM data are not
Uninitialized when the Queue() event is received. Otherwise—and in all other non-handled cases—the
second case just logs a warning and does not change the internal state.

The only missing piece is where the Batches are actually sent to the target, for which we use the
onTransition mechanism: you can declare multiple such blocks and all of them will be tried for matching
behavior in case a state transition occurs (i.e. only when the state actually changes).

onTransition {
case Active -> Idle ⇒
stateData match {

case Todo(ref, queue) ⇒ ref ! Batch(queue)
}

}

The transition callback is a partial function which takes as input a pair of states—the current and the next state. The
FSM trait includes a convenience extractor for these in form of an arrow operator, which conveniently reminds
you of the direction of the state change which is being matched. During the state change, the old state data is
available via stateData as shown, and the new state data would be available as nextStateData.

To verify that this buncher actually works, it is quite easy to write a test using the Testing Actor Systems, which is
conveniently bundled with ScalaTest traits into AkkaSpec:

import akka.actor.Props
import scala.collection.immutable

class FSMDocSpec extends MyFavoriteTestFrameWorkPlusAkkaTestKit {

// fsm code elided ...

"simple finite state machine" must {

"demonstrate NullFunction" in {
class A extends Actor with FSM[Int, Null] {

val SomeState = 0
when(SomeState)(FSM.NullFunction)

}
}

"batch correctly" in {
val buncher = system.actorOf(Props(classOf[Buncher], this))
buncher ! SetTarget(testActor)
buncher ! Queue(42)
buncher ! Queue(43)
expectMsg(Batch(immutable.Seq(42, 43)))
buncher ! Queue(44)
buncher ! Flush
buncher ! Queue(45)

3.8. FSM 132

Akka Scala Documentation, Release 2.2.5

expectMsg(Batch(immutable.Seq(44)))
expectMsg(Batch(immutable.Seq(45)))

}

"not batch if uninitialized" in {
val buncher = system.actorOf(Props(classOf[Buncher], this))
buncher ! Queue(42)
expectNoMsg

}
}

}

3.8.3 Reference

The FSM Trait and Object

The FSM trait may only be mixed into an Actor. Instead of extending Actor, the self type approach was chosen
in order to make it obvious that an actor is actually created:

class Buncher extends Actor with FSM[State, Data] {

// fsm body ...

initialize()
}

Note: The FSM trait defines a receive method which handles internal messages and passes everything else
through to the FSM logic (according to the current state). When overriding the receive method, keep in mind
that e.g. state timeout handling depends on actually passing the messages through the FSM logic.

The FSM trait takes two type parameters:

1. the supertype of all state names, usually a sealed trait with case objects extending it,

2. the type of the state data which are tracked by the FSM module itself.

Note: The state data together with the state name describe the internal state of the state machine; if you stick to
this scheme and do not add mutable fields to the FSM class you have the advantage of making all changes of the
internal state explicit in a few well-known places.

Defining States

A state is defined by one or more invocations of the method

when(<name>[, stateTimeout = <timeout>])(stateFunction).

The given name must be an object which is type-compatible with the first type parameter given to the FSM trait.
This object is used as a hash key, so you must ensure that it properly implements equals and hashCode; in
particular it must not be mutable. The easiest fit for these requirements are case objects.

If the stateTimeout parameter is given, then all transitions into this state, including staying, receive this time-
out by default. Initiating the transition with an explicit timeout may be used to override this default, see Initiating
Transitions for more information. The state timeout of any state may be changed during action processing with
setStateTimeout(state, duration). This enables runtime configuration e.g. via external message.

The stateFunction argument is a PartialFunction[Event, State], which is conveniently given
using the partial function literal syntax as demonstrated below:

3.8. FSM 133

Akka Scala Documentation, Release 2.2.5

when(Idle) {
case Event(SetTarget(ref), Uninitialized) ⇒
stay using Todo(ref, Vector.empty)

}

when(Active, stateTimeout = 1 second) {
case Event(Flush | StateTimeout, t: Todo) ⇒
goto(Idle) using t.copy(queue = Vector.empty)

}

The Event(msg: Any, data: D) case class is parameterized with the data type held by the FSM for con-
venient pattern matching.

Warning: It is required that you define handlers for each of the possible FSM states, otherwise there will be
failures when trying to switch to undeclared states.

It is recommended practice to declare the states as objects extending a sealed trait and then verify that there is a
when clause for each of the states. If you want to leave the handling of a state “unhandled” (more below), it still
needs to be declared like this:

when(SomeState)(FSM.NullFunction)

Defining the Initial State

Each FSM needs a starting point, which is declared using

startWith(state, data[, timeout])

The optionally given timeout argument overrides any specification given for the desired initial state. If you want
to cancel a default timeout, use Duration.Inf.

Unhandled Events

If a state doesn’t handle a received event a warning is logged. If you want to do something else in this case you
can specify that with whenUnhandled(stateFunction):

whenUnhandled {
case Event(x: X, data) ⇒
log.info("Received unhandled event: " + x)
stay

case Event(msg, _) ⇒
log.warning("Received unknown event: " + msg)
goto(Error)

}

Within this handler the state of the FSM may be queried using the stateName method.

IMPORTANT: This handler is not stacked, meaning that each invocation of whenUnhandled replaces the
previously installed handler.

Initiating Transitions

The result of any stateFunction must be a definition of the next state unless terminating the FSM, which is
described in Termination from Inside. The state definition can either be the current state, as described by the stay
directive, or it is a different state as given by goto(state). The resulting object allows further qualification by
way of the modifiers described in the following:

• forMax(duration)

3.8. FSM 134

Akka Scala Documentation, Release 2.2.5

This modifier sets a state timeout on the next state. This means that a timer is started which upon expiry
sends a StateTimeout message to the FSM. This timer is canceled upon reception of any other message
in the meantime; you can rely on the fact that the StateTimeout message will not be processed after an
intervening message.

This modifier can also be used to override any default timeout which is specified for the target state. If you
want to cancel the default timeout, use Duration.Inf.

• using(data)

This modifier replaces the old state data with the new data given. If you follow the advice above, this is the
only place where internal state data are ever modified.

• replying(msg)

This modifier sends a reply to the currently processed message and otherwise does not modify the state
transition.

All modifier can be chained to achieve a nice and concise description:

when(SomeState) {
case Event(msg, _) ⇒
goto(Processing) using (newData) forMax (5 seconds) replying (WillDo)

}

The parentheses are not actually needed in all cases, but they visually distinguish between modifiers and their
arguments and therefore make the code even more pleasant to read for foreigners.

Note: Please note that the return statement may not be used in when blocks or similar; this is a Scala
restriction. Either refactor your code using if () ... else ... or move it into a method definition.

Monitoring Transitions

Transitions occur “between states” conceptually, which means after any actions you have put into the event han-
dling block; this is obvious since the next state is only defined by the value returned by the event handling logic.
You do not need to worry about the exact order with respect to setting the internal state variable, as everything
within the FSM actor is running single-threaded anyway.

Internal Monitoring

Up to this point, the FSM DSL has been centered on states and events. The dual view is to describe it as a series
of transitions. This is enabled by the method

onTransition(handler)

which associates actions with a transition instead of with a state and event. The handler is a partial function which
takes a pair of states as input; no resulting state is needed as it is not possible to modify the transition in progress.

onTransition {
case Idle -> Active ⇒ setTimer("timeout", Tick, 1 second, true)
case Active -> _ ⇒ cancelTimer("timeout")
case x -> Idle ⇒ log.info("entering Idle from " + x)

}

The convenience extractor -> enables decomposition of the pair of states with a clear visual reminder of the
transition’s direction. As usual in pattern matches, an underscore may be used for irrelevant parts; alternatively
you could bind the unconstrained state to a variable, e.g. for logging as shown in the last case.

It is also possible to pass a function object accepting two states to onTransition, in case your transition
handling logic is implemented as a method:

3.8. FSM 135

Akka Scala Documentation, Release 2.2.5

onTransition(handler _)

def handler(from: StateType, to: StateType) {
// handle it here ...

}

The handlers registered with this method are stacked, so you can intersperse onTransition blocks with when
blocks as suits your design. It should be noted, however, that all handlers will be invoked for each transition,
not only the first matching one. This is designed specifically so you can put all transition handling for a certain
aspect into one place without having to worry about earlier declarations shadowing later ones; the actions are still
executed in declaration order, though.

Note: This kind of internal monitoring may be used to structure your FSM according to transitions, so that for
example the cancellation of a timer upon leaving a certain state cannot be forgot when adding new target states.

External Monitoring

External actors may be registered to be notified of state transitions by sending a mes-
sage SubscribeTransitionCallBack(actorRef). The named actor will be
sent a CurrentState(self, stateName) message immediately and will receive
Transition(actorRef, oldState, newState) messages whenever a new state is reached. External
monitors may be unregistered by sending UnsubscribeTransitionCallBack(actorRef) to the FSM
actor.

Registering a not-running listener generates a warning and fails gracefully. Stopping a listener without unregister-
ing will remove the listener from the subscription list upon the next transition.

Transforming State

The partial functions supplied as argument to the when() blocks can be transformed using Scala’s full supplement
of functional programming tools. In order to retain type inference, there is a helper function which may be used
in case some common handling logic shall be applied to different clauses:

when(SomeState)(transform {
case Event(bytes: ByteString, read) ⇒ stay using (read + bytes.length)

} using {
case s @ FSM.State(state, read, timeout, stopReason, replies) if read > 1000 ⇒
goto(Processing)

})

It goes without saying that the arguments to this method may also be stored, to be used several times, e.g. when
applying the same transformation to several when() blocks:

val processingTrigger: PartialFunction[State, State] = {
case s @ FSM.State(state, read, timeout, stopReason, replies) if read > 1000 ⇒
goto(Processing)

}

when(SomeState)(transform {
case Event(bytes: ByteString, read) ⇒ stay using (read + bytes.length)

} using processingTrigger)

Timers

Besides state timeouts, FSM manages timers identified by String names. You may set a timer using

setTimer(name, msg, interval, repeat)

3.8. FSM 136

Akka Scala Documentation, Release 2.2.5

where msg is the message object which will be sent after the duration interval has elapsed. If repeat is
true, then the timer is scheduled at fixed rate given by the interval parameter. Timers may be canceled using

cancelTimer(name)

which is guaranteed to work immediately, meaning that the scheduled message will not be processed after this call
even if the timer already fired and queued it. The status of any timer may be inquired with

isTimerActive(name)

These named timers complement state timeouts because they are not affected by intervening reception of other
messages.

Termination from Inside

The FSM is stopped by specifying the result state as

stop([reason[, data]])

The reason must be one of Normal (which is the default), Shutdown or Failure(reason), and the second
argument may be given to change the state data which is available during termination handling.

Note: It should be noted that stop does not abort the actions and stop the FSM immediately. The stop action
must be returned from the event handler in the same way as a state transition (but note that the return statement
may not be used within a when block).

when(Error) {
case Event("stop", _) ⇒
// do cleanup ...
stop()

}

You can use onTermination(handler) to specify custom code that is executed when the FSM is stopped.
The handler is a partial function which takes a StopEvent(reason, stateName, stateData) as argu-
ment:

onTermination {
case StopEvent(FSM.Normal, state, data) ⇒ // ...
case StopEvent(FSM.Shutdown, state, data) ⇒ // ...
case StopEvent(FSM.Failure(cause), state, data) ⇒ // ...

}

As for the whenUnhandled case, this handler is not stacked, so each invocation of onTermination replaces
the previously installed handler.

Termination from Outside

When an ActorRef associated to a FSM is stopped using the stop method, its postStop hook will be
executed. The default implementation by the FSM trait is to execute the onTermination handler if that is
prepared to handle a StopEvent(Shutdown, ...).

Warning: In case you override postStop and want to have your onTermination handler called, do not
forget to call super.postStop.

3.8.4 Testing and Debugging Finite State Machines

During development and for trouble shooting FSMs need care just as any other actor. There are specialized tools
available as described in Testing Finite State Machines and in the following.

3.8. FSM 137

Akka Scala Documentation, Release 2.2.5

Event Tracing

The setting akka.actor.debug.fsm in Configuration enables logging of an event trace by LoggingFSM
instances:

import akka.actor.LoggingFSM
class MyFSM extends Actor with LoggingFSM[StateType, Data] {

// body elided ...
}

This FSM will log at DEBUG level:

• all processed events, including StateTimeout and scheduled timer messages

• every setting and cancellation of named timers

• all state transitions

Life cycle changes and special messages can be logged as described for Actors.

Rolling Event Log

The LoggingFSM trait adds one more feature to the FSM: a rolling event log which may be used during debug-
ging (for tracing how the FSM entered a certain failure state) or for other creative uses:

import akka.actor.LoggingFSM
class MyFSM extends Actor with LoggingFSM[StateType, Data] {

override def logDepth = 12
onTermination {
case StopEvent(FSM.Failure(_), state, data) ⇒

val lastEvents = getLog.mkString("\n\t")
log.warning("Failure in state " + state + " with data " + data + "\n" +

"Events leading up to this point:\n\t" + lastEvents)
}
// ...

}

The logDepth defaults to zero, which turns off the event log.

Warning: The log buffer is allocated during actor creation, which is why the configuration is done using a
virtual method call. If you want to override with a val, make sure that its initialization happens before the
initializer of LoggingFSM runs, and do not change the value returned by logDepth after the buffer has
been allocated.

The contents of the event log are available using method getLog, which returns an IndexedSeq[LogEntry]
where the oldest entry is at index zero.

3.8.5 Examples

A bigger FSM example contrasted with Actor’s become/unbecome can be found in the sources:

• Dining Hakkers using FSM

• Dining Hakkers using become

3.9 Testing Actor Systems

3.9.1 TestKit Example

Ray Roestenburg’s example code from his blog adapted to work with Akka 2.x.

3.9. Testing Actor Systems 138

https://github.com/akka/akka/blob/master/akka-samples/akka-sample-fsm/src/main/scala/DiningHakkersOnFsm.scala#L1
https://github.com/akka/akka/blob/master/akka-samples/akka-sample-fsm/src/main/scala/DiningHakkersOnBecome.scala#L1
http://roestenburg.agilesquad.com/2011/02/unit-testing-akka-actors-with-testkit_12.html

Akka Scala Documentation, Release 2.2.5

import scala.util.Random

import org.scalatest.BeforeAndAfterAll
import org.scalatest.WordSpec
import org.scalatest.matchers.ShouldMatchers

import com.typesafe.config.ConfigFactory

import akka.actor.Actor
import akka.actor.ActorRef
import akka.actor.ActorSystem
import akka.actor.Props
import akka.testkit.DefaultTimeout
import akka.testkit.ImplicitSender
import akka.testkit.TestKit
import scala.concurrent.duration._
import scala.collection.immutable

/**
* a Test to show some TestKit examples

*/
class TestKitUsageSpec

extends TestKit(ActorSystem("TestKitUsageSpec",
ConfigFactory.parseString(TestKitUsageSpec.config)))

with DefaultTimeout with ImplicitSender
with WordSpec with ShouldMatchers with BeforeAndAfterAll {
import TestKitUsageSpec._

val echoRef = system.actorOf(Props[EchoActor])
val forwardRef = system.actorOf(Props(classOf[ForwardingActor], testActor))
val filterRef = system.actorOf(Props(classOf[FilteringActor], testActor))
val randomHead = Random.nextInt(6)
val randomTail = Random.nextInt(10)
val headList = immutable.Seq().padTo(randomHead, "0")
val tailList = immutable.Seq().padTo(randomTail, "1")
val seqRef =
system.actorOf(Props(classOf[SequencingActor], testActor, headList, tailList))

override def afterAll {
shutdown(system)

}

"An EchoActor" should {
"Respond with the same message it receives" in {

within(500 millis) {
echoRef ! "test"
expectMsg("test")

}
}

}
"A ForwardingActor" should {
"Forward a message it receives" in {

within(500 millis) {
forwardRef ! "test"
expectMsg("test")

}
}

}
"A FilteringActor" should {
"Filter all messages, except expected messagetypes it receives" in {

var messages = Seq[String]()
within(500 millis) {

filterRef ! "test"

3.9. Testing Actor Systems 139

Akka Scala Documentation, Release 2.2.5

expectMsg("test")
filterRef ! 1
expectNoMsg
filterRef ! "some"
filterRef ! "more"
filterRef ! 1
filterRef ! "text"
filterRef ! 1

receiveWhile(500 millis) {
case msg: String ⇒ messages = msg +: messages

}
}
messages.length should be(3)
messages.reverse should be(Seq("some", "more", "text"))

}
}
"A SequencingActor" should {
"receive an interesting message at some point " in {

within(500 millis) {
ignoreMsg {
case msg: String ⇒ msg != "something"

}
seqRef ! "something"
expectMsg("something")
ignoreMsg {
case msg: String ⇒ msg == "1"

}
expectNoMsg
ignoreNoMsg

}
}

}
}

object TestKitUsageSpec {
// Define your test specific configuration here
val config = """
akka {

loglevel = "WARNING"
}
"""

/**
* An Actor that echoes everything you send to it

*/
class EchoActor extends Actor {
def receive = {

case msg ⇒ sender ! msg
}

}

/**
* An Actor that forwards every message to a next Actor

*/
class ForwardingActor(next: ActorRef) extends Actor {
def receive = {

case msg ⇒ next ! msg
}

}

/**
* An Actor that only forwards certain messages to a next Actor

3.9. Testing Actor Systems 140

Akka Scala Documentation, Release 2.2.5

*/
class FilteringActor(next: ActorRef) extends Actor {
def receive = {

case msg: String ⇒ next ! msg
case _ ⇒ None

}
}

/**
* An actor that sends a sequence of messages with a random head list, an

* interesting value and a random tail list. The idea is that you would

* like to test that the interesting value is received and that you cant

* be bothered with the rest

*/
class SequencingActor(next: ActorRef, head: immutable.Seq[String],

tail: immutable.Seq[String]) extends Actor {
def receive = {

case msg ⇒ {
head foreach { next ! _ }
next ! msg
tail foreach { next ! _ }

}
}

}
}

As with any piece of software, automated tests are a very important part of the development cycle. The actor
model presents a different view on how units of code are delimited and how they interact, which has an influence
on how to perform tests.

Akka comes with a dedicated module akka-testkit for supporting tests at different levels, which fall into two
clearly distinct categories:

• Testing isolated pieces of code without involving the actor model, meaning without multiple threads; this
implies completely deterministic behavior concerning the ordering of events and no concurrency concerns
and will be called Unit Testing in the following.

• Testing (multiple) encapsulated actors including multi-threaded scheduling; this implies non-deterministic
order of events but shielding from concurrency concerns by the actor model and will be called Integration
Testing in the following.

There are of course variations on the granularity of tests in both categories, where unit testing reaches down to
white-box tests and integration testing can encompass functional tests of complete actor networks. The important
distinction lies in whether concurrency concerns are part of the test or not. The tools offered are described in detail
in the following sections.

Note: Be sure to add the module akka-testkit to your dependencies.

3.9.2 Synchronous Unit Testing with TestActorRef

Testing the business logic inside Actor classes can be divided into two parts: first, each atomic operation must
work in isolation, then sequences of incoming events must be processed correctly, even in the presence of some
possible variability in the ordering of events. The former is the primary use case for single-threaded unit testing,
while the latter can only be verified in integration tests.

Normally, the ActorRef shields the underlying Actor instance from the outside, the only communications
channel is the actor’s mailbox. This restriction is an impediment to unit testing, which led to the inception of the
TestActorRef. This special type of reference is designed specifically for test purposes and allows access to
the actor in two ways: either by obtaining a reference to the underlying actor instance, or by invoking or querying
the actor’s behaviour (receive). Each one warrants its own section below.

3.9. Testing Actor Systems 141

Akka Scala Documentation, Release 2.2.5

Obtaining a Reference to an Actor

Having access to the actual Actor object allows application of all traditional unit testing techniques on the
contained methods. Obtaining a reference is done like this:

import akka.testkit.TestActorRef

val actorRef = TestActorRef[MyActor]
val actor = actorRef.underlyingActor

Since TestActorRef is generic in the actor type it returns the underlying actor with its proper static type. From
this point on you may bring any unit testing tool to bear on your actor as usual.

Testing Finite State Machines

If your actor under test is a FSM, you may use the special TestFSMRef which offers all features of a normal
TestActorRef and in addition allows access to the internal state:

import akka.testkit.TestFSMRef
import akka.actor.FSM
import scala.concurrent.duration._

val fsm = TestFSMRef(new TestFsmActor)

val mustBeTypedProperly: TestActorRef[TestFsmActor] = fsm

assert(fsm.stateName == 1)
assert(fsm.stateData == "")
fsm ! "go" // being a TestActorRef, this runs also on the CallingThreadDispatcher
assert(fsm.stateName == 2)
assert(fsm.stateData == "go")

fsm.setState(stateName = 1)
assert(fsm.stateName == 1)

assert(fsm.isTimerActive("test") == false)
fsm.setTimer("test", 12, 10 millis, true)
assert(fsm.isTimerActive("test") == true)
fsm.cancelTimer("test")
assert(fsm.isTimerActive("test") == false)

Due to a limitation in Scala’s type inference, there is only the factory method shown above, so you
will probably write code like TestFSMRef(new MyFSM) instead of the hypothetical ActorRef-inspired
TestFSMRef[MyFSM]. All methods shown above directly access the FSM state without any synchronization;
this is perfectly alright if the CallingThreadDispatcher is used and no other threads are involved, but it
may lead to surprises if you were to actually exercise timer events, because those are executed on the Scheduler
thread.

Testing the Actor’s Behavior

When the dispatcher invokes the processing behavior of an actor on a message, it actually calls apply on the
current behavior registered for the actor. This starts out with the return value of the declared receive method,
but it may also be changed using become and unbecome in response to external messages. All of this con-
tributes to the overall actor behavior and it does not lend itself to easy testing on the Actor itself. Therefore the
TestActorRef offers a different mode of operation to complement the Actor testing: it supports all operations
also valid on normal ActorRef. Messages sent to the actor are processed synchronously on the current thread
and answers may be sent back as usual. This trick is made possible by the CallingThreadDispatcher
described below (see CallingThreadDispatcher); this dispatcher is set implicitly for any actor instantiated into a
TestActorRef.

3.9. Testing Actor Systems 142

Akka Scala Documentation, Release 2.2.5

import akka.testkit.TestActorRef
import scala.concurrent.duration._
import scala.concurrent.Await
import akka.pattern.ask

val actorRef = TestActorRef(new MyActor)
// hypothetical message stimulating a '42' answer
val future = actorRef ? Say42
val Success(result: Int) = future.value.get
result must be(42)

As the TestActorRef is a subclass of LocalActorRef with a few special extras, also aspects like super-
vision and restarting work properly, but beware that execution is only strictly synchronous as long as all actors
involved use the CallingThreadDispatcher. As soon as you add elements which include more sophisti-
cated scheduling you leave the realm of unit testing as you then need to think about asynchronicity again (in most
cases the problem will be to wait until the desired effect had a chance to happen).

One more special aspect which is overridden for single-threaded tests is the receiveTimeout, as including
that would entail asynchronous queuing of ReceiveTimeout messages, violating the synchronous contract.

Note: To summarize: TestActorRef overwrites two fields: it sets the dispatcher to
CallingThreadDispatcher.global and it sets the receiveTimeout to None.

The Way In-Between: Expecting Exceptions

If you want to test the actor behavior, including hotswapping, but without involving a dispatcher and without
having the TestActorRef swallow any thrown exceptions, then there is another mode available for you: just
use the receive method TestActorRef, which will be forwarded to the underlying actor:

import akka.testkit.TestActorRef

val actorRef = TestActorRef(new Actor {
def receive = {
case "hello" ⇒ throw new IllegalArgumentException("boom")

}
})
intercept[IllegalArgumentException] { actorRef.receive("hello") }

Use Cases

You may of course mix and match both modi operandi of TestActorRef as suits your test needs:

• one common use case is setting up the actor into a specific internal state before sending the test message

• another is to verify correct internal state transitions after having sent the test message

Feel free to experiment with the possibilities, and if you find useful patterns, don’t hesitate to let the Akka forums
know about them! Who knows, common operations might even be worked into nice DSLs.

3.9.3 Asynchronous Integration Testing with TestKit

When you are reasonably sure that your actor’s business logic is correct, the next step is verifying that it works
correctly within its intended environment (if the individual actors are simple enough, possibly because they use the
FSM module, this might also be the first step). The definition of the environment depends of course very much on
the problem at hand and the level at which you intend to test, ranging for functional/integration tests to full system
tests. The minimal setup consists of the test procedure, which provides the desired stimuli, the actor under test,
and an actor receiving replies. Bigger systems replace the actor under test with a network of actors, apply stimuli
at varying injection points and arrange results to be sent from different emission points, but the basic principle
stays the same in that a single procedure drives the test.

3.9. Testing Actor Systems 143

Akka Scala Documentation, Release 2.2.5

The TestKit class contains a collection of tools which makes this common task easy.

import akka.actor.ActorSystem
import akka.actor.Actor
import akka.actor.Props
import akka.testkit.TestKit
import org.scalatest.WordSpec
import org.scalatest.matchers.MustMatchers
import org.scalatest.BeforeAndAfterAll
import akka.testkit.ImplicitSender

object MySpec {
class EchoActor extends Actor {
def receive = {

case x ⇒ sender ! x
}

}
}

class MySpec(_system: ActorSystem) extends TestKit(_system) with ImplicitSender
with WordSpec with MustMatchers with BeforeAndAfterAll {

def this() = this(ActorSystem("MySpec"))

import MySpec._

override def afterAll {
TestKit.shutdownActorSystem(system)

}

"An Echo actor" must {

"send back messages unchanged" in {
val echo = system.actorOf(Props[EchoActor])
echo ! "hello world"
expectMsg("hello world")

}

}
}

The TestKit contains an actor named testActor which is the entry point for messages to be examined with
the various expectMsg... assertions detailed below. When mixing in the trait ImplicitSender this test
actor is implicitly used as sender reference when dispatching messages from the test procedure. The testActor
may also be passed to other actors as usual, usually subscribing it as notification listener. There is a whole set
of examination methods, e.g. receiving all consecutive messages matching certain criteria, receiving a whole
sequence of fixed messages or classes, receiving nothing for some time, etc.

The ActorSystem passed in to the constructor of TestKit is accessible via the system member. Remember to
shut down the actor system after the test is finished (also in case of failure) so that all actors—including the test
actor—are stopped.

Built-In Assertions

The above mentioned expectMsg is not the only method for formulating assertions concerning received mes-
sages. Here is the full list:

• expectMsg[T](d: Duration, msg: T): T

The given message object must be received within the specified time; the object will be returned.

• expectMsgPF[T](d: Duration)(pf: PartialFunction[Any, T]): T

3.9. Testing Actor Systems 144

Akka Scala Documentation, Release 2.2.5

Within the given time period, a message must be received and the given partial function must be defined for
that message; the result from applying the partial function to the received message is returned. The duration
may be left unspecified (empty parentheses are required in this case) to use the deadline from the innermost
enclosing within block instead.

• expectMsgClass[T](d: Duration, c: Class[T]): T

An object which is an instance of the given Class must be received within the allotted time frame; the
object will be returned. Note that this does a conformance check; if you need the class to be equal, have a
look at expectMsgAllClassOf with a single given class argument.

• expectMsgType[T: Manifest](d: Duration)

An object which is an instance of the given type (after erasure) must be received within the
allotted time frame; the object will be returned. This method is approximately equivalent to
expectMsgClass(implicitly[ClassTag[T]].runtimeClass).

• expectMsgAnyOf[T](d: Duration, obj: T*): T

An object must be received within the given time, and it must be equal (compared with ==) to at least one
of the passed reference objects; the received object will be returned.

• expectMsgAnyClassOf[T](d: Duration, obj: Class[_ <: T]*): T

An object must be received within the given time, and it must be an instance of at least one of the supplied
Class objects; the received object will be returned.

• expectMsgAllOf[T](d: Duration, obj: T*): Seq[T]

A number of objects matching the size of the supplied object array must be received within the given
time, and for each of the given objects there must exist at least one among the received ones which equals
(compared with ==) it. The full sequence of received objects is returned.

• expectMsgAllClassOf[T](d: Duration, c: Class[_ <: T]*): Seq[T]

A number of objects matching the size of the supplied Class array must be received within the given time,
and for each of the given classes there must exist at least one among the received objects whose class equals
(compared with ==) it (this is not a conformance check). The full sequence of received objects is returned.

• expectMsgAllConformingOf[T](d: Duration, c: Class[_ <: T]*): Seq[T]

A number of objects matching the size of the supplied Class array must be received within the given
time, and for each of the given classes there must exist at least one among the received objects which is an
instance of this class. The full sequence of received objects is returned.

• expectNoMsg(d: Duration)

No message must be received within the given time. This also fails if a message has been received before
calling this method which has not been removed from the queue using one of the other methods.

• receiveN(n: Int, d: Duration): Seq[AnyRef]

n messages must be received within the given time; the received messages are returned.

• fishForMessage(max: Duration, hint: String)(pf: PartialFunction[Any, Boolean]): Any

Keep receiving messages as long as the time is not used up and the partial function matches and returns
false. Returns the message received for which it returned true or throws an exception, which will
include the provided hint for easier debugging.

In addition to message reception assertions there are also methods which help with message flows:

• receiveOne(d: Duration): AnyRef

Tries to receive one message for at most the given time interval and returns null in case of failure. If the
given Duration is zero, the call is non-blocking (polling mode).

• receiveWhile[T](max: Duration, idle: Duration, messages: Int)(pf: PartialFunction[Any, T]): Seq[T]

Collect messages as long as

3.9. Testing Actor Systems 145

Akka Scala Documentation, Release 2.2.5

– they are matching the given partial function

– the given time interval is not used up

– the next message is received within the idle timeout

– the number of messages has not yet reached the maximum

All collected messages are returned. The maximum duration defaults to the time remaining in the innermost
enclosing within block and the idle duration defaults to infinity (thereby disabling the idle timeout feature).
The number of expected messages defaults to Int.MaxValue, which effectively disables this limit.

• awaitCond(p: => Boolean, max: Duration, interval: Duration)

Poll the given condition every interval until it returns true or the max duration is used up. The interval
defaults to 100 ms and the maximum defaults to the time remaining in the innermost enclosing within block.

• awaitAssert(a: => Any, max: Duration, interval: Duration)

Poll the given assert function every interval until it does not throw an exception or the max duration
is used up. If the timeout expires the last exception is thrown. The interval defaults to 100 ms and the
maximum defaults to the time remaining in the innermost enclosing within block.The interval defaults to
100 ms and the maximum defaults to the time remaining in the innermost enclosing within block.

• ignoreMsg(pf: PartialFunction[AnyRef, Boolean])

ignoreNoMsg

The internal testActor contains a partial function for ignoring messages: it will only enqueue messages
which do not match the function or for which the function returns false. This function can be set and reset
using the methods given above; each invocation replaces the previous function, they are not composed.

This feature is useful e.g. when testing a logging system, where you want to ignore regular messages and
are only interested in your specific ones.

Expecting Log Messages

Since an integration test does not allow to the internal processing of the participating actors, verifying expected
exceptions cannot be done directly. Instead, use the logging system for this purpose: replacing the normal event
handler with the TestEventListener and using an EventFilter allows assertions on log messages, in-
cluding those which are generated by exceptions:

import akka.testkit.EventFilter
import com.typesafe.config.ConfigFactory

implicit val system = ActorSystem("testsystem", ConfigFactory.parseString("""
akka.loggers = ["akka.testkit.TestEventListener"]
"""))

try {
val actor = system.actorOf(Props.empty)
EventFilter[ActorKilledException](occurrences = 1) intercept {
actor ! Kill

}
} finally {

shutdown(system)
}

If a number of occurrences is specific—as demonstrated above—then intercept will block until that number
of matching messages have been received or the timeout configured in akka.test.filter-leeway is used
up (time starts counting after the passed-in block of code returns). In case of a timeout the test fails.

Note: Be sure to exchange the default logger with the TestEventListener in your application.conf
to enable this function:

3.9. Testing Actor Systems 146

Akka Scala Documentation, Release 2.2.5

akka.loggers = [akka.testkit.TestEventListener]

Timing Assertions

Another important part of functional testing concerns timing: certain events must not happen immediately (like a
timer), others need to happen before a deadline. Therefore, all examination methods accept an upper time limit
within the positive or negative result must be obtained. Lower time limits need to be checked external to the
examination, which is facilitated by a new construct for managing time constraints:

within([min,]max) {
...

}

The block given to within must complete after a Duration which is between min and max, where the former
defaults to zero. The deadline calculated by adding the max parameter to the block’s start time is implicitly
available within the block to all examination methods, if you do not specify it, it is inherited from the innermost
enclosing within block.

It should be noted that if the last message-receiving assertion of the block is expectNoMsg or receiveWhile,
the final check of the within is skipped in order to avoid false positives due to wake-up latencies. This means
that while individual contained assertions still use the maximum time bound, the overall block may take arbitrarily
longer in this case.

import akka.actor.Props
import scala.concurrent.duration._

val worker = system.actorOf(Props[Worker])
within(200 millis) {

worker ! "some work"
expectMsg("some result")
expectNoMsg // will block for the rest of the 200ms
Thread.sleep(300) // will NOT make this block fail

}

Note: All times are measured using System.nanoTime, meaning that they describe wall time, not CPU time.

Ray Roestenburg has written a great article on using the TestKit: http://roestenburg.agilesquad.com/2011/02/unit-
testing-akka-actors-with-testkit_12.html. His full example is also available here.

Accounting for Slow Test Systems

The tight timeouts you use during testing on your lightning-fast notebook will invariably lead to spurious test
failures on the heavily loaded Jenkins server (or similar). To account for this situation, all maximum durations are
internally scaled by a factor taken from the Configuration, akka.test.timefactor, which defaults to 1.

You can scale other durations with the same factor by using the implicit conversion in akka.testkit package
object to add dilated function to Duration.

import scala.concurrent.duration._
import akka.testkit._
10.milliseconds.dilated

Resolving Conflicts with Implicit ActorRef

If you want the sender of messages inside your TestKit-based tests to be the testActor simply mix in
ÌmplicitSender into your test.

3.9. Testing Actor Systems 147

http://roestenburg.agilesquad.com/2011/02/unit-testing-akka-actors-with-testkit_12.html
http://roestenburg.agilesquad.com/2011/02/unit-testing-akka-actors-with-testkit_12.html

Akka Scala Documentation, Release 2.2.5

class MySpec(_system: ActorSystem) extends TestKit(_system) with ImplicitSender
with WordSpec with MustMatchers with BeforeAndAfterAll {

Using Multiple Probe Actors

When the actors under test are supposed to send various messages to different destinations, it may be difficult
distinguishing the message streams arriving at the testActor when using the TestKit as a mixin. Another
approach is to use it for creation of simple probe actors to be inserted in the message flows. To make this more
powerful and convenient, there is a concrete implementation called TestProbe. The functionality is best ex-
plained using a small example:

import scala.concurrent.duration._
import akka.actor._
import scala.concurrent.Future

class MyDoubleEcho extends Actor {
var dest1: ActorRef = _
var dest2: ActorRef = _
def receive = {
case (d1: ActorRef, d2: ActorRef) ⇒

dest1 = d1
dest2 = d2

case x ⇒
dest1 ! x
dest2 ! x

}
}

val probe1 = TestProbe()
val probe2 = TestProbe()
val actor = system.actorOf(Props[MyDoubleEcho])
actor ! ((probe1.ref, probe2.ref))
actor ! "hello"
probe1.expectMsg(500 millis, "hello")
probe2.expectMsg(500 millis, "hello")

Here a the system under test is simulated by MyDoubleEcho, which is supposed to mirror its input to two
outputs. Attaching two test probes enables verification of the (simplistic) behavior. Another example would
be two actors A and B which collaborate by A sending messages to B. In order to verify this message flow, a
TestProbe could be inserted as target of A, using the forwarding capabilities or auto-pilot described below to
include a real B in the test setup.

Probes may also be equipped with custom assertions to make your test code even more concise and clear:

case class Update(id: Int, value: String)

val probe = new TestProbe(system) {
def expectUpdate(x: Int) = {
expectMsgPF() {

case Update(id, _) if id == x ⇒ true
}
sender ! "ACK"

}
}

You have complete flexibility here in mixing and matching the TestKit facilities with your own checks and
choosing an intuitive name for it. In real life your code will probably be a bit more complicated than the example
given above; just use the power!

3.9. Testing Actor Systems 148

Akka Scala Documentation, Release 2.2.5

Warning: Any message send from a TestProbe to another actor which runs on the CallingThreadDis-
patcher runs the risk of dead-lock, if that other actor might also send to this probe. The implementation of
TestProbe.watch and TestProbe.unwatch will also send a message to the watchee, which means
that it is dangerous to try watching e.g. TestActorRef from a TestProbe.

Watching Other Actors from Probes

A TestKit can register itself for DeathWatch of any other actor:

val probe = TestProbe()
probe watch target
target ! PoisonPill
probe.expectTerminated(target)

Replying to Messages Received by Probes

The probes keep track of the communications channel for replies, if possible, so they can also reply:

val probe = TestProbe()
val future = probe.ref ? "hello"
probe.expectMsg(0 millis, "hello") // TestActor runs on CallingThreadDispatcher
probe.reply("world")
assert(future.isCompleted && future.value == Some(Success("world")))

Forwarding Messages Received by Probes

Given a destination actor dest which in the nominal actor network would receive a message from actor source.
If you arrange for the message to be sent to a TestProbe probe instead, you can make assertions concerning
volume and timing of the message flow while still keeping the network functioning:

class Source(target: ActorRef) extends Actor {
def receive = {
case "start" ⇒ target ! "work"

}
}

class Destination extends Actor {
def receive = {
case x ⇒ // Do something..

}
}

val probe = TestProbe()
val source = system.actorOf(Props(classOf[Source], probe.ref))
val dest = system.actorOf(Props[Destination])
source ! "start"
probe.expectMsg("work")
probe.forward(dest)

The dest actor will receive the same message invocation as if no test probe had intervened.

Auto-Pilot

Receiving messages in a queue for later inspection is nice, but in order to keep a test running and verify traces later
you can also install an AutoPilot in the participating test probes (actually in any TestKit) which is invoked

3.9. Testing Actor Systems 149

Akka Scala Documentation, Release 2.2.5

before enqueueing to the inspection queue. This code can be used to forward messages, e.g. in a chain A -->
Probe --> B, as long as a certain protocol is obeyed.

val probe = TestProbe()
probe.setAutoPilot(new TestActor.AutoPilot {

def run(sender: ActorRef, msg: Any): TestActor.AutoPilot =
msg match {

case "stop" ⇒ TestActor.NoAutoPilot
case x ⇒ testActor.tell(x, sender); TestActor.KeepRunning

}
})

The run method must return the auto-pilot for the next message, which may be KeepRunning to retain the
current one or NoAutoPilot to switch it off.

Caution about Timing Assertions

The behavior of within blocks when using test probes might be perceived as counter-intuitive: you need to
remember that the nicely scoped deadline as described above is local to each probe. Hence, probes do not react to
each other’s deadlines or to the deadline set in an enclosing TestKit instance:

val probe = TestProbe()
within(1 second) {

probe.expectMsg("hello")
}

Here, the expectMsg call will use the default timeout.

3.9.4 CallingThreadDispatcher

The CallingThreadDispatcher serves good purposes in unit testing, as described above, but originally
it was conceived in order to allow contiguous stack traces to be generated in case of an error. As this special
dispatcher runs everything which would normally be queued directly on the current thread, the full history of a
message’s processing chain is recorded on the call stack, so long as all intervening actors run on this dispatcher.

How to use it

Just set the dispatcher as you normally would:

import akka.testkit.CallingThreadDispatcher
val ref = system.actorOf(Props[MyActor].withDispatcher(CallingThreadDispatcher.Id))

How it works

When receiving an invocation, the CallingThreadDispatcher checks whether the receiving actor is already
active on the current thread. The simplest example for this situation is an actor which sends a message to itself.
In this case, processing cannot continue immediately as that would violate the actor model, so the invocation
is queued and will be processed when the active invocation on that actor finishes its processing; thus, it will
be processed on the calling thread, but simply after the actor finishes its previous work. In the other case, the
invocation is simply processed immediately on the current thread. Futures scheduled via this dispatcher are also
executed immediately.

This scheme makes the CallingThreadDispatcher work like a general purpose dispatcher for any actors
which never block on external events.

In the presence of multiple threads it may happen that two invocations of an actor running on this dispatcher
happen on two different threads at the same time. In this case, both will be processed directly on their respective
threads, where both compete for the actor’s lock and the loser has to wait. Thus, the actor model is left intact, but

3.9. Testing Actor Systems 150

Akka Scala Documentation, Release 2.2.5

the price is loss of concurrency due to limited scheduling. In a sense this is equivalent to traditional mutex style
concurrency.

The other remaining difficulty is correct handling of suspend and resume: when an actor is suspended, subsequent
invocations will be queued in thread-local queues (the same ones used for queuing in the normal case). The call
to resume, however, is done by one specific thread, and all other threads in the system will probably not be
executing this specific actor, which leads to the problem that the thread-local queues cannot be emptied by their
native threads. Hence, the thread calling resume will collect all currently queued invocations from all threads
into its own queue and process them.

Limitations

Warning: In case the CallingThreadDispatcher is used for top-level actors, but without going through TestAc-
torRef, then there is a time window during which the actor is awaiting construction by the user guardian actor.
Sending messages to the actor during this time period will result in them being enqueued and then executed on
the guardian’s thread instead of the caller’s thread. To avoid this, use TestActorRef.

If an actor’s behavior blocks on a something which would normally be affected by the calling actor after having
sent the message, this will obviously dead-lock when using this dispatcher. This is a common scenario in actor
tests based on CountDownLatch for synchronization:

val latch = new CountDownLatch(1)
actor ! startWorkAfter(latch) // actor will call latch.await() before proceeding
doSomeSetupStuff()
latch.countDown()

The example would hang indefinitely within the message processing initiated on the second line and never reach
the fourth line, which would unblock it on a normal dispatcher.

Thus, keep in mind that the CallingThreadDispatcher is not a general-purpose replacement for the normal
dispatchers. On the other hand it may be quite useful to run your actor network on it for testing, because if it runs
without dead-locking chances are very high that it will not dead-lock in production.

Warning: The above sentence is unfortunately not a strong guarantee, because your code might directly or
indirectly change its behavior when running on a different dispatcher. If you are looking for a tool to help
you debug dead-locks, the CallingThreadDispatcher may help with certain error scenarios, but keep
in mind that it has may give false negatives as well as false positives.

Thread Interruptions

If the CallingThreadDispatcher sees that the current thread has its isInterrupted() flag set when message
processing returns, it will throw an InterruptedException after finishing all its processing (i.e. all mes-
sages which need processing as described above are processed before this happens). As tell cannot throw
exceptions due to its contract, this exception will then be caught and logged, and the thread’s interrupted status
will be set again.

If during message processing an InterruptedException is thrown then it will be caught inside the Call-
ingThreadDispatcher’s message handling loop, the thread’s interrupted flag will be set and processing continues
normally.

Note: The summary of these two paragraphs is that if the current thread is interrupted while doing work under
the CallingThreadDispatcher, then that will result in the isInterrupted flag to be true when the message
send returns and no InterruptedException will be thrown.

3.9. Testing Actor Systems 151

Akka Scala Documentation, Release 2.2.5

Benefits

To summarize, these are the features with the CallingThreadDispatcher has to offer:

• Deterministic execution of single-threaded tests while retaining nearly full actor semantics

• Full message processing history leading up to the point of failure in exception stack traces

• Exclusion of certain classes of dead-lock scenarios

3.9.5 Tracing Actor Invocations

The testing facilities described up to this point were aiming at formulating assertions about a system’s behavior.
If a test fails, it is usually your job to find the cause, fix it and verify the test again. This process is supported by
debuggers as well as logging, where the Akka toolkit offers the following options:

• Logging of exceptions thrown within Actor instances

This is always on; in contrast to the other logging mechanisms, this logs at ERROR level.

• Logging of message invocations on certain actors

This is enabled by a setting in the Configuration — namely akka.actor.debug.receive — which
enables the loggable statement to be applied to an actor’s receive function:

import akka.event.LoggingReceive
def receive = LoggingReceive {

case msg ⇒ // Do something...
}

. If the abovementioned setting is not given in the Configuration, this method will pass through the given
Receive function unmodified, meaning that there is no runtime cost unless actually enabled.

The logging feature is coupled to this specific local mark-up because enabling it uniformly on all actors is
not usually what you need, and it would lead to endless loops if it were applied to event bus logger listeners.

• Logging of special messages

Actors handle certain special messages automatically, e.g. Kill, PoisonPill, etc. Tracing of these
message invocations is enabled by the setting akka.actor.debug.autoreceive, which enables this
on all actors.

• Logging of the actor lifecycle

Actor creation, start, restart, monitor start, monitor stop and stop may be traced by enabling the setting
akka.actor.debug.lifecycle; this, too, is enabled uniformly on all actors.

All these messages are logged at DEBUG level. To summarize, you can enable full logging of actor activities using
this configuration fragment:

akka {
loglevel = "DEBUG"
actor {
debug {

receive = on
autoreceive = on
lifecycle = on

}
}

}

3.9.6 Different Testing Frameworks

Akka’s own test suite is written using ScalaTest, which also shines through in documentation examples. However,
the TestKit and its facilities do not depend on that framework, you can essentially use whichever suits your

3.9. Testing Actor Systems 152

http://scalatest.org

Akka Scala Documentation, Release 2.2.5

development style best.

This section contains a collection of known gotchas with some other frameworks, which is by no means exhaustive
and does not imply endorsement or special support.

When you need it to be a trait

If for some reason it is a problem to inherit from TestKit due to it being a concrete class instead of a trait,
there’s TestKitBase:

import akka.testkit.TestKitBase

class MyTest extends TestKitBase {
implicit lazy val system = ActorSystem()

// put your test code here ...

shutdown(system)
}

The implicit lazy val system must be declared exactly like that (you can of course pass arguments to
the actor system factory as needed) because trait TestKitBase needs the system during its construction.

Warning: Use of the trait is discouraged because of potential issues with binary backwards compatibility in
the future, use at own risk.

Specs2

Some Specs2 users have contributed examples of how to work around some clashes which may arise:

• Mixing TestKit into org.specs2.mutable.Specification results in a name clash involv-
ing the end method (which is a private variable in TestKit and an abstract method in Specifica-
tion); if mixing in TestKit first, the code may compile but might then fail at runtime. The work-
around—which is actually beneficial also for the third point—is to apply the TestKit together with
org.specs2.specification.Scope.

• The Specification traits provide a Duration DSL which uses partly the same method
names as scala.concurrent.duration.Duration, resulting in ambiguous implicits if
scala.concurrent.duration._ is imported. There are two work-arounds:

– either use the Specification variant of Duration and supply an implicit conversion to the Akka Duration.
This conversion is not supplied with the Akka distribution because that would mean that our JAR files
would dependon Specs2, which is not justified by this little feature.

– or mix org.specs2.time.NoTimeConversions into the Specification.

• Specifications are by default executed concurrently, which requires some care when writing the tests or
alternatively the sequential keyword.

3.9.7 Testing Custom Router Logic

Given the following custom (dummy) router:

import akka.actor.{ ActorRef, Props, SupervisorStrategy }
import akka.dispatch.Dispatchers

class MyRouter(target: ActorRef) extends RouterConfig {
override def createRoute(provider: RouteeProvider): Route = {
provider.createRoutees(1)

3.9. Testing Actor Systems 153

http://specs2.org

Akka Scala Documentation, Release 2.2.5

{
case (sender, message: String) ⇒ List(Destination(sender, target))
case (sender, message) ⇒ toAll(sender, provider.routees)

}
}
override def supervisorStrategy = SupervisorStrategy.defaultStrategy
override def routerDispatcher = Dispatchers.DefaultDispatcherId

}

This might be tested by dispatching messages and asserting their reception at the right destinations, but that can
be inconvenient. Therefore exists the ExtractRoute extractor, which can be used like so:

import akka.pattern.ask
import akka.testkit.ExtractRoute
import scala.concurrent.Await
import scala.concurrent.duration._

val target = system.actorOf(Props.empty)
val router = system.actorOf(Props.empty.withRouter(new MyRouter(target)))
val route = ExtractRoute(router)
val r = Await.result(router.ask(CurrentRoutees)(1 second).

mapTo[RouterRoutees], 1 second)
r.routees.size must be(1)
route(testActor -> "hallo") must be(List(Destination(testActor, target)))
route(testActor -> 12) must be(List(Destination(testActor, r.routees.head)))

3.9. Testing Actor Systems 154

CHAPTER

FOUR

FUTURES AND AGENTS

4.1 Futures

4.1.1 Introduction

In the Scala Standard Library, a Future is a data structure used to retrieve the result of some concurrent operation.
This result can be accessed synchronously (blocking) or asynchronously (non-blocking).

4.1.2 Execution Contexts

In order to execute callbacks and operations, Futures need something called an ExecutionContext, which
is very similar to a java.util.concurrent.Executor. if you have an ActorSystem in scope, it will
use its default dispatcher as the ExecutionContext, or you can use the factory methods provided by the
ExecutionContext companion object to wrap Executors and ExecutorServices, or even create your
own.

import scala.concurrent.{ ExecutionContext, Promise }

implicit val ec = ExecutionContext.fromExecutorService(yourExecutorServiceGoesHere)

// Do stuff with your brand new shiny ExecutionContext
val f = Promise.successful("foo")

// Then shut your ExecutionContext down at some
// appropriate place in your program/application
ec.shutdown()

Within Actors

Each actor is configured to be run on a MessageDispatcher, and that dispatcher doubles as an
ExecutionContext. If the nature of the Future calls invoked by the actor matches or is compatible with
the activities of that actor (e.g. all CPU bound and no latency requirements), then it may be easiest to reuse the
dispatcher for running the Futures by importing context.dispatcher.

class A extends Actor {
import context.dispatcher
val f = Future("hello")
def receive = {
// receive omitted ...

}
}

155

http://en.wikipedia.org/wiki/Futures_and_promises

Akka Scala Documentation, Release 2.2.5

4.1.3 Use With Actors

There are generally two ways of getting a reply from an Actor: the first is by a sent message (actor ! msg),
which only works if the original sender was an Actor) and the second is through a Future.

Using an Actor‘s ? method to send a message will return a Future:

import scala.concurrent.Await
import akka.pattern.ask
import akka.util.Timeout
import scala.concurrent.duration._

implicit val timeout = Timeout(5 seconds)
val future = actor ? msg // enabled by the “ask” import
val result = Await.result(future, timeout.duration).asInstanceOf[String]

This will cause the current thread to block and wait for the Actor to ‘complete’ the Future with it’s reply.
Blocking is discouraged though as it will cause performance problems. The blocking operations are located in
Await.result and Await.ready to make it easy to spot where blocking occurs. Alternatives to block-
ing are discussed further within this documentation. Also note that the Future returned by an Actor is a
Future[Any] since an Actor is dynamic. That is why the asInstanceOf is used in the above sample.
When using non-blocking it is better to use the mapTo method to safely try to cast a Future to an expected type:

import scala.concurrent.Future
import akka.pattern.ask

val future: Future[String] = ask(actor, msg).mapTo[String]

The mapTo method will return a new Future that contains the result if the cast was successful, or a
ClassCastException if not. Handling Exceptions will be discussed further within this documentation.

To send the result of a Future to an Actor, you can use the pipe construct:

import akka.pattern.pipe
future pipeTo actor

4.1.4 Use Directly

A common use case within Akka is to have some computation performed concurrently without needing the extra
utility of an Actor. If you find yourself creating a pool of Actors for the sole reason of performing a calculation
in parallel, there is an easier (and faster) way:

import scala.concurrent.Await
import scala.concurrent.Future
import scala.concurrent.duration._

val future = Future {
"Hello" + "World"

}
future foreach println

In the above code the block passed to Futurewill be executed by the default Dispatcher, with the return value
of the block used to complete the Future (in this case, the result would be the string: “HelloWorld”). Unlike
a Future that is returned from an Actor, this Future is properly typed, and we also avoid the overhead of
managing an Actor.

You can also create already completed Futures using the Future companion, which can be either successes:

val future = Future.successful("Yay!")

Or failures:

4.1. Futures 156

Akka Scala Documentation, Release 2.2.5

val otherFuture = Future.failed[String](new IllegalArgumentException("Bang!"))

It is also possible to create an empty Promise, to be filled later, and obtain the corresponding Future:

val promise = Promise[String]()
val theFuture = promise.future
promise.success("hello")

4.1.5 Functional Futures

Scala’s Future has several monadic methods that are very similar to the ones used by Scala’s collections. These
allow you to create ‘pipelines’ or ‘streams’ that the result will travel through.

Future is a Monad

The first method for working with Future functionally is map. This method takes a Function which performs
some operation on the result of the Future, and returning a new result. The return value of the map method is
another Future that will contain the new result:

val f1 = Future {
"Hello" + "World"

}
val f2 = f1 map { x ⇒

x.length
}
f2 foreach println

In this example we are joining two strings together within a Future. Instead of waiting for this to complete, we
apply our function that calculates the length of the string using the map method. Now we have a second Future
that will eventually contain an Int. When our original Future completes, it will also apply our function and
complete the second Future with its result. When we finally get the result, it will contain the number 10. Our
original Future still contains the string “HelloWorld” and is unaffected by the map.

The map method is fine if we are modifying a single Future, but if 2 or more Futures are involved map will
not allow you to combine them together:

val f1 = Future {
"Hello" + "World"

}
val f2 = Future.successful(3)
val f3 = f1 map { x ⇒

f2 map { y ⇒
x.length * y

}
}
f3 foreach println

f3 is a Future[Future[Int]] instead of the desired Future[Int]. Instead, the flatMapmethod should
be used:

val f1 = Future {
"Hello" + "World"

}
val f2 = Future.successful(3)
val f3 = f1 flatMap { x ⇒
f2 map { y ⇒
x.length * y

}
}
f3 foreach println

4.1. Futures 157

Akka Scala Documentation, Release 2.2.5

Composing futures using nested combinators it can sometimes become quite complicated and hard read, in these
cases using Scala’s ‘for comprehensions’ usually yields more readable code. See next section for examples.

If you need to do conditional propagation, you can use filter:

val future1 = Future.successful(4)
val future2 = future1.filter(_ % 2 == 0)

future2 foreach println

val failedFilter = future1.filter(_ % 2 == 1).recover {
// When filter fails, it will have a java.util.NoSuchElementException
case m: NoSuchElementException ⇒ 0

}

failedFilter foreach println

For Comprehensions

Since Future has a map, filter and flatMap method it can be easily used in a ‘for comprehension’:

val f = for {
a ← Future(10 / 2) // 10 / 2 = 5
b ← Future(a + 1) // 5 + 1 = 6
c ← Future(a - 1) // 5 - 1 = 4
if c > 3 // Future.filter

} yield b * c // 6 * 4 = 24

// Note that the execution of futures a, b, and c
// are not done in parallel.

f foreach println

Something to keep in mind when doing this is even though it looks like parts of the above example can run in
parallel, each step of the for comprehension is run sequentially. This will happen on separate threads for each
step but there isn’t much benefit over running the calculations all within a single Future. The real benefit comes
when the Futures are created first, and then combining them together.

Composing Futures

The example for comprehension above is an example of composing Futures. A common use case for this is
combining the replies of several Actors into a single calculation without resorting to calling Await.result
or Await.ready to block for each result. First an example of using Await.result:

val f1 = ask(actor1, msg1)
val f2 = ask(actor2, msg2)

val a = Await.result(f1, 3 seconds).asInstanceOf[Int]
val b = Await.result(f2, 3 seconds).asInstanceOf[Int]

val f3 = ask(actor3, (a + b))

val result = Await.result(f3, 3 seconds).asInstanceOf[Int]

Warning: Await.result and Await.ready are provided for exceptional situations where you must
block, a good rule of thumb is to only use them if you know why you must block. For all other cases, use
asynchronous composition as described below.

Here we wait for the results from the first 2 Actors before sending that result to the third Actor. We called
Await.result 3 times, which caused our little program to block 3 times before getting our final result. Now
compare that to this example:

4.1. Futures 158

Akka Scala Documentation, Release 2.2.5

val f1 = ask(actor1, msg1)
val f2 = ask(actor2, msg2)

val f3 = for {
a ← f1.mapTo[Int]
b ← f2.mapTo[Int]
c ← ask(actor3, (a + b)).mapTo[Int]

} yield c

f3 foreach println

Here we have 2 actors processing a single message each. Once the 2 results are available (note that we don’t block
to get these results!), they are being added together and sent to a third Actor, which replies with a string, which
we assign to ‘result’.

This is fine when dealing with a known amount of Actors, but can grow unwieldy if we have more than a
handful. The sequence and traverse helper methods can make it easier to handle more complex use
cases. Both of these methods are ways of turning, for a subclass T of Traversable, T[Future[A]] into
a Future[T[A]]. For example:

// oddActor returns odd numbers sequentially from 1 as a List[Future[Int]]
val listOfFutures = List.fill(100)(akka.pattern.ask(oddActor, GetNext).mapTo[Int])

// now we have a Future[List[Int]]
val futureList = Future.sequence(listOfFutures)

// Find the sum of the odd numbers
val oddSum = futureList.map(_.sum)
oddSum foreach println

To better explain what happened in the example, Future.sequence is taking the List[Future[Int]]
and turning it into a Future[List[Int]]. We can then use map to work with the List[Int] directly, and
we find the sum of the List.

The traverse method is similar to sequence, but it takes a T[A] and a function A => Future[B] to
return a Future[T[B]], where T is again a subclass of Traversable. For example, to use traverse to sum
the first 100 odd numbers:

val futureList = Future.traverse((1 to 100).toList)(x ⇒ Future(x * 2 - 1))
val oddSum = futureList.map(_.sum)
oddSum foreach println

This is the same result as this example:

val futureList = Future.sequence((1 to 100).toList.map(x ⇒ Future(x * 2 - 1)))
val oddSum = futureList.map(_.sum)
oddSum foreach println

But it may be faster to use traverse as it doesn’t have to create an intermediate List[Future[Int]].

Then there’s a method that’s called fold that takes a start-value, a sequence of Futures and a function from the
type of the start-value and the type of the futures and returns something with the same type as the start-value, and
then applies the function to all elements in the sequence of futures, asynchronously, the execution will start when
the last of the Futures is completed.

// Create a sequence of Futures
val futures = for (i ← 1 to 1000) yield Future(i * 2)
val futureSum = Future.fold(futures)(0)(_ + _)
futureSum foreach println

That’s all it takes!

If the sequence passed to fold is empty, it will return the start-value, in the case above, that will be 0. In some
cases you don’t have a start-value and you’re able to use the value of the first completing Future in the sequence
as the start-value, you can use reduce, it works like this:

4.1. Futures 159

Akka Scala Documentation, Release 2.2.5

// Create a sequence of Futures
val futures = for (i ← 1 to 1000) yield Future(i * 2)
val futureSum = Future.reduce(futures)(_ + _)
futureSum foreach println

Same as with fold, the execution will be done asynchronously when the last of the Future is completed, you
can also parallelize it by chunking your futures into sub-sequences and reduce them, and then reduce the reduced
results again.

4.1.6 Callbacks

Sometimes you just want to listen to a Future being completed, and react to that not by creating a new Future,
but by side-effecting. For this Scala supports onComplete, onSuccess and onFailure, of which the latter
two are specializations of the first.

future onSuccess {
case "bar" ⇒ println("Got my bar alright!")
case x: String ⇒ println("Got some random string: " + x)

}

future onFailure {
case ise: IllegalStateException if ise.getMessage == "OHNOES" ⇒
//OHNOES! We are in deep trouble, do something!
case e: Exception ⇒
//Do something else

}

future onComplete {
case Success(result) ⇒ doSomethingOnSuccess(result)
case Failure(failure) ⇒ doSomethingOnFailure(failure)

}

4.1.7 Define Ordering

Since callbacks are executed in any order and potentially in parallel, it can be tricky at the times when you need
sequential ordering of operations. But there’s a solution and it’s name is andThen. It creates a new Future
with the specified callback, a Future that will have the same result as the Future it’s called on, which allows
for ordering like in the following sample:

val result = Future { loadPage(url) } andThen {
case Failure(exception) ⇒ log(exception)

} andThen {
case _ ⇒ watchSomeTV()

}
result foreach println

4.1.8 Auxiliary Methods

Future fallbackTo combines 2 Futures into a new Future, and will hold the successful value of the second
Future if the first Future fails.

val future4 = future1 fallbackTo future2 fallbackTo future3
future4 foreach println

You can also combine two Futures into a new Future that will hold a tuple of the two Futures successful results,
using the zip operation.

4.1. Futures 160

Akka Scala Documentation, Release 2.2.5

val future3 = future1 zip future2 map { case (a, b) ⇒ a + " " + b }
future3 foreach println

4.1.9 Exceptions

Since the result of a Future is created concurrently to the rest of the program, exceptions must be handled
differently. It doesn’t matter if an Actor or the dispatcher is completing the Future, if an Exception is
caught the Future will contain it instead of a valid result. If a Future does contain an Exception, calling
Await.result will cause it to be thrown again so it can be handled properly.

It is also possible to handle an Exception by returning a different result. This is done with the recover
method. For example:

val future = akka.pattern.ask(actor, msg1) recover {
case e: ArithmeticException ⇒ 0

}
future foreach println

In this example, if the actor replied with a akka.actor.Status.Failure containing the
ArithmeticException, our Future would have a result of 0. The recover method works very
similarly to the standard try/catch blocks, so multiple Exceptions can be handled in this manner, and if an
Exception is not handled this way it will behave as if we hadn’t used the recover method.

You can also use the recoverWith method, which has the same relationship to recover as flatMap has to
map, and is use like this:

val future = akka.pattern.ask(actor, msg1) recoverWith {
case e: ArithmeticException ⇒ Future.successful(0)
case foo: IllegalArgumentException ⇒
Future.failed[Int](new IllegalStateException("All br0ken!"))

}
future foreach println

4.1.10 After

akka.pattern.after makes it easy to complete a Future with a value or exception after a timeout.

import akka.pattern.after

val delayed = after(200 millis, using = system.scheduler)(Future.failed(
new IllegalStateException("OHNOES")))

val future = Future { Thread.sleep(1000); "foo" }
val result = Future firstCompletedOf Seq(future, delayed)

4.2 Dataflow Concurrency

4.2.1 Description

Akka implements Oz-style dataflow concurrency by using a special API for Futures that enables a complementary
way of writing synchronous-looking code that in reality is asynchronous.

The benefit of Dataflow concurrency is that it is deterministic; that means that it will always behave the same. If
you run it once and it yields output 5 then it will do that every time, run it 10 million times - same result. If it
on the other hand deadlocks the first time you run it, then it will deadlock every single time you run it. Also,
there is no difference between sequential code and concurrent code. These properties makes it very easy to reason
about concurrency. The limitation is that the code needs to be side-effect free, i.e. deterministic. You can’t use

4.2. Dataflow Concurrency 161

http://www.mozart-oz.org/documentation/tutorial/node8.html#chapter.concurrency

Akka Scala Documentation, Release 2.2.5

exceptions, time, random etc., but need to treat the part of your program that uses dataflow concurrency as a pure
function with input and output.

The best way to learn how to program with dataflow variables is to read the fantastic book Concepts, Techniques,
and Models of Computer Programming. By Peter Van Roy and Seif Haridi.

4.2.2 Getting Started (SBT)

Scala’s Delimited Continuations plugin is required to use the Dataflow API. To enable the plugin when using sbt,
your project must inherit the AutoCompilerPlugins trait and contain a bit of configuration as is seen in this
example:

autoCompilerPlugins := true,
libraryDependencies <+= scalaVersion {

v => compilerPlugin("org.scala-lang.plugins" % "continuations" % "2.10.2")
},
scalacOptions += "-P:continuations:enable",

You will also need to include a dependency on akka-dataflow:

"com.typesafe.akka" %% "akka-dataflow" % "2.2.5"

4.2.3 Dataflow variables

A Dataflow variable can be read any number of times but only be written to once, which maps very well to the
concept of Futures/Promises Futures. Conversion from Future and Promise to Dataflow Variables is implicit
and is invisible to the user (after importing akka.dataflow._).

The mapping from Promise and Future is as follows:

• Futures are readable-many, using the apply method, inside flow blocks.

• Promises are readable-many, just like Futures.

• Promises are writable-once, using the << operator, inside flow blocks. Writing to an already written
Promise throws a java.lang.IllegalStateException, this has the effect that races to write a
promise will be deterministic, only one of the writers will succeed and the others will fail.

4.2.4 The flow

The flow method acts as the delimiter of dataflow expressions (this also neatly aligns with the concept of de-
limited continuations), and flow-expressions compose. At this point you might wonder what the flow-construct
brings to the table that for-comprehensions don’t, and that is the use of the CPS plugin that makes the look like it
is synchronous, but in reality is asynchronous and non-blocking. The result of a call to flow is a Future with the
resulting value of the flow.

To be able to use the flow method, you need to import:

import akka.dataflow._ //to get the flow method and implicit conversions

The flow method will, just like Futures and Promises, require an implicit ExecutionContext in scope. For
the examples here we will use:

import scala.concurrent.ExecutionContext.Implicits.global

Using flow

First off we have the obligatory “Hello world!”:

4.2. Dataflow Concurrency 162

http://www.info.ucl.ac.be/%7Epvr/book.html
http://www.info.ucl.ac.be/%7Epvr/book.html

Akka Scala Documentation, Release 2.2.5

flow { "Hello world!" } onComplete println

You can also refer to the results of other flows within flows:

flow {
val f1 = flow { "Hello" }
f1() + " world!"

} onComplete println

. . . or:

flow {
val f1 = flow { "Hello" }
val f2 = flow { "world!" }
f1() + " " + f2()

} onComplete println

Working with variables

Inside the flow method you can use Promises as Dataflow variables:

val v1, v2 = Promise[Int]()
flow {

// v1 will become the value of v2 + 10 when v2 gets a value
v1 << 10 + v2()
v1() + v2()

} onComplete println
flow { v2 << 5 } // As you can see, no blocking above!

4.2.5 Flow compared to for

Should I use Dataflow or for-comprehensions?

val f1, f2 = Future { 1 }

val usingFor = for { v1 ← f1; v2 ← f2 } yield v1 + v2
val usingFlow = flow { f1() + f2() }

usingFor onComplete println
usingFlow onComplete println

Conclusions:

• Dataflow has a smaller code footprint and arguably is easier to reason about.

• For-comprehensions are more general than Dataflow, and can operate on a wide array of types.

4.3 Software Transactional Memory

4.3.1 Overview of STM

An STM turns the Java heap into a transactional data set with begin/commit/rollback semantics. Very much like a
regular database. It implements the first three letters in ACID; ACI:

• Atomic

• Consistent

• Isolated

4.3. Software Transactional Memory 163

http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/ACID

Akka Scala Documentation, Release 2.2.5

Generally, the STM is not needed very often when working with Akka. Some use-cases (that we can think of) are:

• When you really need composable message flows across many actors updating their internal local state but
need them to do that atomically in one big transaction. Might not be often, but when you do need this then
you are screwed without it.

• When you want to share a datastructure across actors.

The use of STM in Akka is inspired by the concepts and views in Clojure‘s STM. Please take the time to read this
excellent document about state in clojure and view this presentation by Rich Hickey (the genius behind Clojure).

4.3.2 Scala STM

The STM supported in Akka is ScalaSTM which will be soon included in the Scala standard library.

The STM is based on Transactional References (referred to as Refs). Refs are memory cells, holding an (arbitrary)
immutable value, that implement CAS (Compare-And-Swap) semantics and are managed and enforced by the
STM for coordinated changes across many Refs.

4.3.3 Persistent Datastructures

Working with immutable collections can sometimes give bad performance due to extensive copying. Scala pro-
vides so-called persistent datastructures which makes working with immutable collections fast. They are im-
mutable but with constant time access and modification. They use structural sharing and an insert or update does
not ruin the old structure, hence “persistent”. Makes working with immutable composite types fast. The persistent
datastructures currently consist of a Map and Vector.

4.3.4 Integration with Actors

In Akka we’ve also integrated Actors and STM in Agents and Transactors.

4.4 Agents

Agents in Akka are inspired by agents in Clojure.

Agents provide asynchronous change of individual locations. Agents are bound to a single storage location for
their lifetime, and only allow mutation of that location (to a new state) to occur as a result of an action. Update
actions are functions that are asynchronously applied to the Agent’s state and whose return value becomes the
Agent’s new state. The state of an Agent should be immutable.

While updates to Agents are asynchronous, the state of an Agent is always immediately available for reading by
any thread (using get or apply) without any messages.

Agents are reactive. The update actions of all Agents get interleaved amongst threads in an
ExecutionContext. At any point in time, at most one send action for each Agent is being executed. Actions
dispatched to an agent from another thread will occur in the order they were sent, potentially interleaved with
actions dispatched to the same agent from other threads.

If an Agent is used within an enclosing transaction, then it will participate in that transaction. Agents are integrated
with Scala STM - any dispatches made in a transaction are held until that transaction commits, and are discarded
if it is retried or aborted.

4.4.1 Creating Agents

Agents are created by invoking Agent(value) passing in the Agent’s initial value and providing an implicit
ExecutionContext to be used for it, for these examples we’re going to use the default global one, but YMMV:

4.4. Agents 164

http://clojure.org/
http://clojure.org/state
http://clojure.org/state
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey
http://nbronson.github.com/scala-stm/
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Map
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Vector
http://clojure.org/agents

Akka Scala Documentation, Release 2.2.5

import scala.concurrent.ExecutionContext.Implicits.global
import akka.agent.Agent
val agent = Agent(5)

4.4.2 Reading an Agent’s value

Agents can be dereferenced (you can get an Agent’s value) by invoking the Agent with parentheses like this:

val result = agent()

Or by using the get method:

val result = agent.get

Reading an Agent’s current value does not involve any message passing and happens immediately. So while
updates to an Agent are asynchronous, reading the state of an Agent is synchronous.

4.4.3 Updating Agents (send & alter)

You update an Agent by sending a function that transforms the current value or by sending just a new value. The
Agent will apply the new value or function atomically and asynchronously. The update is done in a fire-forget
manner and you are only guaranteed that it will be applied. There is no guarantee of when the update will be
applied but dispatches to an Agent from a single thread will occur in order. You apply a value or a function by
invoking the send function.

// send a value, enqueues this change
// of the value of the Agent
agent send 7

// send a function, enqueues this change
// to the value of the Agent
agent send (_ + 1)
agent send (_ * 2)

You can also dispatch a function to update the internal state but on its own thread. This does not use the reactive
thread pool and can be used for long-running or blocking operations. You do this with the sendOff method.
Dispatches using either sendOff or send will still be executed in order.

// the ExecutionContext you want to run the function on
implicit val ec = someExecutionContext()
// sendOff a function
agent sendOff longRunningOrBlockingFunction

All send methods also have a corresponding alter method that returns a Future. See Futures for more
information on Futures.

// alter a value
val f1: Future[Int] = agent alter 7

// alter a function
val f2: Future[Int] = agent alter (_ + 1)
val f3: Future[Int] = agent alter (_ * 2)

// the ExecutionContext you want to run the function on
implicit val ec = someExecutionContext()
// alterOff a function
val f4: Future[Int] = agent alterOff longRunningOrBlockingFunction

4.4. Agents 165

Akka Scala Documentation, Release 2.2.5

4.4.4 Awaiting an Agent’s value

You can also get a Future to the Agents value, that will be completed after the currently queued updates have
completed:

val future = agent.future

See Futures for more information on Futures.

4.4.5 Transactional Agents

If an Agent is used within an enclosing transaction, then it will participate in that transaction. If you send to an
Agent within a transaction then the dispatch to the Agent will be held until that transaction commits, and discarded
if the transaction is aborted. Here’s an example:

import scala.concurrent.ExecutionContext.Implicits.global
import akka.agent.Agent
import scala.concurrent.duration._
import scala.concurrent.stm._

def transfer(from: Agent[Int], to: Agent[Int], amount: Int): Boolean = {
atomic { txn ⇒
if (from.get < amount) false
else {

from send (_ - amount)
to send (_ + amount)
true

}
}

}

val from = Agent(100)
val to = Agent(20)
val ok = transfer(from, to, 50)

val fromValue = from.future // -> 50
val toValue = to.future // -> 70

4.4.6 Monadic usage

Agents are also monadic, allowing you to compose operations using for-comprehensions. In monadic usage, new
Agents are created leaving the original Agents untouched. So the old values (Agents) are still available as-is. They
are so-called ‘persistent’.

Example of monadic usage:

import scala.concurrent.ExecutionContext.Implicits.global
val agent1 = Agent(3)
val agent2 = Agent(5)

// uses foreach
for (value ← agent1)

println(value)

// uses map
val agent3 = for (value ← agent1) yield value + 1

// or using map directly
val agent4 = agent1 map (_ + 1)

// uses flatMap

4.4. Agents 166

Akka Scala Documentation, Release 2.2.5

val agent5 = for {
value1 ← agent1
value2 ← agent2

} yield value1 + value2

4.5 Transactors

4.5.1 Why Transactors?

Actors are excellent for solving problems where you have many independent processes that can work in isolation
and only interact with other Actors through message passing. This model fits many problems. But the actor model
is unfortunately a terrible model for implementing truly shared state. E.g. when you need to have consensus and a
stable view of state across many components. The classic example is the bank account where clients can deposit
and withdraw, in which each operation needs to be atomic. For detailed discussion on the topic see this JavaOne
presentation.

STM on the other hand is excellent for problems where you need consensus and a stable view of the state by
providing compositional transactional shared state. Some of the really nice traits of STM are that transactions
compose, and it raises the abstraction level from lock-based concurrency.

Akka’s Transactors combine Actors and STM to provide the best of the Actor model (concurrency and asyn-
chronous event-based programming) and STM (compositional transactional shared state) by providing transac-
tional, compositional, asynchronous, event-based message flows.

Generally, the STM is not needed very often when working with Akka. Some use-cases (that we can think of) are:

• When you really need composable message flows across many actors updating their internal local state but
need them to do that atomically in one big transaction. Might not be often but when you do need this then
you are screwed without it.

• When you want to share a datastructure across actors.

4.5.2 Actors and STM

You can combine Actors and STM in several ways. An Actor may use STM internally so that particular changes
are guaranteed to be atomic. Actors may also share transactional datastructures as the STM provides safe shared
state across threads.

It’s also possible to coordinate transactions across Actors or threads so that either the transactions in a set all
commit successfully or they all fail. This is the focus of Transactors and the explicit support for coordinated
transactions in this section.

4.5.3 Coordinated transactions

Akka provides an explicit mechanism for coordinating transactions across Actors. Under the hood it uses a
CommitBarrier, similar to a CountDownLatch.

Here is an example of coordinating two simple counter Actors so that they both increment together in coordinated
transactions. If one of them was to fail to increment, the other would also fail.

import akka.actor._
import akka.transactor._
import scala.concurrent.stm._

case class Increment(friend: Option[ActorRef] = None)
case object GetCount

class Counter extends Actor {

4.5. Transactors 167

http://www.slideshare.net/jboner/state-youre-doing-it-wrong-javaone-2009
http://www.slideshare.net/jboner/state-youre-doing-it-wrong-javaone-2009

Akka Scala Documentation, Release 2.2.5

val count = Ref(0)

def receive = {
case coordinated @ Coordinated(Increment(friend)) ⇒ {

friend foreach (_ ! coordinated(Increment()))
coordinated atomic { implicit t ⇒

count transform (_ + 1)
}

}
case GetCount ⇒ sender ! count.single.get

}
}

import scala.concurrent.Await
import scala.concurrent.duration._
import akka.util.Timeout
import akka.pattern.ask

val system = ActorSystem("app")

val counter1 = system.actorOf(Props[Counter], name = "counter1")
val counter2 = system.actorOf(Props[Counter], name = "counter2")

implicit val timeout = Timeout(5 seconds)

counter1 ! Coordinated(Increment(Some(counter2)))

val count = Await.result(counter1 ? GetCount, timeout.duration)

// count == 1

Note that creating a Coordinated object requires a Timeout to be specified for the coordinated transaction.
This can be done implicitly, by having an implicit Timeout in scope, or explicitly, by passing the timeout when
creating a a Coordinated object. Here’s an example of specifying an implicit timeout:

import scala.concurrent.duration._
import akka.util.Timeout

implicit val timeout = Timeout(5 seconds)

To start a new coordinated transaction that you will also participate in, just create a Coordinated object (this
assumes an implicit timeout):

val coordinated = Coordinated()

To start a coordinated transaction that you won’t participate in yourself you can create a Coordinated object
with a message and send it directly to an actor. The recipient of the message will be the first member of the
coordination set:

actor ! Coordinated(Message)

To receive a coordinated message in an actor simply match it in a case statement:

def receive = {
case coordinated @ Coordinated(Message) ⇒ {
// coordinated atomic ...

}
}

To include another actor in the same coordinated transaction that you’ve created or received, use the apply method
on that object. This will increment the number of parties involved by one and create a new Coordinated object
to be sent.

4.5. Transactors 168

Akka Scala Documentation, Release 2.2.5

actor ! coordinated(Message)

To enter the coordinated transaction use the atomic method of the coordinated object:

coordinated atomic { implicit t ⇒
// do something in the coordinated transaction ...

}

The coordinated transaction will wait for the other transactions before committing. If any of the coordinated
transactions fail then they all fail.

Note: The same actor should not be added to a coordinated transaction more than once. The transaction will not
be able to complete as an actor only processes a single message at a time. When processing the first message the
coordinated transaction will wait for the commit barrier, which in turn needs the second message to be received to
proceed.

4.5.4 Transactor

Transactors are actors that provide a general pattern for coordinating transactions, using the explicit coordination
described above.

Here’s an example of a simple transactor that will join a coordinated transaction:

import akka.transactor._
import scala.concurrent.stm._

case object Increment

class Counter extends Transactor {
val count = Ref(0)

def atomically = implicit txn ⇒ {
case Increment ⇒ count transform (_ + 1)

}
}

You could send this Counter transactor a Coordinated(Increment) message. If you were to send it just an
Increment message it will create its own Coordinated (but in this particular case wouldn’t be coordinating
transactions with any other transactors).

To coordinate with other transactors override the coordinate method. The coordinate method maps a
message to a set of SendTo objects, pairs of ActorRef and a message. You can use the include and sendTo
methods to easily coordinate with other transactors. The include method will send on the same message that
was received to other transactors. The sendTo method allows you to specify both the actor to send to, and the
message to send.

Example of coordinating an increment:

import akka.actor._
import akka.transactor._
import scala.concurrent.stm._

case object Increment

class FriendlyCounter(friend: ActorRef) extends Transactor {
val count = Ref(0)

override def coordinate = {
case Increment ⇒ include(friend)

}

def atomically = implicit txn ⇒ {

4.5. Transactors 169

Akka Scala Documentation, Release 2.2.5

case Increment ⇒ count transform (_ + 1)
}

}

Using include to include more than one transactor:

override def coordinate = {
case Message ⇒ include(actor1, actor2, actor3)

}

Using sendTo to coordinate transactions but pass-on a different message than the one that was received:

override def coordinate = {
case SomeMessage ⇒ sendTo(someActor -> SomeOtherMessage)
case OtherMessage ⇒ sendTo(actor1 -> Message1, actor2 -> Message2)

}

To execute directly before or after the coordinated transaction, override the before and after methods. These
methods also expect partial functions like the receive method. They do not execute within the transaction.

To completely bypass coordinated transactions override the normally method. Any message matched by
normally will not be matched by the other methods, and will not be involved in coordinated transactions.
In this method you can implement normal actor behavior, or use the normal STM atomic for local transactions.

4.5. Transactors 170

CHAPTER

FIVE

NETWORKING

5.1 Cluster Specification

Note: This document describes the design concepts of the clustering. It is divided into two parts, where the first
part describes what is currently implemented and the second part describes what is planned as future enhance-
ments/additions. References to unimplemented parts have been marked with the footnote [*]

5.1.1 The Current Cluster

Intro

Akka Cluster provides a fault-tolerant decentralized peer-to-peer based cluster membership service with no single
point of failure or single point of bottleneck. It does this using gossip protocols and an automatic failure detector.

Terms

node A logical member of a cluster. There could be multiple nodes on a physical machine. Defined by a host-
name:port:uid tuple.

cluster A set of nodes joined together through the membership service.

leader A single node in the cluster that acts as the leader. Managing cluster convergence, partitions [*], fail-over
[*], rebalancing [*] etc.

Membership

A cluster is made up of a set of member nodes. The identifier for each node is a hostname:port:uid tuple.
An Akka application can be distributed over a cluster with each node hosting some part of the application. Cluster
membership and partitioning [*] of the application are decoupled. A node could be a member of a cluster without
hosting any actors.

The node identifier internally also contains a UID that uniquely identifies this actor system instance at that
hostname:port. Akka uses the UID to be able to reliably trigger remote death watch. This means that
the same actor system can never join a cluster again once it’s been removed from that cluster. To re-join an actor
system with the same hostname:port to a cluster you have to stop the actor system and start a new one with
the same hotname:port which will then receive a different UID.

Gossip

The cluster membership used in Akka is based on Amazon’s Dynamo system and particularly the approach taken
in Basho’s‘ Riak distributed database. Cluster membership is communicated using a Gossip Protocol, where the
current state of the cluster is gossiped randomly through the cluster, with preference to members that have not

171

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://basho.com/technology/architecture/
http://en.wikipedia.org/wiki/Gossip_protocol

Akka Scala Documentation, Release 2.2.5

seen the latest version. Joining a cluster is initiated by issuing a Join command to one of the nodes in the cluster
to join.

Vector Clocks Vector clocks are a type of data structure and algorithm for generating a partial ordering of events
in a distributed system and detecting causality violations.

We use vector clocks to reconcile and merge differences in cluster state during gossiping. A vector clock is a set
of (node, counter) pairs. Each update to the cluster state has an accompanying update to the vector clock.

Gossip Convergence Information about the cluster converges locally at a node at certain points in time. This is
when a node can prove that the cluster state he is observing has been observed by all other nodes in the cluster.
Convergence is implemented by passing a map from node to current state version during gossip. This information
is referred to as the gossip overview. When all versions in the overview are equal there is convergence. Gossip
convergence cannot occur while any nodes are unreachable. The nodes need to be moved to the down or
removed states (see the Membership Lifecycle section below).

Failure Detector The failure detector is responsible for trying to detect if a node is unreachable from the
rest of the cluster. For this we are using an implementation of The Phi Accrual Failure Detector by Hayashibara
et al.

An accrual failure detector decouple monitoring and interpretation. That makes them applicable to a wider area
of scenarios and more adequate to build generic failure detection services. The idea is that it is keeping a history
of failure statistics, calculated from heartbeats received from other nodes, and is trying to do educated guesses by
taking multiple factors, and how they accumulate over time, into account in order to come up with a better guess
if a specific node is up or down. Rather than just answering “yes” or “no” to the question “is the node down?” it
returns a phi value representing the likelihood that the node is down.

The threshold that is the basis for the calculation is configurable by the user. A low threshold is prone
to generate many wrong suspicions but ensures a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect actual crashes. The default threshold is
8 and is appropriate for most situations. However in cloud environments, such as Amazon EC2, the value could
be increased to 12 in order to account for network issues that sometimes occur on such platforms.

In a cluster each node is monitored by a few (default maximum 5) other nodes, and when any of these detects the
node as unreachable that information will spread to the rest of the cluster through the gossip. In other words,
only one node needs to mark a node unreachable to have the rest of the cluster mark that node unreachable.
Right now there is no way for a node to come back from unreachable. This is planned for the next release of
Akka. It also means that the unreachable node needs to be moved to the down or removed states (see the
Membership Lifecycle section below).

Leader After gossip convergence a leader for the cluster can be determined. There is no leader election
process, the leader can always be recognised deterministically by any node whenever there is gossip conver-
gence. The leader is simply the first node in sorted order that is able to take the leadership role, where the
preferred member states for a leader are up and leaving (see the Membership Lifecycle section below for
more information about member states).

The role of the leader is to shift members in and out of the cluster, changing joining members to the up
state or exiting members to the removed state. Currently leader actions are only triggered by receiving a
new cluster state with gossip convergence.

The leader also has the power, if configured so, to “auto-down” a node that according to the Failure Detector is
considered unreachable. This means setting the unreachable node status to down automatically.

Seed Nodes The seed nodes are configured contact points for initial join of the cluster. When a new node is
started it sends a message to all seed nodes and then sends a join command to the seed node that answers first.

It is possible to not use seed nodes and instead join any node in the cluster manually.

5.1. Cluster Specification 172

http://en.wikipedia.org/wiki/Vector_clock
http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Scala Documentation, Release 2.2.5

Gossip Protocol A variation of push-pull gossip is used to reduce the amount of gossip information sent around
the cluster. In push-pull gossip a digest is sent representing current versions but not actual values; the recipient of
the gossip can then send back any values for which it has newer versions and also request values for which it has
outdated versions. Akka uses a single shared state with a vector clock for versioning, so the variant of push-pull
gossip used in Akka makes use of this version to only push the actual state as needed.

Periodically, the default is every 1 second, each node chooses another random node to initiate a round of gossip
with. The choice of node is random but can also include extra gossiping nodes with either newer or older state
versions.

The gossip overview contains the current state version for all nodes and also a list of unreachable nodes. This
allows any node to easily determine which other nodes have newer or older information, not just the nodes involved
in a gossip exchange.

The nodes defined as seed nodes are just regular member nodes whose only “special role” is to function as
contact points in the cluster.

During each round of gossip exchange it sends Gossip to random node with newer or older state information, if
any, based on the current gossip overview, with some probability. Otherwise Gossip to any random live node.

The gossiper only sends the gossip version to the chosen node. The recipient of the gossip can use the gossip
version to determine whether:

1. it has a newer version of the gossip state, in which case it sends that back to the gossiper, or

2. it has an outdated version of the state, in which case the recipient requests the current state from the gossiper

If the recipient and the gossip have the same version then the gossip state is not sent or requested.

Membership Lifecycle

A node begins in the joining state. Once all nodes have seen that the new node is joining (through gossip
convergence) the leader will set the member state to up.

If a node is leaving the cluster in a safe, expected manner then it switches to the leaving state. Once the leader
sees the convergence on the node in the leaving state, the leader will then move it to exiting. Once all
nodes have seen the exiting state (convergence) the leader will remove the node from the cluster, marking it as
removed.

If a node is unreachable then gossip convergence is not possible and therefore any leader actions are also
not possible (for instance, allowing a node to become a part of the cluster). To be able to move forward the state
of the unreachable nodes must be changed. Currently the only way forward is to mark the node as down. If
the node is to join the cluster again the actor system must be restarted and go through the joining process again.
The cluster can, through the leader, also auto-down a node.

Note: If you have auto-down enabled and the failure detector triggers, you can over time end up with a lot of
single node clusters if you don’t put measures in place to shut down nodes that have become unreachable.
This follows from the fact that the unreachable node will likely see the rest of the cluster as unreachable,
become its own leader and form its own cluster.

5.1. Cluster Specification 173

Akka Scala Documentation, Release 2.2.5

State Diagram for the Member States

Member States

• joining transient state when joining a cluster

• up normal operating state

• leaving / exiting states during graceful removal

• down marked as down (no longer part of cluster decisions)

• removed tombstone state (no longer a member)

User Actions

• join join a single node to a cluster - can be explicit or automatic on startup if a node to join have been
specified in the configuration

• leave tell a node to leave the cluster gracefully

• down mark a node as down

Leader Actions The leader has the following duties:

• shifting members in and out of the cluster

– joining -> up

– exiting -> removed

Failure Detection and Unreachability

• fd* the failure detector of one of the monitoring nodes has triggered causing the monitored node to be
marked as unreachable

5.1. Cluster Specification 174

Akka Scala Documentation, Release 2.2.5

• unreachable* unreachable is not a real member state but more of a flag in addition to the state signaling
that the cluster is unable to talk to this node

5.1.2 Future Cluster Enhancements and Additions

Goal

In addition to membership also provide automatic partitioning [*], handoff [*], and cluster rebalancing [*] of
actors.

Additional Terms

These additional terms are used in this section.

partition [*] An actor or subtree of actors in the Akka application that is distributed within the cluster.

partition point [*] The actor at the head of a partition. The point around which a partition is formed.

partition path [*] Also referred to as the actor address. Has the format actor1/actor2/actor3

instance count [*] The number of instances of a partition in the cluster. Also referred to as the N-value of the
partition.

instance node [*] A node that an actor instance is assigned to.

partition table [*] A mapping from partition path to a set of instance nodes (where the nodes are referred to by
the ordinal position given the nodes in sorted order).

Partitioning [*]

Note: Actor partitioning is not implemented yet.

Each partition (an actor or actor subtree) in the actor system is assigned to a set of nodes in the cluster. The actor
at the head of the partition is referred to as the partition point. The mapping from partition path (actor address of
the format “a/b/c”) to instance nodes is stored in the partition table and is maintained as part of the cluster state
through the gossip protocol. The partition table is only updated by the leader node. Currently the only possible
partition points are routed actors.

Routed actors can have an instance count greater than one. The instance count is also referred to as the N-value.
If the N-value is greater than one then a set of instance nodes will be given in the partition table.

Note that in the first implementation there may be a restriction such that only top-level partitions are possible (the
highest possible partition points are used and sub-partitioning is not allowed). Still to be explored in more detail.

The cluster leader determines the current instance count for a partition based on two axes: fault-tolerance and
scaling.

Fault-tolerance determines a minimum number of instances for a routed actor (allowing N-1 nodes to crash while
still maintaining at least one running actor instance). The user can specify a function from current number of
nodes to the number of acceptable node failures: n: Int => f: Int where f < n.

Scaling reflects the number of instances needed to maintain good throughput and is influenced by metrics from the
system, particularly a history of mailbox size, CPU load, and GC percentages. It may also be possible to accept
scaling hints from the user that indicate expected load.

The balancing of partitions can be determined in a very simple way in the first implementation, where the overlap
of partitions is minimized. Partitions are spread over the cluster ring in a circular fashion, with each instance node
in the first available space. For example, given a cluster with ten nodes and three partitions, A, B, and C, having
N-values of 4, 3, and 5; partition A would have instances on nodes 1-4; partition B would have instances on nodes
5-7; partition C would have instances on nodes 8-10 and 1-2. The only overlap is on nodes 1 and 2.

5.1. Cluster Specification 175

Akka Scala Documentation, Release 2.2.5

The distribution of partitions is not limited, however, to having instances on adjacent nodes in the sorted ring
order. Each instance can be assigned to any node and the more advanced load balancing algorithms will make
use of this. The partition table contains a mapping from path to instance nodes. The partitioning for the above
example would be:

A -> { 1, 2, 3, 4 }
B -> { 5, 6, 7 }
C -> { 8, 9, 10, 1, 2 }

If 5 new nodes join the cluster and in sorted order these nodes appear after the current nodes 2, 4, 5, 7, and 8, then
the partition table could be updated to the following, with all instances on the same physical nodes as before:

A -> { 1, 2, 4, 5 }
B -> { 7, 9, 10 }
C -> { 12, 14, 15, 1, 2 }

When rebalancing is required the leader will schedule handoffs, gossiping a set of pending changes, and when
each change is complete the leader will update the partition table.

Additional Leader Responsibilities

After moving a member from joining to up, the leader can start assigning partitions [*] to the new node, and when
a node is leaving the leader will reassign partitions [*] across the cluster (it is possible for a leaving node to
itself be the leader). When all partition handoff [*] has completed then the node will change to the exiting
state.

On convergence the leader can schedule rebalancing across the cluster, but it may also be possible for the user to
explicitly rebalance the cluster by specifying migrations [*], or to rebalance [*] the cluster automatically based
on metrics from member nodes. Metrics may be spread using the gossip protocol or possibly more efficiently
using a random chord method, where the leader contacts several random nodes around the cluster ring and
each contacted node gathers information from their immediate neighbours, giving a random sampling of load
information.

Handoff

Handoff for an actor-based system is different than for a data-based system. The most important point is that
message ordering (from a given node to a given actor instance) may need to be maintained. If an actor is a
singleton actor (only one instance possible throughout the cluster) then the cluster may also need to assure that
there is only one such actor active at any one time. Both of these situations can be handled by forwarding and
buffering messages during transitions.

A graceful handoff (one where the previous host node is up and running during the handoff), given a previous host
node N1, a new host node N2, and an actor partition A to be migrated from N1 to N2, has this general structure:

1. the leader sets a pending change for N1 to handoff A to N2

2. N1 notices the pending change and sends an initialization message to N2

3. in response N2 creates A and sends back a ready message

4. after receiving the ready message N1 marks the change as complete and shuts down A

5. the leader sees the migration is complete and updates the partition table

6. all nodes eventually see the new partitioning and use N2

Transitions There are transition times in the handoff process where different approaches can be used to give
different guarantees.

5.1. Cluster Specification 176

Akka Scala Documentation, Release 2.2.5

Migration Transition The first transition starts when N1 initiates the moving of A and ends when N1 receives
the ready message, and is referred to as the migration transition.

The first question is; during the migration transition, should:

• N1 continue to process messages for A?

• Or is it important that no messages for A are processed on N1 once migration begins?

If it is okay for the previous host node N1 to process messages during migration then there is nothing that needs
to be done at this point.

If no messages are to be processed on the previous host node during migration then there are two possibilities: the
messages are forwarded to the new host and buffered until the actor is ready, or the messages are simply dropped
by terminating the actor and allowing the normal dead letter process to be used.

Update Transition The second transition begins when the migration is marked as complete and ends when all
nodes have the updated partition table (when all nodes will use N2 as the host for A, i.e. we have convergence)
and is referred to as the update transition.

Once the update transition begins N1 can forward any messages it receives for A to the new host N2. The question
is whether or not message ordering needs to be preserved. If messages sent to the previous host node N1 are being
forwarded, then it is possible that a message sent to N1 could be forwarded after a direct message to the new host
N2, breaking message ordering from a client to actor A.

In this situation N2 can keep a buffer for messages per sending node. Each buffer is flushed and removed when
an acknowledgement (ack) message has been received. When each node in the cluster sees the partition update
it first sends an ack message to the previous host node N1 before beginning to use N2 as the new host for A. Any
messages sent from the client node directly to N2 will be buffered. N1 can count down the number of acks to
determine when no more forwarding is needed. The ack message from any node will always follow any other
messages sent to N1. When N1 receives the ackmessage it also forwards it to N2 and again this ackmessage will
follow any other messages already forwarded for A. When N2 receives an ack message, the buffer for the sending
node can be flushed and removed. Any subsequent messages from this sending node can be queued normally.
Once all nodes in the cluster have acknowledged the partition change and N2 has cleared all buffers, the handoff is
complete and message ordering has been preserved. In practice the buffers should remain small as it is only those
messages sent directly to N2 before the acknowledgement has been forwarded that will be buffered.

Graceful Handoff A more complete process for graceful handoff would be:

1. the leader sets a pending change for N1 to handoff A to N2

2. N1 notices the pending change and sends an initialization message to N2. Options:

(a) keep A on N1 active and continuing processing messages as normal

(b) N1 forwards all messages for A to N2

(c) N1 drops all messages for A (terminate A with messages becoming dead letters)

3. in response N2 creates A and sends back a ready message. Options:

(a) N2 simply processes messages for A as normal

(b) N2 creates a buffer per sending node for A. Each buffer is opened (flushed and removed) when an
acknowledgement for the sending node has been received (via N1)

4. after receiving the ready message N1 marks the change as complete. Options:

(a) N1 forwards all messages for A to N2 during the update transition

(b) N1 drops all messages for A (terminate A with messages becoming dead letters)

5. the leader sees the migration is complete and updates the partition table

6. all nodes eventually see the new partitioning and use N2

(a) each node sends an acknowledgement message to N1

5.1. Cluster Specification 177

Akka Scala Documentation, Release 2.2.5

(b) when N1 receives the acknowledgement it can count down the pending acknowledgements and remove
forwarding when complete

(c) when N2 receives the acknowledgement it can open the buffer for the sending node (if buffers are
used)

The default approach is to take options 2a, 3a, and 4a - allowing A on N1 to continue processing messages during
migration and then forwarding any messages during the update transition. This assumes stateless actors that do
not have a dependency on message ordering from any given source.

• If an actor has a distributed durable mailbox then nothing needs to be done, other than migrating the actor.

• If message ordering needs to be maintained during the update transition then option 3b can be used, creating
buffers per sending node.

• If the actors are robust to message send failures then the dropping messages approach can be used (with no
forwarding or buffering needed).

• If an actor is a singleton (only one instance possible throughout the cluster) and state is transferred during
the migration initialization, then options 2b and 3b would be required.

Stateful Actor Replication [*]

Note: Stateful actor replication is not implemented yet.

Implementing a Dynamo-style Distributed Database on top of Akka Cluster

Having a Dynamo base for the clustering already we could use the same infrastructure to provide stateful actor
clustering and datastore as well. The stateful actor clustering could be layered on top of the distributed datastore.

The missing pieces (rough outline) to implement a full Dynamo-style eventually consistent data storage on top of
the Akka Cluster as described in this document are:

• Configuration of READ and WRITE consistency levels according to the N/R/W numbers defined in the
Dynamo paper.

– R = read replica count

– W = write replica count

– N = replication factor

– Q = QUORUM = N / 2 + 1

– W + R > N = full consistency

• Define a versioned data message wrapper:

Versioned[T](hash: Long, version: VectorClock, data: T)

• Define a single system data broker actor on each node that uses a Consistent Hashing Router and
that have instances on all other nodes in the node ring.

• For WRITE:

1. Wrap data in a Versioned Message

2. Send a Versioned Message with the data is sent to a number of nodes matching the W-value.

• For READ:

1. Read in the Versioned Message with the data from as many replicas as you need for the consis-
tency level required by the R-value.

2. Do comparison on the versions (using Vector Clocks)

5.1. Cluster Specification 178

http://en.wikipedia.org/wiki/Vector_clock

Akka Scala Documentation, Release 2.2.5

3. If the versions differ then do Read Repair to update the inconsistent nodes.

4. Return the latest versioned data.

[*] Not Implemented Yet

• Actor partitioning

• Actor handoff

• Actor rebalancing

• Stateful actor replication

• Node becoming reachable after it has been marked as unreachable

5.2 Cluster Usage

For introduction to the Akka Cluster concepts please see Cluster Specification.

5.2.1 Preparing Your Project for Clustering

The Akka cluster is a separate jar file. Make sure that you have the following dependency in your project:

"com.typesafe.akka" %% "akka-cluster" % "2.2.5"

5.2.2 A Simple Cluster Example

The following small program together with its configuration starts an ActorSystem with the Cluster enabled.
It joins the cluster and logs some membership events.

Try it out:

1. Add the following application.conf in your project, place it in src/main/resources:

akka {
actor {
provider = "akka.cluster.ClusterActorRefProvider"

}
remote {
log-remote-lifecycle-events = off
netty.tcp {

hostname = "127.0.0.1"
port = 0

}
}

cluster {
seed-nodes = [

"akka.tcp://ClusterSystem@127.0.0.1:2551",
"akka.tcp://ClusterSystem@127.0.0.1:2552"]

auto-down = on
}

}

To enable cluster capabilities in your Akka project you should, at a minimum, add the Remoting settings, but with
akka.cluster.ClusterActorRefProvider. The akka.cluster.seed-nodes should normally
also be added to your application.conf file.

5.2. Cluster Usage 179

http://wiki.apache.org/cassandra/ReadRepair

Akka Scala Documentation, Release 2.2.5

The seed nodes are configured contact points for initial, automatic, join of the cluster.

Note that if you are going to start the nodes on different machines you need to specify the ip-addresses or host
names of the machines in application.conf instead of 127.0.0.1

2. Add the following main program to your project, place it in src/main/scala:

package sample.cluster.simple

import akka.actor._
import akka.cluster.Cluster
import akka.cluster.ClusterEvent._

object SimpleClusterApp {
def main(args: Array[String]): Unit = {

// Override the configuration of the port
// when specified as program argument
if (args.nonEmpty) System.setProperty("akka.remote.netty.tcp.port", args(0))

// Create an Akka system
val system = ActorSystem("ClusterSystem")
val clusterListener = system.actorOf(Props[SimpleClusterListener],

name = "clusterListener")

Cluster(system).subscribe(clusterListener, classOf[ClusterDomainEvent])
}

}

class SimpleClusterListener extends Actor with ActorLogging {
def receive = {
case state: CurrentClusterState ⇒

log.info("Current members: {}", state.members.mkString(", "))
case MemberUp(member) ⇒
log.info("Member is Up: {}", member.address)

case UnreachableMember(member) ⇒
log.info("Member detected as unreachable: {}", member)

case MemberRemoved(member, previousStatus) ⇒
log.info("Member is Removed: {} after {}",

member.address, previousStatus)
case _: ClusterDomainEvent ⇒ // ignore

}
}

3. Start the first seed node. Open a sbt session in one terminal window and run:

run-main sample.cluster.simple.SimpleClusterApp 2551

2551 corresponds to the port of the first seed-nodes element in the configuration. In the log output you see that the
cluster node has been started and changed status to ‘Up’.

4. Start the second seed node. Open a sbt session in another terminal window and run:

run-main sample.cluster.simple.SimpleClusterApp 2552

2552 corresponds to the port of the second seed-nodes element in the configuration. In the log output you see that
the cluster node has been started and joins the other seed node and becomes a member of the cluster. Its status
changed to ‘Up’.

Switch over to the first terminal window and see in the log output that the member joined.

5. Start another node. Open a sbt session in yet another terminal window and run:

run-main sample.cluster.simple.SimpleClusterApp

5.2. Cluster Usage 180

Akka Scala Documentation, Release 2.2.5

Now you don’t need to specify the port number, and it will use a random available port. It joins one of the
configured seed nodes. Look at the log output in the different terminal windows.

Start even more nodes in the same way, if you like.

6. Shut down one of the nodes by pressing ‘ctrl-c’ in one of the terminal windows. The other nodes will detect the
failure after a while, which you can see in the log output in the other terminals.

Look at the source code of the program again. What it does is to create an actor and register it as subscriber of
certain cluster events. It gets notified with an snapshot event, CurrentClusterState that holds full state
information of the cluster. After that it receives events for changes that happen in the cluster.

5.2.3 Joining to Seed Nodes

You may decide if joining to the cluster should be done manually or automatically to configured initial contact
points, so-called seed nodes. When a new node is started it sends a message to all seed nodes and then sends join
command to the one that answers first. If no one of the seed nodes replied (might not be started yet) it retries this
procedure until successful or shutdown.

You define the seed nodes in the Configuration file (application.conf):

akka.cluster.seed-nodes = [
"akka.tcp://ClusterSystem@host1:2552",
"akka.tcp://ClusterSystem@host2:2552"]

This can also be defined as Java system properties when starting the JVM using the following syntax:

-Dakka.cluster.seed-nodes.0=akka.tcp://ClusterSystem@host1:2552
-Dakka.cluster.seed-nodes.1=akka.tcp://ClusterSystem@host2:2552

The seed nodes can be started in any order and it is not necessary to have all seed nodes running, but the node
configured as the first element in the seed-nodes configuration list must be started when initially starting a
cluster, otherwise the other seed-nodes will not become initialized and no other node can join the cluster. It is
quickest to start all configured seed nodes at the same time (order doesn’t matter), otherwise it can take up to the
configured seed-node-timeout until the nodes can join.

Once more than two seed nodes have been started it is no problem to shut down the first seed node. If the first
seed node is restarted it will first try join the other seed nodes in the existing cluster.

If you don’t configure the seed nodes you need to join manually, using JMX or Command Line Management. You
can join to any node in the cluster. It doesn’t have to be configured as a seed node.

Joining can also be performed programatically with Cluster(system).join(address).

Unsuccessful join attempts are automatically retried after the time period defined in configuration property
retry-unsuccessful-join-after. When using seed-nodes this means that a new seed node is
picked. When joining manually or programatically this means that the last join request is retried. Retries can
be disabled by setting the property to off.

An actor system can only join a cluster once. Additional attempts will be ignored. When it has successfully joined
it must be restarted to be able to join another cluster or to join the same cluster again. It can use the same host
name and port after the restart, but it must have been removed from the cluster before the join request is accepted.

5.2.4 Automatic vs. Manual Downing

When a member is considered by the failure detector to be unreachable the leader is not allowed to perform its
duties, such as changing status of new joining members to ‘Up’. The status of the unreachable member must be
changed to ‘Down’. This can be performed automatically or manually. By default it must be done manually, using
using JMX or Command Line Management.

It can also be performed programatically with Cluster(system).down(address).

You can enable automatic downing with configuration:

5.2. Cluster Usage 181

Akka Scala Documentation, Release 2.2.5

akka.cluster.auto-down = on

Be aware of that using auto-down implies that two separate clusters will automatically be formed in case of
network partition. That might be desired by some applications but not by others.

5.2.5 Leaving

There are two ways to remove a member from the cluster.

You can just stop the actor system (or the JVM process). It will be detected as unreachable and removed after the
automatic or manual downing as described above.

A more graceful exit can be performed if you tell the cluster that a node shall leave. This can be
performed using JMX or Command Line Management. It can also be performed programatically with
Cluster(system).leave(address).

Note that this command can be issued to any member in the cluster, not necessarily the one that is leaving. The
cluster extension, but not the actor system or JVM, of the leaving member will be shutdown after the leader has
changed status of the member to Exiting. Thereafter the member will be removed from the cluster. Normally this
is handled automatically, but in case of network failures during this process it might still be necessary to set the
node’s status to Down in order to complete the removal.

5.2.6 Subscribe to Cluster Events

You can subscribe to change notifications of the cluster membership by using
Cluster(system).subscribe(subscriber, to). A snapshot of the full state,
akka.cluster.ClusterEvent.CurrentClusterState, is sent to the subscriber as the first
event, followed by events for incremental updates.

Note that you may receive an empty CurrentClusterState, containing no members, if you start the sub-
scription before the initial join procedure has completed. This is expected behavior. When the node has been
accepted in the cluster you will receive MemberUp for that node, and other nodes.

The events to track the life-cycle of members are:

• ClusterEvent.MemberUp - A new member has joined the cluster and its status has been changed to
Up.

• ClusterEvent.MemberExited - A member is leaving the cluster and its status has been changed to
Exiting. Note that the node might already have been shutdown when this event is published on another
node.

• ClusterEvent.MemberRemoved - Member completely removed from the cluster.

• ClusterEvent.UnreachableMember - A member is considered as unreachable by the failure detec-
tor.

There are more types of change events, consult the API documentation of classes that extends
akka.cluster.ClusterEvent.ClusterDomainEvent for details about the events.

Worker Dial-in Example

Let’s take a look at an example that illustrates how workers, here named backend, can detect and register to new
master nodes, here named frontend.

The example application provides a service to transform text. When some text is sent to one of the frontend
services, it will be delegated to one of the backend workers, which performs the transformation job, and sends the
result back to the original client. New backend nodes, as well as new frontend nodes, can be added or removed to
the cluster dynamically.

In this example the following imports are used:

5.2. Cluster Usage 182

Akka Scala Documentation, Release 2.2.5

import language.postfixOps
import scala.concurrent.duration._
import akka.actor.Actor
import akka.actor.ActorRef
import akka.actor.ActorSystem
import akka.actor.Props
import akka.actor.RootActorPath
import akka.actor.Terminated
import akka.cluster.Cluster
import akka.cluster.ClusterEvent.CurrentClusterState
import akka.cluster.ClusterEvent.MemberUp
import akka.cluster.Member
import akka.cluster.MemberStatus
import akka.pattern.ask
import akka.util.Timeout
import com.typesafe.config.ConfigFactory

Messages:

case class TransformationJob(text: String)
case class TransformationResult(text: String)
case class JobFailed(reason: String, job: TransformationJob)
case object BackendRegistration

The backend worker that performs the transformation job:

class TransformationBackend extends Actor {

val cluster = Cluster(context.system)

// subscribe to cluster changes, MemberUp
// re-subscribe when restart
override def preStart(): Unit = cluster.subscribe(self, classOf[MemberUp])
override def postStop(): Unit = cluster.unsubscribe(self)

def receive = {
case TransformationJob(text) ⇒ sender ! TransformationResult(text.toUpperCase)
case state: CurrentClusterState ⇒

state.members.filter(_.status == MemberStatus.Up) foreach register
case MemberUp(m) ⇒ register(m)

}

def register(member: Member): Unit =
if (member.hasRole("frontend"))

context.actorSelection(RootActorPath(member.address) / "user" / "frontend") !
BackendRegistration

}

Note that the TransformationBackend actor subscribes to cluster events to detect new, potential, frontend
nodes, and send them a registration message so that they know that they can use the backend worker.

The frontend that receives user jobs and delegates to one of the registered backend workers:

class TransformationFrontend extends Actor {

var backends = IndexedSeq.empty[ActorRef]
var jobCounter = 0

def receive = {
case job: TransformationJob if backends.isEmpty ⇒

sender ! JobFailed("Service unavailable, try again later", job)

case job: TransformationJob ⇒
jobCounter += 1

5.2. Cluster Usage 183

Akka Scala Documentation, Release 2.2.5

backends(jobCounter % backends.size) forward job

case BackendRegistration if !backends.contains(sender) ⇒
context watch sender
backends = backends :+ sender

case Terminated(a) ⇒
backends = backends.filterNot(_ == a)

}
}

Note that the TransformationFrontend actor watch the registered backend to be able to remove it from
its list of availble backend workers. Death watch uses the cluster failure detector for nodes in the cluster, i.e. it
detects network failures and JVM crashes, in addition to graceful termination of watched actor.

This example is included in akka-samples/akka-sample-cluster and you can try by starting nodes in
different terminal windows. For example, starting 2 frontend nodes and 3 backend nodes:

sbt

project akka-sample-cluster

run-main sample.cluster.transformation.TransformationFrontend 2551

run-main sample.cluster.transformation.TransformationBackend 2552

run-main sample.cluster.transformation.TransformationBackend

run-main sample.cluster.transformation.TransformationBackend

run-main sample.cluster.transformation.TransformationFrontend

5.2.7 Node Roles

Not all nodes of a cluster need to perform the same function: there might be one sub-set which runs the web
front-end, one which runs the data access layer and one for the number-crunching. Deployment of actors—for
example by cluster-aware routers—can take node roles into account to achieve this distribution of responsibilities.

The roles of a node is defined in the configuration property named akka.cluster.roles and it is typically
defined in the start script as a system property or environment variable.

The roles of the nodes is part of the membership information in MemberEvent that you can subscribe to.

5.2.8 How To Startup when Cluster Size Reached

A common use case is to start actors after the cluster has been initialized, members have joined, and the cluster
has reached a certain size.

With a configuration option you can define required number of members before the leader changes member status
of ‘Joining’ members to ‘Up’.

akka.cluster.min-nr-of-members = 3

In a similar way you can define required number of members of a certain role before the leader changes member
status of ‘Joining’ members to ‘Up’.

akka.cluster.role {
frontend.min-nr-of-members = 1
backend.min-nr-of-members = 2

}

5.2. Cluster Usage 184

Akka Scala Documentation, Release 2.2.5

You can start the actors in a registerOnMemberUp callback, which will be invoked when the current member
status is changed tp ‘Up’, i.e. the cluster has at least the defined number of members.

Cluster(system) registerOnMemberUp {
system.actorOf(Props(classOf[FactorialFrontend], upToN, true),
name = "factorialFrontend")

}

This callback can be used for other things than starting actors.

5.2.9 Cluster Singleton Pattern

For some use cases it is convenient and sometimes also mandatory to ensure that you have exactly one actor of a
certain type running somewhere in the cluster.

This can be implemented by subscribing to member events, but there are several corner cases to consider. There-
fore, this specific use case is made easily accessible by the Cluster Singleton Pattern in the contrib module. You
can use it as is, or adjust to fit your specific needs.

5.2.10 Distributed Publish Subscribe Pattern

See Distributed Publish Subscribe in Cluster in the contrib module.

5.2.11 Cluster Client

See Cluster Client in the contrib module.

5.2.12 Failure Detector

The nodes in the cluster monitor each other by sending heartbeats to detect if a node is unreachable from the rest
of the cluster. The heartbeat arrival times is interpreted by an implementation of The Phi Accrual Failure Detector.

The suspicion level of failure is given by a value called phi. The basic idea of the phi failure detector is to express
the value of phi on a scale that is dynamically adjusted to reflect current network conditions.

The value of phi is calculated as:

phi = -log10(1 - F(timeSinceLastHeartbeat))

where F is the cumulative distribution function of a normal distribution with mean and standard deviation estimated
from historical heartbeat inter-arrival times.

In the Configuration you can adjust the akka.cluster.failure-detector.threshold to define when
a phi value is considered to be a failure.

A low threshold is prone to generate many false positives but ensures a quick detection in the event of a real
crash. Conversely, a high threshold generates fewer mistakes but needs more time to detect actual crashes.
The default threshold is 8 and is appropriate for most situations. However in cloud environments, such as
Amazon EC2, the value could be increased to 12 in order to account for network issues that sometimes occur on
such platforms.

The following chart illustrates how phi increase with increasing time since the previous heartbeat.

5.2. Cluster Usage 185

http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Scala Documentation, Release 2.2.5

Phi is calculated from the mean and standard deviation of historical inter arrival times. The previous chart is an
example for standard deviation of 200 ms. If the heartbeats arrive with less deviation the curve becomes steeper,
i.e. it is possible to determine failure more quickly. The curve looks like this for a standard deviation of 100 ms.

To be able to survive sudden abnormalities, such as garbage collection pauses
and transient network failures the failure detector is configured with a margin,
akka.cluster.failure-detector.acceptable-heartbeat-pause. You may want to
adjust the Configuration of this depending on you environment. This is how the curve looks like for
acceptable-heartbeat-pause configured to 3 seconds.

5.2. Cluster Usage 186

Akka Scala Documentation, Release 2.2.5

Death watch uses the cluster failure detector for nodes in the cluster, i.e. it generates Terminated message from
network failures and JVM crashes, in addition to graceful termination of watched actor.

If you encounter suspicious false positives when the system is under load you should define a separate dispatcher
for the cluster actors as described in Cluster Dispatcher.

5.2.13 Cluster Aware Routers

All routers can be made aware of member nodes in the cluster, i.e. deploying new routees or looking up routees
on nodes in the cluster. When a node becomes unavailable or leaves the cluster the routees of that node are
automatically unregistered from the router. When new nodes join the cluster additional routees are added to the
router, according to the configuration.

There are two distinct types of routers.

• Router that lookup existing actors and use them as routees. The routees can be shared between routers
running on different nodes in the cluster. One example of a use case for this type of router is a service
running on some backend nodes in the cluster and used by routers running on front-end nodes in the cluster.

• Router that creates new routees as child actors and deploy them on remote nodes. Each router will
have its own routee instances. For example, if you start a router on 3 nodes in a 10 nodes cluster you will
have 30 routee actors in total if the router is configured to use one inctance per node. The routees created
by the the different routers will not be shared between the routers. One example of a use case for this type
of router is a single master that coordinate jobs and delegates the actual work to routees running on other
nodes in the cluster.

Router with Lookup of Routees

When using a router with routees looked up on the cluster member nodes, i.e. the routees are already running, the
configuration for a router looks like this:

akka.actor.deployment {
/statsService/workerRouter {

router = consistent-hashing

5.2. Cluster Usage 187

Akka Scala Documentation, Release 2.2.5

nr-of-instances = 100
cluster {

enabled = on
routees-path = "/user/statsWorker"
allow-local-routees = on
use-role = compute

}
}

}

Note: The routee actors should be started as early as possible when starting the actor system, because the router
will try to use them as soon as the member status is changed to ‘Up’. If it is not available at that point it will be
removed from the router and it will only re-try when the cluster members are changed.

It is the relative actor path defined in routees-path that identify what actor to lookup. It is possible to limit
the lookup of routees to member nodes tagged with a certain role by specifying use-role.

nr-of-instances defines total number of routees in the cluster, but there will not be more than one per node.
That routee actor could easily fan out to local children if more parallelism is needed. Setting nr-of-instances
to a high value will result in new routees added to the router when nodes join the cluster.

The same type of router could also have been defined in code:

import akka.cluster.routing.ClusterRouterConfig
import akka.cluster.routing.ClusterRouterSettings
import akka.routing.ConsistentHashingRouter

val workerRouter = context.actorOf(Props.empty.withRouter(
ClusterRouterConfig(ConsistentHashingRouter(), ClusterRouterSettings(
totalInstances = 100, routeesPath = "/user/statsWorker",
allowLocalRoutees = true, useRole = Some("compute")))),

name = "workerRouter2")

See Configuration section for further descriptions of the settings.

Router Example with Lookup of Routees

Let’s take a look at how to use a cluster aware router with lookup of routees.

The example application provides a service to calculate statistics for a text. When some text is sent to the service
it splits it into words, and delegates the task to count number of characters in each word to a separate worker, a
routee of a router. The character count for each word is sent back to an aggregator that calculates the average
number of characters per word when all results have been collected.

In this example we use the following imports:

import language.postfixOps
import scala.collection.immutable
import scala.concurrent.forkjoin.ThreadLocalRandom
import scala.concurrent.duration._
import com.typesafe.config.ConfigFactory
import akka.actor.Actor
import akka.actor.ActorLogging
import akka.actor.ActorRef
import akka.actor.ActorSelection
import akka.actor.ActorSystem
import akka.actor.Address
import akka.actor.PoisonPill
import akka.actor.Props
import akka.actor.ReceiveTimeout
import akka.actor.RelativeActorPath
import akka.actor.RootActorPath

5.2. Cluster Usage 188

Akka Scala Documentation, Release 2.2.5

import akka.cluster.Cluster
import akka.cluster.ClusterEvent._
import akka.cluster.MemberStatus
import akka.cluster.Member
import akka.contrib.pattern.ClusterSingletonManager
import akka.routing.FromConfig
import akka.routing.ConsistentHashingRouter.ConsistentHashableEnvelope

Messages:

case class StatsJob(text: String)
case class StatsResult(meanWordLength: Double)
case class JobFailed(reason: String)

The worker that counts number of characters in each word:

class StatsWorker extends Actor {
var cache = Map.empty[String, Int]
def receive = {
case word: String ⇒
val length = cache.get(word) match {

case Some(x) ⇒ x
case None ⇒
val x = word.length
cache += (word -> x)
x

}

sender ! length
}

}

The service that receives text from users and splits it up into words, delegates to workers and aggregates:

class StatsService extends Actor {
// This router is used both with lookup and deploy of routees. If you
// have a router with only lookup of routees you can use Props.empty
// instead of Props[StatsWorker.class].
val workerRouter = context.actorOf(Props[StatsWorker].withRouter(FromConfig),
name = "workerRouter")

def receive = {
case StatsJob(text) if text != "" ⇒

val words = text.split(" ")
val replyTo = sender // important to not close over sender
// create actor that collects replies from workers
val aggregator = context.actorOf(Props(

classOf[StatsAggregator], words.size, replyTo))
words foreach { word ⇒
workerRouter.tell(
ConsistentHashableEnvelope(word, word), aggregator)

}
}

}

class StatsAggregator(expectedResults: Int, replyTo: ActorRef) extends Actor {
var results = IndexedSeq.empty[Int]
context.setReceiveTimeout(3 seconds)

def receive = {
case wordCount: Int ⇒

results = results :+ wordCount
if (results.size == expectedResults) {

val meanWordLength = results.sum.toDouble / results.size

5.2. Cluster Usage 189

Akka Scala Documentation, Release 2.2.5

replyTo ! StatsResult(meanWordLength)
context.stop(self)

}
case ReceiveTimeout ⇒

replyTo ! JobFailed("Service unavailable, try again later")
context.stop(self)

}
}

Note, nothing cluster specific so far, just plain actors.

All nodes start StatsService and StatsWorker actors. Remember, routees are the workers in this case.
The router is configured with routees-path:

akka.actor.deployment {
/statsService/workerRouter {
router = consistent-hashing
nr-of-instances = 100
cluster {

enabled = on
routees-path = "/user/statsWorker"
allow-local-routees = on
use-role = compute

}
}

}

This means that user requests can be sent to StatsService on any node and it will use StatsWorker on
all nodes. There can only be one worker per node, but that worker could easily fan out to local children if more
parallelism is needed.

This example is included in akka-samples/akka-sample-cluster and you can try by starting nodes in
different terminal windows. For example, starting 3 service nodes and 1 client:

sbt

project akka-sample-cluster

run-main sample.cluster.stats.StatsSample 2551

run-main sample.cluster.stats.StatsSample 2552

run-main sample.cluster.stats.StatsSampleClient

run-main sample.cluster.stats.StatsSample

Router with Remote Deployed Routees

When using a router with routees created and deployed on the cluster member nodes the configuration for a router
looks like this:

akka.actor.deployment {
/singleton/statsService/workerRouter {

router = consistent-hashing
nr-of-instances = 100
cluster {

enabled = on
max-nr-of-instances-per-node = 3
allow-local-routees = off
use-role = compute

}
}

}

5.2. Cluster Usage 190

Akka Scala Documentation, Release 2.2.5

It is possible to limit the deployment of routees to member nodes tagged with a certain role by specifying
use-role.

nr-of-instances defines total number of routees in the cluster, but the number of routees per node,
max-nr-of-instances-per-node, will not be exceeded. Setting nr-of-instances to a high value
will result in creating and deploying additional routees when new nodes join the cluster.

The same type of router could also have been defined in code:

import akka.cluster.routing.ClusterRouterConfig
import akka.cluster.routing.ClusterRouterSettings
import akka.routing.ConsistentHashingRouter

val workerRouter = context.actorOf(Props[StatsWorker].withRouter(
ClusterRouterConfig(ConsistentHashingRouter(), ClusterRouterSettings(
totalInstances = 100, maxInstancesPerNode = 3,
allowLocalRoutees = false, useRole = None))),

name = "workerRouter3")

See Configuration section for further descriptions of the settings.

Router Example with Remote Deployed Routees

Let’s take a look at how to use a cluster aware router on single master node that creates and deploys work-
ers. To keep track of a single master we use the Cluster Singleton Pattern in the contrib module. The
ClusterSingletonManager is started on each node.

system.actorOf(ClusterSingletonManager.props(
singletonProps = _ ⇒ Props[StatsService], singletonName = "statsService",
terminationMessage = PoisonPill, role = Some("compute")),
name = "singleton")

We also need an actor on each node that keeps track of where current single master exists and delegates jobs to
the StatsService.

class StatsFacade extends Actor with ActorLogging {
import context.dispatcher
val cluster = Cluster(context.system)

// sort by age, oldest first
val ageOrdering = Ordering.fromLessThan[Member] { (a, b) ⇒ a.isOlderThan(b) }
var membersByAge: immutable.SortedSet[Member] = immutable.SortedSet.empty(ageOrdering)

// subscribe to cluster changes
// re-subscribe when restart
override def preStart(): Unit = cluster.subscribe(self, classOf[MemberEvent])
override def postStop(): Unit = cluster.unsubscribe(self)

def receive = {
case job: StatsJob if membersByAge.isEmpty ⇒
sender ! JobFailed("Service unavailable, try again later")

case job: StatsJob ⇒
currentMaster.tell(job, sender)

case state: CurrentClusterState ⇒
membersByAge = immutable.SortedSet.empty(ageOrdering) ++ state.members.collect {

case m if m.hasRole("compute") ⇒ m
}

case MemberUp(m) ⇒ if (m.hasRole("compute")) membersByAge += m
case MemberRemoved(m, _) ⇒ if (m.hasRole("compute")) membersByAge -= m
case _: MemberEvent ⇒ // not interesting

}

def currentMaster: ActorSelection =

5.2. Cluster Usage 191

Akka Scala Documentation, Release 2.2.5

context.actorSelection(RootActorPath(membersByAge.head.address) /
"user" / "singleton" / "statsService")

}

The StatsFacade receives text from users and delegates to the current StatsService, the single master. It
listens to cluster events to lookup the StatsService on the oldest node.

All nodes start StatsFacade and the ClusterSingletonManager. The router is now configured like this:

akka.actor.deployment {
/singleton/statsService/workerRouter {
router = consistent-hashing
nr-of-instances = 100
cluster {

enabled = on
max-nr-of-instances-per-node = 3
allow-local-routees = off
use-role = compute

}
}

}

This example is included in akka-samples/akka-sample-cluster and you can try by starting nodes in
different terminal windows. For example, starting 3 service nodes and 1 client:

run-main sample.cluster.stats.StatsSampleOneMaster 2551

run-main sample.cluster.stats.StatsSampleOneMaster 2552

run-main sample.cluster.stats.StatsSampleOneMasterClient

run-main sample.cluster.stats.StatsSampleOneMaster

Note: The above example will be simplified when the cluster handles automatic actor partitioning.

5.2.14 Cluster Metrics

The member nodes of the cluster collects system health metrics and publishes that to other nodes and to registered
subscribers. This information is primarily used for load-balancing routers.

Hyperic Sigar

The built-in metrics is gathered from JMX MBeans, and optionally you can use Hyperic Sigar for a wider
and more accurate range of metrics compared to what can be retrieved from ordinary MBeans. Sigar is us-
ing a native OS library. To enable usage of Sigar you need to add the directory of the native library to
-Djava.libarary.path=<path_of_sigar_libs> add the following dependency:

"org.fusesource" % "sigar" % "1.6.4"

Download the native Sigar libraries from Maven Central

Adaptive Load Balancing

The AdaptiveLoadBalancingRouter performs load balancing of messages to cluster nodes based on the
cluster metrics data. It uses random selection of routees with probabilities derived from the remaining capacity of
the corresponding node. It can be configured to use a specific MetricsSelector to produce the probabilities, a.k.a.
weights:

5.2. Cluster Usage 192

http://www.hyperic.com/products/sigar
http://repo1.maven.org/maven2/org/fusesource/sigar/1.6.4/

Akka Scala Documentation, Release 2.2.5

• heap / HeapMetricsSelector - Used and max JVM heap memory. Weights based on remaining heap
capacity; (max - used) / max

• load / SystemLoadAverageMetricsSelector - System load average for the past 1 minute, corre-
sponding value can be found in top of Linux systems. The system is possibly nearing a bottleneck if the
system load average is nearing number of cpus/cores. Weights based on remaining load capacity; 1 - (load
/ processors)

• cpu / CpuMetricsSelector - CPU utilization in percentage, sum of User + Sys + Nice + Wait. Weights
based on remaining cpu capacity; 1 - utilization

• mix / MixMetricsSelector - Combines heap, cpu and load. Weights based on mean of remaining
capacity of the combined selectors.

• Any custom implementation of akka.cluster.routing.MetricsSelector

The collected metrics values are smoothed with exponential weighted moving average. In the Configuration you
can adjust how quickly past data is decayed compared to new data.

Let’s take a look at this router in action.

In this example the following imports are used:

import scala.annotation.tailrec
import scala.concurrent.Future
import com.typesafe.config.ConfigFactory
import akka.actor.Actor
import akka.actor.ActorLogging
import akka.actor.ActorRef
import akka.actor.ActorSystem
import akka.actor.Props
import akka.pattern.pipe
import akka.routing.FromConfig

The backend worker that performs the factorial calculation:

class FactorialBackend extends Actor with ActorLogging {

import context.dispatcher

def receive = {
case (n: Int) ⇒

Future(factorial(n)) map { result ⇒ (n, result) } pipeTo sender
}

def factorial(n: Int): BigInt = {
@tailrec def factorialAcc(acc: BigInt, n: Int): BigInt = {

if (n <= 1) acc
else factorialAcc(acc * n, n - 1)

}
factorialAcc(BigInt(1), n)

}

}

The frontend that receives user jobs and delegates to the backends via the router:

class FactorialFrontend(upToN: Int, repeat: Boolean) extends Actor with ActorLogging {

val backend = context.actorOf(Props.empty.withRouter(FromConfig),
name = "factorialBackendRouter")

override def preStart(): Unit = sendJobs()

def receive = {
case (n: Int, factorial: BigInt) ⇒

5.2. Cluster Usage 193

http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

Akka Scala Documentation, Release 2.2.5

if (n == upToN) {
log.debug("{}! = {}", n, factorial)
if (repeat) sendJobs()

}
}

def sendJobs(): Unit = {
log.info("Starting batch of factorials up to [{}]", upToN)
1 to upToN foreach { backend ! _ }

}
}

As you can see, the router is defined in the same way as other routers, and in this case it is configured as follows:

akka.actor.deployment {
/factorialFrontend/factorialBackendRouter = {
router = adaptive
metrics-selector = heap
metrics-selector = load
metrics-selector = cpu
metrics-selector = mix
nr-of-instances = 100
cluster {

enabled = on
routees-path = "/user/factorialBackend"
use-role = backend
allow-local-routees = off

}
}

}

It is only router type adaptive and the metrics-selector that is specific to this router, other things work
in the same way as other routers.

The same type of router could also have been defined in code:

import akka.cluster.routing.ClusterRouterConfig
import akka.cluster.routing.ClusterRouterSettings
import akka.cluster.routing.AdaptiveLoadBalancingRouter
import akka.cluster.routing.HeapMetricsSelector

val backend = context.actorOf(Props.empty.withRouter(
ClusterRouterConfig(AdaptiveLoadBalancingRouter(HeapMetricsSelector),
ClusterRouterSettings(

totalInstances = 100, routeesPath = "/user/factorialBackend",
allowLocalRoutees = true, useRole = Some("backend")))),

name = "factorialBackendRouter2")

import akka.cluster.routing.ClusterRouterConfig
import akka.cluster.routing.ClusterRouterSettings
import akka.cluster.routing.AdaptiveLoadBalancingRouter
import akka.cluster.routing.SystemLoadAverageMetricsSelector

val backend = context.actorOf(Props[FactorialBackend].withRouter(
ClusterRouterConfig(AdaptiveLoadBalancingRouter(
SystemLoadAverageMetricsSelector), ClusterRouterSettings(
totalInstances = 100, maxInstancesPerNode = 3,
allowLocalRoutees = false, useRole = Some("backend")))),

name = "factorialBackendRouter3")

This example is included in akka-samples/akka-sample-cluster and you can try by starting nodes in
different terminal windows. For example, starting 3 backend nodes and one frontend:

5.2. Cluster Usage 194

Akka Scala Documentation, Release 2.2.5

sbt

project akka-sample-cluster

run-main sample.cluster.factorial.FactorialBackend 2551

run-main sample.cluster.factorial.FactorialBackend 2552

run-main sample.cluster.factorial.FactorialBackend

run-main sample.cluster.factorial.FactorialFrontend

Press ctrl-c in the terminal window of the frontend to stop the factorial calculations.

Subscribe to Metrics Events

It is possible to subscribe to the metrics events directly to implement other functionality.

import akka.cluster.Cluster
import akka.cluster.ClusterEvent.ClusterMetricsChanged
import akka.cluster.ClusterEvent.CurrentClusterState
import akka.cluster.NodeMetrics
import akka.cluster.StandardMetrics.HeapMemory
import akka.cluster.StandardMetrics.Cpu

class MetricsListener extends Actor with ActorLogging {
val selfAddress = Cluster(context.system).selfAddress

// subscribe to ClusterMetricsChanged
// re-subscribe when restart
override def preStart(): Unit =
Cluster(context.system).subscribe(self, classOf[ClusterMetricsChanged])

override def postStop(): Unit =
Cluster(context.system).unsubscribe(self)

def receive = {
case ClusterMetricsChanged(clusterMetrics) ⇒
clusterMetrics.filter(_.address == selfAddress) foreach { nodeMetrics ⇒

logHeap(nodeMetrics)
logCpu(nodeMetrics)

}
case state: CurrentClusterState ⇒ // ignore

}

def logHeap(nodeMetrics: NodeMetrics): Unit = nodeMetrics match {
case HeapMemory(address, timestamp, used, committed, max) ⇒

log.info("Used heap: {} MB", used.doubleValue / 1024 / 1024)
case _ ⇒ // no heap info

}

def logCpu(nodeMetrics: NodeMetrics): Unit = nodeMetrics match {
case Cpu(address, timestamp, Some(systemLoadAverage), cpuCombined, processors) ⇒
log.info("Load: {} ({} processors)", systemLoadAverage, processors)

case _ ⇒ // no cpu info
}

}

Custom Metrics Collector

You can plug-in your own metrics collector instead of akka.cluster.SigarMetricsCollector or
akka.cluster.JmxMetricsCollector. Look at those two implementations for inspiration. The im-

5.2. Cluster Usage 195

Akka Scala Documentation, Release 2.2.5

plementation class can be defined in the Configuration.

5.2.15 How to Test

Multi Node Testing is useful for testing cluster applications.

Set up your project according to the instructions in Multi Node Testing and Multi JVM Testing, i.e. add the
sbt-multi-jvm plugin and the dependency to akka-multi-node-testkit.

First, as described in Multi Node Testing, we need some scaffolding to configure the MultiNodeSpec. Define
the participating roles and their Configuration in an object extending MultiNodeConfig:

import akka.remote.testkit.MultiNodeConfig
import com.typesafe.config.ConfigFactory

object StatsSampleSpecConfig extends MultiNodeConfig {
// register the named roles (nodes) of the test
val first = role("first")
val second = role("second")
val third = role("thrid")

// this configuration will be used for all nodes
// note that no fixed host names and ports are used
commonConfig(ConfigFactory.parseString("""
akka.actor.provider = "akka.cluster.ClusterActorRefProvider"
akka.remote.log-remote-lifecycle-events = off
akka.cluster.roles = [compute]
don't use sigar for tests, native lib not in path
akka.cluster.metrics.collector-class = akka.cluster.JmxMetricsCollector
// router lookup config ...

"""))

}

Define one concrete test class for each role/node. These will be instantiated on the different nodes (JVMs). They
can be implemented differently, but often they are the same and extend an abstract test class, as illustrated here.

// need one concrete test class per node
class StatsSampleSpecMultiJvmNode1 extends StatsSampleSpec
class StatsSampleSpecMultiJvmNode2 extends StatsSampleSpec
class StatsSampleSpecMultiJvmNode3 extends StatsSampleSpec

Note the naming convention of these classes. The name of the classes must end with MultiJvmNode1,
MultiJvmNode2 and so on. It is possible to define another suffix to be used by the sbt-multi-jvm, but
the default should be fine in most cases.

Then the abstract MultiNodeSpec, which takes the MultiNodeConfig as constructor parameter.

import org.scalatest.BeforeAndAfterAll
import org.scalatest.WordSpec
import org.scalatest.matchers.MustMatchers
import akka.remote.testkit.MultiNodeSpec
import akka.testkit.ImplicitSender

abstract class StatsSampleSpec extends MultiNodeSpec(StatsSampleSpecConfig)
with WordSpec with MustMatchers with BeforeAndAfterAll
with ImplicitSender {

import StatsSampleSpecConfig._

override def initialParticipants = roles.size

override def beforeAll() = multiNodeSpecBeforeAll()

5.2. Cluster Usage 196

Akka Scala Documentation, Release 2.2.5

override def afterAll() = multiNodeSpecAfterAll()

Most of this can of course be extracted to a separate trait to avoid repeating this in all your tests.

Typically you begin your test by starting up the cluster and let the members join, and create some actors. That can
be done like this:

"illustrate how to startup cluster" in within(15 seconds) {
Cluster(system).subscribe(testActor, classOf[MemberUp])
expectMsgClass(classOf[CurrentClusterState])

val firstAddress = node(first).address
val secondAddress = node(second).address
val thirdAddress = node(third).address

Cluster(system) join firstAddress

system.actorOf(Props[StatsWorker], "statsWorker")
system.actorOf(Props[StatsService], "statsService")

receiveN(3).collect { case MemberUp(m) => m.address }.toSet must be (
Set(firstAddress, secondAddress, thirdAddress))

Cluster(system).unsubscribe(testActor)

testConductor.enter("all-up")
}

From the test you interact with the cluster using the Cluster extension, e.g. join.

Cluster(system) join firstAddress

Notice how the testActor from testkit is added as subscriber to cluster changes and then waiting for certain events,
such as in this case all members becoming ‘Up’.

The above code was running for all roles (JVMs). runOn is a convenient utility to declare that a certain block of
code should only run for a specific role.

"show usage of the statsService from one node" in within(15 seconds) {
runOn(second) {
assertServiceOk()

}

testConductor.enter("done-2")
}

def assertServiceOk(): Unit = {
val service = system.actorSelection(node(third) / "user" / "statsService")
// eventually the service should be ok,
// first attempts might fail because worker actors not started yet
awaitAssert {
service ! StatsJob("this is the text that will be analyzed")
expectMsgType[StatsResult](1.second).meanWordLength must be(

3.875 plusOrMinus 0.001)
}

}

Once again we take advantage of the facilities in testkit to verify expected behavior. Here using testActor as
sender (via ImplicitSender) and verifing the reply with expectMsgPF.

In the above code you can see node(third), which is useful facility to get the root actor reference of the actor
system for a specific role. This can also be used to grab the akka.actor.Address of that node.

5.2. Cluster Usage 197

Akka Scala Documentation, Release 2.2.5

val firstAddress = node(first).address
val secondAddress = node(second).address
val thirdAddress = node(third).address

5.2.16 JMX

Information and management of the cluster is available as JMX MBeans with the root name akka.Cluster.
The JMX information can be displayed with an ordinary JMX console such as JConsole or JVisualVM.

From JMX you can:

• see what members that are part of the cluster

• see status of this node

• join this node to another node in cluster

• mark any node in the cluster as down

• tell any node in the cluster to leave

Member nodes are identified by their address, in format akka.<protocol>://<actor-system-
name>@<hostname>:<port>.

5.2.17 Command Line Management

The cluster can be managed with the script bin/akka-cluster provided in the Akka distribution.

Run it without parameters to see instructions about how to use the script:

Usage: bin/akka-cluster <node-hostname> <jmx-port> <command> ...

Supported commands are:
join <node-url> - Sends request a JOIN node with the specified URL

leave <node-url> - Sends a request for node with URL to LEAVE the cluster
down <node-url> - Sends a request for marking node with URL as DOWN
member-status - Asks the member node for its current status

members - Asks the cluster for addresses of current members
unreachable - Asks the cluster for addresses of unreachable members

cluster-status - Asks the cluster for its current status (member ring,
unavailable nodes, meta data etc.)

leader - Asks the cluster who the current leader is
is-singleton - Checks if the cluster is a singleton cluster (single

node cluster)
is-available - Checks if the member node is available

Where the <node-url> should be on the format of
'akka.<protocol>://<actor-system-name>@<hostname>:<port>'

Examples: bin/akka-cluster localhost 9999 is-available
bin/akka-cluster localhost 9999 join akka.tcp://MySystem@darkstar:2552
bin/akka-cluster localhost 9999 cluster-status

To be able to use the script you must enable remote monitoring and management when starting the JVMs of the
cluster nodes, as described in Monitoring and Management Using JMX Technology

Example of system properties to enable remote monitoring and management:

java -Dcom.sun.management.jmxremote.port=9999 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

5.2. Cluster Usage 198

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Akka Scala Documentation, Release 2.2.5

5.2.18 Configuration

There are several configuration properties for the cluster. We refer to the following reference file for more infor-
mation:

######################################
Akka Cluster Reference Config File
######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

akka {

cluster {
Initial contact points of the cluster.
The nodes to join automatically at startup.
Comma separated full URIs defined by a string on the form of
"akka://system@hostname:port"
Leave as empty if the node is supposed to be joined manually.
seed-nodes = []

how long to wait for one of the seed nodes to reply to initial join request
seed-node-timeout = 5s

If a join request fails it will be retried after this period.
Disable join retry by specifying "off".
retry-unsuccessful-join-after = 10s

Should the 'leader' in the cluster be allowed to automatically mark
unreachable nodes as DOWN?
Using auto-down implies that two separate clusters will automatically be
formed in case of network partition.
auto-down = off

The roles of this member. List of strings, e.g. roles = ["A", "B"].
The roles are part of the membership information and can be used by
routers or other services to distribute work to certain member types,
e.g. front-end and back-end nodes.
roles = []

role {
Minimum required number of members of a certain role before the leader
changes member status of 'Joining' members to 'Up'. Typically used together
with 'Cluster.registerOnMemberUp' to defer some action, such as starting
actors, until the cluster has reached a certain size.
E.g. to require 2 nodes with role 'frontend' and 3 nodes with role 'backend':
frontend.min-nr-of-members = 2
backend.min-nr-of-members = 3
#<role-name>.min-nr-of-members = 1

}

Minimum required number of members before the leader changes member status
of 'Joining' members to 'Up'. Typically used together with
'Cluster.registerOnMemberUp' to defer some action, such as starting actors,
until the cluster has reached a certain size.
min-nr-of-members = 1

Enable/disable info level logging of cluster events
log-info = on

Enable or disable JMX MBeans for management of the cluster
jmx.enabled = on

5.2. Cluster Usage 199

Akka Scala Documentation, Release 2.2.5

how long should the node wait before starting the periodic tasks
maintenance tasks?
periodic-tasks-initial-delay = 1s

how often should the node send out gossip information?
gossip-interval = 1s

how often should the leader perform maintenance tasks?
leader-actions-interval = 1s

how often should the node move nodes, marked as unreachable by the failure
detector, out of the membership ring?
unreachable-nodes-reaper-interval = 1s

How often the current internal stats should be published.
A value of 0s can be used to always publish the stats, when it happens.
Disable with "off".
publish-stats-interval = off

The id of the dispatcher to use for cluster actors. If not specified
default dispatcher is used.
If specified you need to define the settings of the actual dispatcher.
use-dispatcher = ""

Gossip to random node with newer or older state information, if any with
this probability. Otherwise Gossip to any random live node.
Probability value is between 0.0 and 1.0. 0.0 means never, 1.0 means always.
gossip-different-view-probability = 0.8

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used by the cluster subsystem to detect unreachable
members.
failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 8.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 1000

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.

5.2. Cluster Usage 200

Akka Scala Documentation, Release 2.2.5

This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 3 s

Number of member nodes that each member will send heartbeat messages to,
i.e. each node will be monitored by this number of other nodes.
monitored-by-nr-of-members = 5

When a node stops sending heartbeats to another node it will end that
with this number of EndHeartbeat messages, which will remove the
monitoring from the failure detector.
nr-of-end-heartbeats = 8

When no expected heartbeat message has been received an explicit
heartbeat request is sent to the node that should emit heartbeats.
heartbeat-request {

Grace period until an explicit heartbeat request is sent
grace-period = 10 s

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 3 s

Cleanup of obsolete heartbeat requests
time-to-live = 60 s

}
}

metrics {
Enable or disable metrics collector for load-balancing nodes.
enabled = on

FQCN of the metrics collector implementation.
It must implement akka.cluster.MetricsCollector and
have public constructor with akka.actor.ActorSystem parameter.
The default SigarMetricsCollector uses JMX and Hyperic SIGAR, if SIGAR
is on the classpath, otherwise only JMX.
collector-class = "akka.cluster.SigarMetricsCollector"

How often metrics are sampled on a node.
Shorter interval will collect the metrics more often.
collect-interval = 3s

How often a node publishes metrics information.
gossip-interval = 3s

How quickly the exponential weighting of past data is decayed compared to
new data. Set lower to increase the bias toward newer values.
The relevance of each data sample is halved for every passing half-life
duration, i.e. after 4 times the half-life, a data sample’s relevance is
reduced to 6% of its original relevance. The initial relevance of a data
sample is given by 1 - 0.5 ^ (collect-interval / half-life).
See http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
moving-average-half-life = 12s

}

If the tick-duration of the default scheduler is longer than the
tick-duration configured here a dedicated scheduler will be used for
periodic tasks of the cluster, otherwise the default scheduler is used.
See akka.scheduler settings for more details.
scheduler {

5.2. Cluster Usage 201

Akka Scala Documentation, Release 2.2.5

tick-duration = 33ms
ticks-per-wheel = 512

}

}

Default configuration for routers
actor.deployment.default {
MetricsSelector to use
- available: "mix", "heap", "cpu", "load"
- or: Fully qualified class name of the MetricsSelector class.
The class must extend akka.cluster.routing.MetricsSelector
and have a public constructor with com.typesafe.config.Config
parameter.
- default is "mix"
metrics-selector = mix

}
actor.deployment.default.cluster {
enable cluster aware router that deploys to nodes in the cluster
enabled = off

Maximum number of routees that will be deployed on each cluster
member node.
Note that nr-of-instances defines total number of routees, but
number of routees per node will not be exceeded, i.e. if you
define nr-of-instances = 50 and max-nr-of-instances-per-node = 2
it will deploy 2 routees per new member in the cluster, up to
25 members.
max-nr-of-instances-per-node = 1

Defines if routees are allowed to be located on the same node as
the head router actor, or only on remote nodes.
Useful for master-worker scenario where all routees are remote.
allow-local-routees = on

Actor path of the routees to lookup with actorFor on the member
nodes in the cluster. E.g. "/user/myservice". If this isn't defined
the routees will be deployed instead of looked up.
max-nr-of-instances-per-node should not be configured (default value is 1)
when routees-path is defined.
routees-path = ""

Use members with specified role, or all members if undefined or empty.
use-role = ""

}

Protobuf serializer for cluster messages
actor {
serializers {

akka-cluster = "akka.cluster.protobuf.ClusterMessageSerializer"
}

serialization-bindings {
"akka.cluster.ClusterMessage" = akka-cluster

}
}

}

5.2. Cluster Usage 202

Akka Scala Documentation, Release 2.2.5

Cluster Info Logging

You can silence the logging of cluster events at info level with configuration property:

akka.cluster.log-info = off

Cluster Dispatcher

Under the hood the cluster extension is implemented with actors and it can be necessary to create a bulkhead
for those actors to avoid disturbance from other actors. Especially the heartbeating actors that is used for failure
detection can generate false positives if they are not given a chance to run at regular intervals. For this purpose
you can define a separate dispatcher to be used for the cluster actors:

akka.cluster.use-dispatcher = cluster-dispatcher

cluster-dispatcher {
type = "Dispatcher"
executor = "fork-join-executor"
fork-join-executor {
parallelism-min = 2
parallelism-max = 4

}
}

5.3 Remoting

For an introduction of remoting capabilities of Akka please see Location Transparency.

5.3.1 Preparing your ActorSystem for Remoting

The Akka remoting is a separate jar file. Make sure that you have the following dependency in your project:

"com.typesafe.akka" %% "akka-remote" % "2.2.5"

To enable remote capabilities in your Akka project you should, at a minimum, add the following changes to your
application.conf file:

akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {
enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "127.0.0.1"
port = 2552

}
}

}

As you can see in the example above there are four things you need to add to get started:

• Change provider from akka.actor.LocalActorRefProvider to
akka.remote.RemoteActorRefProvider

• Add host name - the machine you want to run the actor system on; this host name is exactly what is passed
to remote systems in order to identify this system and consequently used for connecting back to this system
if need be, hence set it to a reachable IP address or resolvable name in case you want to communicate across
the network.

5.3. Remoting 203

Akka Scala Documentation, Release 2.2.5

• Add port number - the port the actor system should listen on, set to 0 to have it chosen automatically

Note: The port number needs to be unique for each actor system on the same machine even if the actor sys-
tems have different names. This is because each actor system has its own networking subsystem listening for
connections and handling messages as not to interfere with other actor systems.

The example above only illustrates the bare minimum of properties you have to add to enable remoting. All
settings are described in Remote Configuration.

5.3.2 Types of Remote Interaction

Akka has two ways of using remoting:

• Lookup : used to look up an actor on a remote node with actorSelection(path)

• Creation : used to create an actor on a remote node with actorOf(Props(...), actorName)

In the next sections the two alternatives are described in detail.

5.3.3 Looking up Remote Actors

actorSelection(path) will obtain an ActorSelection to an Actor on a remote node, e.g.:

val selection =
context.actorSelection("akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName")

As you can see from the example above the following pattern is used to find an actor on a remote node:

akka.<protocol>://<actor system>@<hostname>:<port>/<actor path>

Once you obtained a selection to the actor you can interact with it they same way you would with a local actor,
e.g.:

selection ! "Pretty awesome feature"

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
sender reference of the reply from the actor. There is a built-in Identify message that all Actors will un-
derstand and automatically reply to with a ActorIdentity message containing the ActorRef. This can also
be done with the resolveOne method of the ActorSelection, which returns a Future of the matching
ActorRef.

Note: For more details on how actor addresses and paths are formed and used, please refer to Actor References,
Paths and Addresses.

5.3.4 Creating Actors Remotely

If you want to use the creation functionality in Akka remoting you have to further amend the
application.conf file in the following way (only showing deployment section):

akka {
actor {
deployment {

/sampleActor {
remote = "akka.tcp://sampleActorSystem@127.0.0.1:2553"

}
}

}
}

5.3. Remoting 204

Akka Scala Documentation, Release 2.2.5

The configuration above instructs Akka to react when an actor with path /sampleActor is created, i.e. using
system.actorOf(Props(...), "sampleActor"). This specific actor will not be directly instantiated,
but instead the remote daemon of the remote system will be asked to create the actor, which in this sample
corresponds to sampleActorSystem@127.0.0.1:2553.

Once you have configured the properties above you would do the following in code:

val actor = system.actorOf(Props[SampleActor], "sampleActor")
actor ! "Pretty slick"

The actor class SampleActor has to be available to the runtimes using it, i.e. the classloader of the actor systems
has to have a JAR containing the class.

Note: In order to ensure serializability of Props when passing constructor arguments to the actor being created,
do not make the factory an inner class: this will inherently capture a reference to its enclosing object, which in
most cases is not serializable. It is best to create a factory method in the companion object of the actor’s class.

Serializability of all Props can be tested by setting the configuration item
akka.actor.serialize-creators=on. Only Props whose deploy has LocalScope are exempt
from this check.

Note: You can use asterisks as wildcard matches for the actor paths, so you could specify: /*/sampleActor
and that would match all sampleActor on that level in the hierarchy. You can also use wildcard in the last
position to match all actors at a certain level: /someParent/*. Non-wildcard matches always have higher
priority to match than wildcards, so: /foo/bar is considered more specific than /foo/* and only the highest
priority match is used. Please note that it cannot be used to partially match section, like this: /foo*/bar,
/f*o/bar etc.

Programmatic Remote Deployment

To allow dynamically deployed systems, it is also possible to include deployment configuration in the Props
which are used to create an actor: this information is the equivalent of a deployment section from the configuration
file, and if both are given, the external configuration takes precedence.

With these imports:

import akka.actor.{ Props, Deploy, Address, AddressFromURIString }
import akka.remote.RemoteScope

and a remote address like this:

val one = AddressFromURIString("akka.tcp://sys@host:1234")
val two = Address("akka.tcp", "sys", "host", 1234) // this gives the same

you can advise the system to create a child on that remote node like so:

val ref = system.actorOf(Props[SampleActor].
withDeploy(Deploy(scope = RemoteScope(address))))

5.3.5 Watching Remote Actors

Watching a remote actor is not different than watching a local actor, as described in Lifecycle Monitoring aka
DeathWatch.

Warning: Caveat: Watching an ActorRef acquired with actorFor does not trigger Terminated for
lost connections. actorFor is deprecated in favor of actorSelection. Acquire the ActorRef to watch
with Identify and ActorIdentity as described in Identifying Actors via Actor Selection.

5.3. Remoting 205

Akka Scala Documentation, Release 2.2.5

Failure Detector

Under the hood remote death watch uses heartbeat messages and a failure detector to generate Terminated
message from network failures and JVM crashes, in addition to graceful termination of watched actor.

The heartbeat arrival times is interpreted by an implementation of The Phi Accrual Failure Detector.

The suspicion level of failure is given by a value called phi. The basic idea of the phi failure detector is to express
the value of phi on a scale that is dynamically adjusted to reflect current network conditions.

The value of phi is calculated as:

phi = -log10(1 - F(timeSinceLastHeartbeat))

where F is the cumulative distribution function of a normal distribution with mean and standard deviation estimated
from historical heartbeat inter-arrival times.

In the Remote Configuration you can adjust the akka.remote.watch-failure-detector.threshold
to define when a phi value is considered to be a failure.

A low threshold is prone to generate many false positives but ensures a quick detection in the event of a real
crash. Conversely, a high threshold generates fewer mistakes but needs more time to detect actual crashes.
The default threshold is 10 and is appropriate for most situations. However in cloud environments, such as
Amazon EC2, the value could be increased to 12 in order to account for network issues that sometimes occur on
such platforms.

The following chart illustrates how phi increase with increasing time since the previous heartbeat.

Phi is calculated from the mean and standard deviation of historical inter arrival times. The previous chart is an
example for standard deviation of 200 ms. If the heartbeats arrive with less deviation the curve becomes steeper,
i.e. it is possible to determine failure more quickly. The curve looks like this for a standard deviation of 100 ms.

5.3. Remoting 206

http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Akka Scala Documentation, Release 2.2.5

To be able to survive sudden abnormalities, such as garbage collection pauses
and transient network failures the failure detector is configured with a margin,
akka.remote.watch-failure-detector.acceptable-heartbeat-pause. You may want
to adjust the Remote Configuration of this depending on you environment. This is how the curve looks like for
acceptable-heartbeat-pause configured to 3 seconds.

5.3. Remoting 207

Akka Scala Documentation, Release 2.2.5

5.3.6 Serialization

When using remoting for actors you must ensure that the props and messages used for those actors are serial-
izable. Failing to do so will cause the system to behave in an unintended way.

For more information please see Serialization

5.3.7 Routers with Remote Destinations

It is absolutely feasible to combine remoting with Routing. This is also done via configuration:

akka {
actor {
deployment {

/serviceA/aggregation {
router = "round-robin"
nr-of-instances = 10
target {
nodes = ["akka.tcp://app@10.0.0.2:2552", "akka.tcp://app@10.0.0.3:2552"]

}
}

}
}

}

This configuration setting will clone the actor “aggregation” 10 times and deploy it evenly distributed across the
two given target nodes.

5.3.8 Description of the Remoting Sample

There is a more extensive remote example that comes with the Akka distribution. Please have a look here for more
information: Remote Sample This sample demonstrates both, remote deployment and look-up of remote actors.
First, let us have a look at the common setup for both scenarios (this is common.conf):

akka {

actor {
provider = "akka.remote.RemoteActorRefProvider"

}

remote {
netty.tcp {

hostname = "127.0.0.1"
}

}

Uncomment the following four lines to employ the 'secure cookie handshake'
This requires the client to have the known secure-cookie and properly
transmit it to the server upon connection. Because both the client and server
programs use this common.conf file, they will both have the cookie
#remote {
secure-cookie = "0009090D040C030E03070D0509020F050B080400"
require-cookie = on
#}

}

This enables the remoting by installing the RemoteActorRefProvider and chooses the default remote trans-
port. All other options will be set specifically for each show case.

Note: Be sure to replace the default IP 127.0.0.1 with the real address the system is reachable by if you deploy
onto multiple machines!

5.3. Remoting 208

http://github.com/akka/akka/tree/v2.2.5/akka-samples/akka-sample-remote

Akka Scala Documentation, Release 2.2.5

Remote Lookup

In order to look up a remote actor, that one must be created first. For this purpose, we configure an actor system
to listen on port 2552 (this is a snippet from application.conf):

calculator {
include "common"

akka {
LISTEN on tcp port 2552
remote.netty.tcp.port = 2552

}
}

Then the actor must be created. For all code which follows, assume these imports:

class LookupApplication extends Bootable {
val system =
ActorSystem("LookupApplication", ConfigFactory.load.getConfig("remotelookup"))

val remotePath =
"akka.tcp://CalculatorApplication@127.0.0.1:2552/user/simpleCalculator"

val actor = system.actorOf(Props(classOf[LookupActor], remotePath), "lookupActor")

def doSomething(op: MathOp): Unit =
actor ! op

def startup() {
}

def shutdown() {
system.shutdown()

}
}

class LookupActor(path: String) extends Actor {

context.setReceiveTimeout(3.seconds)
sendIdentifyRequest()

def sendIdentifyRequest(): Unit =
context.actorSelection(path) ! Identify(path)

def receive = {
case ActorIdentity(`path`, Some(actor)) ⇒

context.setReceiveTimeout(Duration.Undefined)
context.become(active(actor))

case ActorIdentity(`path`, None) ⇒ println(s"Remote actor not availible: $path")
case ReceiveTimeout ⇒ sendIdentifyRequest()
case _ ⇒ println("Not ready yet")

}

def active(actor: ActorRef): Actor.Receive = {
case op: MathOp ⇒ actor ! op
case result: MathResult ⇒ result match {

case AddResult(n1, n2, r) ⇒
printf("Add result: %d + %d = %d\n", n1, n2, r)

case SubtractResult(n1, n2, r) ⇒
printf("Sub result: %d - %d = %d\n", n1, n2, r)

}
}

}

5.3. Remoting 209

Akka Scala Documentation, Release 2.2.5

object LookupApp {
def main(args: Array[String]) {
val app = new LookupApplication
println("Started Lookup Application")
while (true) {

if (Random.nextInt(100) % 2 == 0)
app.doSomething(Add(Random.nextInt(100), Random.nextInt(100)))

else
app.doSomething(Subtract(Random.nextInt(100), Random.nextInt(100)))

Thread.sleep(200)
}

}
}

The actor doing the work will be this one:

class SimpleCalculatorActor extends Actor {
def receive = {
case Add(n1, n2) ⇒

println("Calculating %d + %d".format(n1, n2))
sender ! AddResult(n1, n2, n1 + n2)

case Subtract(n1, n2) ⇒
println("Calculating %d - %d".format(n1, n2))
sender ! SubtractResult(n1, n2, n1 - n2)

}
}

and we start it within an actor system using the above configuration

val system = ActorSystem("CalculatorApplication",
ConfigFactory.load.getConfig("calculator"))

val actor = system.actorOf(Props[SimpleCalculatorActor], "simpleCalculator")

With the service actor up and running, we may look it up from another actor system, which will be configured to
use port 2553 (this is a snippet from application.conf).

remotelookup {
include "common"

akka {
remote.netty.tcp.port = 2553

}
}

The actor which will query the calculator is a quite simple one for demonstration purposes

class LookupActor(path: String) extends Actor {

context.setReceiveTimeout(3.seconds)
sendIdentifyRequest()

def sendIdentifyRequest(): Unit =
context.actorSelection(path) ! Identify(path)

def receive = {
case ActorIdentity(`path`, Some(actor)) ⇒

context.setReceiveTimeout(Duration.Undefined)
context.become(active(actor))

case ActorIdentity(`path`, None) ⇒ println(s"Remote actor not availible: $path")
case ReceiveTimeout ⇒ sendIdentifyRequest()
case _ ⇒ println("Not ready yet")

}

5.3. Remoting 210

Akka Scala Documentation, Release 2.2.5

def active(actor: ActorRef): Actor.Receive = {
case op: MathOp ⇒ actor ! op
case result: MathResult ⇒ result match {

case AddResult(n1, n2, r) ⇒
printf("Add result: %d + %d = %d\n", n1, n2, r)

case SubtractResult(n1, n2, r) ⇒
printf("Sub result: %d - %d = %d\n", n1, n2, r)

}
}

}

and it is created from an actor system using the aforementioned client’s config.

val system =
ActorSystem("LookupApplication", ConfigFactory.load.getConfig("remotelookup"))

val remotePath =
"akka.tcp://CalculatorApplication@127.0.0.1:2552/user/simpleCalculator"

val actor = system.actorOf(Props(classOf[LookupActor], remotePath), "lookupActor")

def doSomething(op: MathOp): Unit =
actor ! op

Requests which come in via doSomething will be sent to the client actor, which will use the actor reference
that was identified earlier. Observe how the actor system name using in actorSelection matches the remote
system’s name, as do IP and port number. Top-level actors are always created below the "/user" guardian,
which supervises them.

Remote Deployment

Creating remote actors instead of looking them up is not visible in the source code, only in the configuration file.
This section is used in this scenario (this is a snippet from application.conf):

remotecreation {
include "common"

akka {
actor {

deployment {
/advancedCalculator {
remote = "akka.tcp://CalculatorApplication@127.0.0.1:2552"

}
}

}

remote.netty.tcp.port = 2554
}

}

For all code which follows, assume these imports:

class LookupApplication extends Bootable {
val system =
ActorSystem("LookupApplication", ConfigFactory.load.getConfig("remotelookup"))

val remotePath =
"akka.tcp://CalculatorApplication@127.0.0.1:2552/user/simpleCalculator"

val actor = system.actorOf(Props(classOf[LookupActor], remotePath), "lookupActor")

def doSomething(op: MathOp): Unit =
actor ! op

def startup() {
}

5.3. Remoting 211

Akka Scala Documentation, Release 2.2.5

def shutdown() {
system.shutdown()

}
}

class LookupActor(path: String) extends Actor {

context.setReceiveTimeout(3.seconds)
sendIdentifyRequest()

def sendIdentifyRequest(): Unit =
context.actorSelection(path) ! Identify(path)

def receive = {
case ActorIdentity(`path`, Some(actor)) ⇒

context.setReceiveTimeout(Duration.Undefined)
context.become(active(actor))

case ActorIdentity(`path`, None) ⇒ println(s"Remote actor not availible: $path")
case ReceiveTimeout ⇒ sendIdentifyRequest()
case _ ⇒ println("Not ready yet")

}

def active(actor: ActorRef): Actor.Receive = {
case op: MathOp ⇒ actor ! op
case result: MathResult ⇒ result match {

case AddResult(n1, n2, r) ⇒
printf("Add result: %d + %d = %d\n", n1, n2, r)

case SubtractResult(n1, n2, r) ⇒
printf("Sub result: %d - %d = %d\n", n1, n2, r)

}
}

}

object LookupApp {
def main(args: Array[String]) {
val app = new LookupApplication
println("Started Lookup Application")
while (true) {

if (Random.nextInt(100) % 2 == 0)
app.doSomething(Add(Random.nextInt(100), Random.nextInt(100)))

else
app.doSomething(Subtract(Random.nextInt(100), Random.nextInt(100)))

Thread.sleep(200)
}

}
}

The client actor looks like in the previous example

class CreationActor(remoteActor: ActorRef) extends Actor {
def receive = {
case op: MathOp ⇒ remoteActor ! op
case result: MathResult ⇒ result match {

case MultiplicationResult(n1, n2, r) ⇒
printf("Mul result: %d * %d = %d\n", n1, n2, r)

case DivisionResult(n1, n2, r) ⇒
printf("Div result: %.0f / %d = %.2f\n", n1, n2, r)

}
}

}

but the setup uses only actorOf:

5.3. Remoting 212

Akka Scala Documentation, Release 2.2.5

val system =
ActorSystem("RemoteCreation", ConfigFactory.load.getConfig("remotecreation"))

val remoteActor = system.actorOf(Props[AdvancedCalculatorActor],
name = "advancedCalculator")

val localActor = system.actorOf(Props(classOf[CreationActor], remoteActor),
name = "creationActor")

def doSomething(op: MathOp): Unit =
localActor ! op

Observe how the name of the server actor matches the deployment given in the configuration file, which will
transparently delegate the actor creation to the remote node.

Pluggable transport support

Akka can be configured to use various transports to communicate with remote systems. The core component of this
feature is the akka.remote.Transport SPI. Transport implementations must extend this trait. Transports
can be loaded by setting the akka.remote.enabled-transports configuration key to point to one or
more configuration sections containing driver descriptions.

An example of setting up the default Netty based SSL driver as default:

akka {
remote {
enabled-transports = [akka.remote.netty.ssl]

netty.ssl.security {
key-store = "mykeystore"
trust-store = "mytruststore"
key-store-password = "changeme"
key-password = "changeme"
trust-store-password = "changeme"
protocol = "TLSv1"
random-number-generator = "AES128CounterSecureRNG"
enabled-algorithms = [TLS_RSA_WITH_AES_128_CBC_SHA]

}
}

}

An example of setting up a custom transport implementation:

akka {
remote {
applied-transports = ["akka.remote.mytransport"]

mytransport {
The transport-class configuration entry is required, and
it must contain the fully qualified name of the transport
implementation
transport-class = "my.package.MyTransport"

It is possible to decorate Transports with additional services.
Adapters should be registered in the "adapters" sections to
be able to apply them to transports
applied-adapters = []

Driver specific configuration options has to be in the same
section:
some-config = foo
another-config = bar

}

5.3. Remoting 213

Akka Scala Documentation, Release 2.2.5

Remote Events

It is possible to listen to events that occur in Akka Remote, and to subscribe/unsubscribe to these events you
simply register as listener to the below described types in on the ActorSystem.eventStream.

Note: To subscribe to any remote event, subscribe to RemotingLifecycleEvent. To subscribe to events
related only to the lifecycle of associations, subscribe to akka.remote.AssociationEvent.

Note: The use of term “Association” instead of “Connection” reflects that the remoting subsystem may use con-
nectionless transports, but an association similar to transport layer connections is maintained between endpoints
by the Akka protocol.

By default an event listener is registered which logs all of the events described below. This default was chosen to
help setting up a system, but it is quite common to switch this logging off once that phase of the project is finished.

Note: In order to switch off the logging, set akka.remote.log-remote-lifecycle-events = off
in your application.conf.

To be notified when an association is over (“disconnected”) listen to DisassociatedEvent which holds the
direction of the association (inbound or outbound) and the addresses of the involved parties.

To be notified when an association is successfully established (“connected”) listen to AssociatedEventwhich
holds the direction of the association (inbound or outbound) and the addresses of the involved parties.

To intercept errors directly related to associations, listen to AssociationErrorEvent which holds the direc-
tion of the association (inbound or outbound), the addresses of the involved parties and the Throwable cause.

To be notified when the remoting subsystem is ready to accept associations, listen to RemotingListenEvent
which contains the addresses the remoting listens on.

To be notified when the remoting subsystem has been shut down, listen to RemotingShutdownEvent.

To intercept generic remoting related errors, listen to RemotingErrorEvent which holds the Throwable
cause.

5.3.9 Remote Security

Akka provides a couple of ways to enhance security between remote nodes (client/server):

• Untrusted Mode

• Security Cookie Handshake

Untrusted Mode

As soon as an actor system can connect to another remotely, it may in principle send any possible message to any
actor contained within that remote system. One example may be sending a PoisonPill to the system guardian,
shutting that system down. This is not always desired, and it can be disabled with the following setting:

akka.remote.untrusted-mode = on

This disallows sending of system messages (actor life-cycle commands, DeathWatch, etc.) and any message
extending PossiblyHarmful to the system on which this flag is set. Should a client send them nonetheless
they are dropped and logged (at DEBUG level in order to reduce the possibilities for a denial of service attack).
PossiblyHarmful covers the predefined messages like PoisonPill and Kill, but it can also be added as
a marker trait to user-defined messages.

In summary, the following operations are ignored by a system configured in untrusted mode when incoming via
the remoting layer:

• remote deployment (which also means no remote supervision)

5.3. Remoting 214

Akka Scala Documentation, Release 2.2.5

• remote DeathWatch

• system.stop(), PoisonPill, Kill

• sending any message which extends from the PossiblyHarmful marker interface, which includes
Terminated

Note: Enabling the untrusted mode does not remove the capability of the client to freely choose the target of
its message sends, which means that messages not prohibited by the above rules can be sent to any actor in the
remote system. It is good practice for a client-facing system to only contain a well-defined set of entry point actors,
which then forward requests (possibly after performing validation) to another actor system containing the actual
worker actors. If messaging between these two server-side systems is done using local ActorRef (they can be
exchanged safely between actor systems within the same JVM), you can restrict the messages on this interface by
marking them PossiblyHarmful so that a client cannot forge them.

Secure Cookie Handshake

Akka remoting also allows you to specify a secure cookie that will be exchanged and ensured to be identical in
the connection handshake between the client and the server. If they are not identical then the client will be refused
to connect to the server.

The secure cookie can be any kind of string. But the recommended approach is to generate a cryptographically se-
cure cookie using this script $AKKA_HOME/scripts/generate_config_with_secure_cookie.sh
or from code using the akka.util.Crypt.generateSecureCookie() utility method.

You have to ensure that both the connecting client and the server have the same secure cookie as well as the
require-cookie option turned on.

Here is an example config:

akka.remote {
secure-cookie = "090A030E0F0A05010900000A0C0E0C0B03050D05"
require-cookie = on

}

SSL

SSL can be used as the remote transport by adding akka.remote.netty.ssl to the enabled-transport
configuration section. See a description of the settings in the Remote Configuration section.

The SSL support is implemented with Java Secure Socket Extension, please consult the offical Java Secure Socket
Extension documentation and related resources for troubleshooting.

Note: When using SHA1PRNG on Linux it’s recommended specify
-Djava.security.egd=file:/dev/./urandom as argument to the JVM to prevent blocking. It
is NOT as secure because it reuses the seed. Use ‘/dev/./urandom’, not ‘/dev/urandom’ as that doesn’t work
according to Bug ID: 6202721.

5.3.10 Remote Configuration

There are lots of configuration properties that are related to remoting in Akka. We refer to the following reference
file for more information:

#####################################
Akka Remote Reference Config File
#####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

5.3. Remoting 215

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://bugs.sun.com/view_bug.do?bug_id=6202721

Akka Scala Documentation, Release 2.2.5

comments about akka.actor settings left out where they are already in akka-
actor.jar, because otherwise they would be repeated in config rendering.

akka {

actor {

serializers {
akka-containers = "akka.remote.serialization.MessageContainerSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
daemon-create = "akka.remote.serialization.DaemonMsgCreateSerializer"

}

serialization-bindings {
Since com.google.protobuf.Message does not extend Serializable but
GeneratedMessage does, need to use the more specific one here in order
to avoid ambiguity
"akka.actor.SelectionPath" = akka-containers
"com.google.protobuf.GeneratedMessage" = proto
"akka.remote.DaemonMsgCreate" = daemon-create

}

deployment {

default {

if this is set to a valid remote address, the named actor will be
deployed at that node e.g. "akka://sys@host:port"
remote = ""

target {

A list of hostnames and ports for instantiating the children of a
router
The format should be on "akka://sys@host:port", where:
- sys is the remote actor system name
- hostname can be either hostname or IP address the remote actor
should connect to
- port should be the port for the remote server on the other node
The number of actor instances to be spawned is still taken from the
nr-of-instances setting as for local routers; the instances will be
distributed round-robin among the given nodes.
nodes = []

}
}

}
}

remote {

General settings

Timeout after which the startup of the remoting subsystem is considered
to be failed. Increase this value if your transport drivers (see the
enabled-transports section) need longer time to be loaded.
startup-timeout = 10 s

Timout after which the graceful shutdown of the remoting subsystem is
considered to be failed. After the timeout the remoting system is
forcefully shut down. Increase this value if your transport drivers

5.3. Remoting 216

Akka Scala Documentation, Release 2.2.5

(see the enabled-transports section) need longer time to stop properly.
shutdown-timeout = 10 s

Before shutting down the drivers, the remoting subsystem attempts to flush
all pending writes. This setting controls the maximum time the remoting is
willing to wait before moving on to shut down the drivers.
flush-wait-on-shutdown = 2 s

Reuse inbound connections for outbound messages
use-passive-connections = on

Controls the backoff interval after a refused write is reattempted.
(Transports may refuse writes if their internal buffer is full)
backoff-interval = 0.01 s

Acknowledgment timeout of management commands sent to the transport stack.
command-ack-timeout = 30 s

If set to a nonempty string remoting will use the given dispatcher for
its internal actors otherwise the default dispatcher is used. Please note
that since remoting can load arbitrary 3rd party drivers (see
"enabled-transport" and "adapters" entries) it is not guaranteed that
every module will respect this setting.
use-dispatcher = ""

Security settings

Enable untrusted mode for full security of server managed actors, prevents
system messages to be send by clients, e.g. messages like 'Create',
'Suspend', 'Resume', 'Terminate', 'Supervise', 'Link' etc.
untrusted-mode = off

Should the remote server require that its peers share the same
secure-cookie (defined in the 'remote' section)? Secure cookies are passed
between during the initial handshake. Connections are refused if the initial
message contains a mismatching cookie or the cookie is missing.
require-cookie = off

Generate your own with the script availbale in
'$AKKA_HOME/scripts/generate_config_with_secure_cookie.sh' or using
'akka.util.Crypt.generateSecureCookie'
secure-cookie = ""

Logging

If this is "on", Akka will log all inbound messages at DEBUG level,
if off then they are not logged
log-received-messages = off

If this is "on", Akka will log all outbound messages at DEBUG level,
if off then they are not logged
log-sent-messages = off

Sets the log granularity level at which Akka logs remoting events. This setting
can take the values OFF, ERROR, WARNING, INFO, DEBUG, or ON. For compatibility
reasons the setting "on" will default to "debug" level. Please note that the effective
logging level is still determined by the global logging level of the actor system:
for example debug level remoting events will be only logged if the system
is running with debug level logging.
Failures to deserialize received messages also fall under this flag.
log-remote-lifecycle-events = on

Logging of message types with payload size in bytes larger than

5.3. Remoting 217

Akka Scala Documentation, Release 2.2.5

this value. Maximum detected size per message type is logged once,
with an increase threshold of 10%.
By default this feature is turned off. Activate it by setting the property to
a value in bytes, such as 1000b. Note that for all messages larger than this
limit there will be extra performance and scalability cost.
log-frame-size-exceeding = off

Failure detection and recovery

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used by the remoting subsystem to detect failed
connections.
transport-failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 7.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 100

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 3 s

}

Settings for the Phi accrual failure detector (http://ddg.jaist.ac.jp/pub/HDY+04.pdf
[Hayashibara et al]) used for remote death watch.
watch-failure-detector {

FQCN of the failure detector implementation.
It must implement akka.remote.FailureDetector and have
a public constructor with a com.typesafe.config.Config and
akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"

How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s

Defines the failure detector threshold.
A low threshold is prone to generate many wrong suspicions but ensures

5.3. Remoting 218

Akka Scala Documentation, Release 2.2.5

a quick detection in the event of a real crash. Conversely, a high
threshold generates fewer mistakes but needs more time to detect
actual crashes.
threshold = 10.0

Number of the samples of inter-heartbeat arrival times to adaptively
calculate the failure timeout for connections.
max-sample-size = 200

Minimum standard deviation to use for the normal distribution in
AccrualFailureDetector. Too low standard deviation might result in
too much sensitivity for sudden, but normal, deviations in heartbeat
inter arrival times.
min-std-deviation = 100 ms

Number of potentially lost/delayed heartbeats that will be
accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional,
pauses in heartbeat arrivals, due to for example garbage collect or
network drop.
acceptable-heartbeat-pause = 4 s

How often to check for nodes marked as unreachable by the failure
detector
unreachable-nodes-reaper-interval = 1s

After the heartbeat request has been sent the first failure detection
will start after this period, even though no heartbeat mesage has
been received.
expected-response-after = 3 s

}

After failed to establish an outbound connection, the remoting will mark the
address as failed. This configuration option controls how much time should
be elapsed before reattempting a new connection. While the address is
gated, all messages sent to the address are delivered to dead-letters.
If this setting is 0, the remoting will always immediately reattempt
to establish a failed outbound connection and will buffer writes until
it succeeds.
retry-gate-closed-for = 0 s

If the retry gate function is disabled (see retry-gate-closed-for) the
remoting subsystem will always attempt to reestablish failed outbound
connections. The settings below together control the maximum number of
reattempts in a given time window. The number of reattempts during
a window of "retry-window" will be maximum "maximum-retries-in-window".
retry-window = 60 s
maximum-retries-in-window = 3

The length of time to gate an address whose name lookup has failed
or has explicitly signalled that it will not accept connections
(remote system is shutting down or the requesting system is quarantined).
No connection attempts will be made to an address while it remains
gated. Any messages sent to a gated address will be directed to dead
letters instead. Name lookups are costly, and the time to recovery
is typically large, therefore this setting should be a value in the
order of seconds or minutes.
gate-invalid-addresses-for = 60 s

This settings controls how long a system will be quarantined after
catastrophic communication failures that result in the loss of system

5.3. Remoting 219

Akka Scala Documentation, Release 2.2.5

messages. Quarantining prevents communication with the remote system
of a given UID. This function can be disabled by setting the value
to "off".
quarantine-systems-for = 60s

This setting defines the maximum number of unacknowledged system messages
allowed for a remote system. If this limit is reached the remote system is
declared to be dead and its UID marked as tainted.
system-message-buffer-size = 1000

This setting defines the maximum idle time after an individual
acknowledgement for system messages is sent. System message delivery
is guaranteed by explicit acknowledgement messages. These acks are
piggybacked on ordinary traffic messages. If no traffic is detected
during the time period configured here, the remoting will send out
an individual ack.
system-message-ack-piggyback-timeout = 1 s

This setting defines the time after messages that have not been
explicitly acknowledged or negatively acknowledged are resent.
Messages that were negatively acknowledged are always immediately
resent.
resend-interval = 1 s

Transports and adapters

List of the transport drivers that will be loaded by the remoting.
A list of fully qualified config paths must be provided where
the given configuration path contains a transport-class key
pointing to an implementation class of the Transport interface.
If multiple transports are provided, the address of the first
one will be used as a default address.
enabled-transports = ["akka.remote.netty.tcp"]

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters setting in the configuration of a
transport. The available adapters should be configured in this
section by providing a name, and the fully qualified name of
their corresponding implementation. The class given here
must implement akka.akka.remote.transport.TransportAdapterProvider
and have public constructor without parameters.
adapters {

gremlin = "akka.remote.transport.FailureInjectorProvider"
trttl = "akka.remote.transport.ThrottlerProvider"

}

Default configuration for the Netty based transport drivers

netty.tcp {
The class given here must implement the akka.remote.transport.Transport
interface and offer a public constructor which takes two arguments:
1) akka.actor.ExtendedActorSystem
2) com.typesafe.config.Config
transport-class = "akka.remote.transport.netty.NettyTransport"

Transport drivers can be augmented with adapters by adding their
name to the applied-adapters list. The last adapter in the
list is the adapter immediately above the driver, while
the first one is the top of the stack below the standard
Akka protocol
applied-adapters = []

transport-protocol = tcp

5.3. Remoting 220

Akka Scala Documentation, Release 2.2.5

The default remote server port clients should connect to.
Default is 2552 (AKKA), use 0 if you want a random available port
This port needs to be unique for each actor system on the same machine.
port = 2552

The hostname or ip to bind the remoting to,
InetAddress.getLocalHost.getHostAddress is used if empty
hostname = ""

Enables SSL support on this transport
enable-ssl = false

Sets the connectTimeoutMillis of all outbound connections,
i.e. how long a connect may take until it is timed out
connection-timeout = 15 s

If set to "<id.of.dispatcher>" then the specified dispatcher
will be used to accept inbound connections, and perform IO. If "" then
dedicated threads will be used.
Please note that the Netty driver only uses this configuration and does
not read the "akka.remote.use-dispatcher" entry. Instead it has to be
configured manually to point to the same dispatcher if needed.
use-dispatcher-for-io = ""

Sets the high water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-high-water-mark = 0b

Sets the low water mark for the in and outbound sockets,
set to 0b for platform default
write-buffer-low-water-mark = 0b

Sets the send buffer size of the Sockets,
set to 0b for platform default
send-buffer-size = 256000b

Sets the receive buffer size of the Sockets,
set to 0b for platform default
receive-buffer-size = 256000b

Maximum message size the transport will accept, but at least
32000 bytes.
Please note that UDP does not support arbitrary large datagrams,
so this setting has to be chosen carefully when using UDP.
Both send-buffer-size and receive-buffer-size settings has to
be adjusted to be able to buffer messages of maximum size.
maximum-frame-size = 128000b

Sets the size of the connection backlog
backlog = 4096

Enables the TCP_NODELAY flag, i.e. disables Nagle’s algorithm
tcp-nodelay = on

Enables TCP Keepalive, subject to the O/S kernel’s configuration
tcp-keepalive = on

Enables SO_REUSEADDR, which determines when an ActorSystem can open
the specified listen port (the meaning differs between *nix and Windows)
Valid values are "on", "off" and "off-for-windows"
due to the following Windows bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378
"off-for-windows" of course means that it's "on" for all other platforms

5.3. Remoting 221

Akka Scala Documentation, Release 2.2.5

tcp-reuse-addr = off-for-windows

Used to configure the number of I/O worker threads on server sockets
server-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

Used to configure the number of I/O worker threads on client sockets
client-socket-worker-pool {

Min number of threads to cap factor-based number to
pool-size-min = 2

The pool size factor is used to determine thread pool size
using the following formula: ceil(available processors * factor).
Resulting size is then bounded by the pool-size-min and
pool-size-max values.
pool-size-factor = 1.0

Max number of threads to cap factor-based number to
pool-size-max = 2

}

}

netty.udp = ${akka.remote.netty.tcp}
netty.udp {

transport-protocol = udp
}

netty.ssl = ${akka.remote.netty.tcp}
netty.ssl = {

Enable SSL/TLS encryption.
This must be enabled on both the client and server to work.
enable-ssl = true

security {
This is the Java Key Store used by the server connection
key-store = "keystore"

This password is used for decrypting the key store
key-store-password = "changeme"

This password is used for decrypting the key
key-password = "changeme"

This is the Java Key Store used by the client connection
trust-store = "truststore"

This password is used for decrypting the trust store
trust-store-password = "changeme"

Protocol to use for SSL encryption, choose from:

5.3. Remoting 222

Akka Scala Documentation, Release 2.2.5

Java 6 & 7:
'SSLv3', 'TLSv1'
Java 7:
'TLSv1.1', 'TLSv1.2'
protocol = "TLSv1"

Example: ["TLS_RSA_WITH_AES_128_CBC_SHA", "TLS_RSA_WITH_AES_256_CBC_SHA"]
You need to install the JCE Unlimited Strength Jurisdiction Policy
Files to use AES 256.
More info here:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
enabled-algorithms = ["TLS_RSA_WITH_AES_128_CBC_SHA"]

There are three options, in increasing order of security:
"" or SecureRandom => (default)
"SHA1PRNG" => Can be slow because of blocking issues on Linux
"AES128CounterSecureRNG" => fastest startup and based on AES encryption
algorithm
"AES256CounterSecureRNG"
The following use one of 3 possible seed sources, depending on
availability: /dev/random, random.org and SecureRandom (provided by Java)
"AES128CounterInetRNG"
"AES256CounterInetRNG" (Install JCE Unlimited Strength Jurisdiction
Policy Files first)
Setting a value here may require you to supply the appropriate cipher
suite (see enabled-algorithms section above)
random-number-generator = ""

}
}

Default configuration for the failure injector transport adapter

gremlin {
Enable debug logging of the failure injector transport adapter
debug = off

}

}

}

Note: Setting properties like the listening IP and port number programmatically is best done by using something
like the following:

ConfigFactory.parseString("akka.remote.netty.tcp.hostname=\"1.2.3.4\"")
.withFallback(ConfigFactory.load());

5.4 Serialization

Akka has a built-in Extension for serialization, and it is both possible to use the built-in serializers and to write
your own.

The serialization mechanism is both used by Akka internally to serialize messages, and available for ad-hoc
serialization of whatever you might need it for.

5.4. Serialization 223

Akka Scala Documentation, Release 2.2.5

5.4.1 Usage

Configuration

For Akka to know which Serializer to use for what, you need edit your Config-
uration, in the “akka.actor.serializers”-section you bind names to implementations of the
akka.serialization.Serializer you wish to use, like this:

val config = ConfigFactory.parseString("""
akka {
actor {

serializers {
java = "akka.serialization.JavaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
myown = "docs.serialization.MyOwnSerializer"

}
}

}
""")

After you’ve bound names to different implementations of Serializer you need to wire which classes should
be serialized using which Serializer, this is done in the “akka.actor.serialization-bindings”-section:

val config = ConfigFactory.parseString("""
akka {
actor {

serializers {
java = "akka.serialization.JavaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
myown = "docs.serialization.MyOwnSerializer"

}

serialization-bindings {
"java.lang.String" = java
"docs.serialization.Customer" = java
"com.google.protobuf.Message" = proto
"docs.serialization.MyOwnSerializable" = myown
"java.lang.Boolean" = myown

}
}

}
""")

You only need to specify the name of an interface or abstract base class of the messages. In case of ambigu-
ity, i.e. the message implements several of the configured classes, the most specific configured class will be
used, i.e. the one of which all other candidates are superclasses. If this condition cannot be met, because e.g.
java.io.Serializable and MyOwnSerializable both apply and neither is a subtype of the other, a
warning will be issued

Akka provides serializers for java.io.Serializable and protobuf
com.google.protobuf.GeneratedMessage by default (the latter only if depending on
the akka-remote module), so normally you don’t need to add configuration for that; since
com.google.protobuf.GeneratedMessage implements java.io.Serializable, protobuf
messages will always by serialized using the protobuf protocol unless specifically overridden. In order to disable
a default serializer, map its marker type to “none”:

akka.actor.serialization-bindings {
"java.io.Serializable" = none

}

5.4. Serialization 224

http://code.google.com/p/protobuf/

Akka Scala Documentation, Release 2.2.5

Verification

If you want to verify that your messages are serializable you can enable the following config option:

val config = ConfigFactory.parseString("""
akka {
actor {

serialize-messages = on
}

}
""")

Warning: We only recommend using the config option turned on when you’re running tests. It is completely
pointless to have it turned on in other scenarios.

If you want to verify that your Props are serializable you can enable the following config option:

val config = ConfigFactory.parseString("""
akka {
actor {

serialize-creators = on
}

}
""")

Warning: We only recommend using the config option turned on when you’re running tests. It is completely
pointless to have it turned on in other scenarios.

Programmatic

If you want to programmatically serialize/deserialize using Akka Serialization, here’s some examples:

import akka.actor.{ ActorRef, ActorSystem }
import akka.serialization._
import com.typesafe.config.ConfigFactory

val system = ActorSystem("example")

// Get the Serialization Extension
val serialization = SerializationExtension(system)

// Have something to serialize
val original = "woohoo"

// Find the Serializer for it
val serializer = serialization.findSerializerFor(original)

// Turn it into bytes
val bytes = serializer.toBinary(original)

// Turn it back into an object
val back = serializer.fromBinary(bytes, manifest = None)

// Voilá!
back must equal(original)

For more information, have a look at the ScalaDoc for akka.serialization._

5.4. Serialization 225

Akka Scala Documentation, Release 2.2.5

5.4.2 Customization

So, lets say that you want to create your own Serializer, you saw the
docs.serialization.MyOwnSerializer in the config example above?

Creating new Serializers

First you need to create a class definition of your Serializer like so:

import akka.actor.{ ActorRef, ActorSystem }
import akka.serialization._
import com.typesafe.config.ConfigFactory

class MyOwnSerializer extends Serializer {

// This is whether "fromBinary" requires a "clazz" or not
def includeManifest: Boolean = false

// Pick a unique identifier for your Serializer,
// you've got a couple of billions to choose from,
// 0 - 16 is reserved by Akka itself
def identifier = 1234567

// "toBinary" serializes the given object to an Array of Bytes
def toBinary(obj: AnyRef): Array[Byte] = {
// Put the code that serializes the object here
//

}

// "fromBinary" deserializes the given array,
// using the type hint (if any, see "includeManifest" above)
// into the optionally provided classLoader.
def fromBinary(bytes: Array[Byte],

clazz: Option[Class[_]]): AnyRef = {
// Put your code that deserializes here
//

}
}

Then you only need to fill in the blanks, bind it to a name in your Configuration and then list which classes that
should be serialized using it.

Serializing ActorRefs

All ActorRefs are serializable using JavaSerializer, but in case you are writing your own serializer, you might
want to know how to serialize and deserialize them properly. In the general case, the local address to be
used depends on the type of remote address which shall be the recipient of the serialized information. Use
Serialization.serializedActorPath(actorRef) like this:

import akka.actor.{ ActorRef, ActorSystem }
import akka.serialization._
import com.typesafe.config.ConfigFactory

// Serialize
// (beneath toBinary)
val identifier: String = Serialization.serializedActorPath(theActorRef)

// Then just serialize the identifier however you like

// Deserialize
// (beneath fromBinary)

5.4. Serialization 226

Akka Scala Documentation, Release 2.2.5

val deserializedActorRef = extendedSystem.provider.resolveActorRef(identifier)
// Then just use the ActorRef

This assumes that serialization happens in the context of sending a message through the remote transport. There are
other uses of serialization, though, e.g. storing actor references outside of an actor application (database, durable
mailbox, etc.). In this case, it is important to keep in mind that the address part of an actor’s path determines how
that actor is communicated with. Storing a local actor path might be the right choice if the retrieval happens in the
same logical context, but it is not enough when deserializing it on a different network host: for that it would need
to include the system’s remote transport address. An actor system is not limited to having just one remote transport
per se, which makes this question a bit more interesting. To find out the appropriate address to use when sending to
remoteAddr you can use ActorRefProvider.getExternalAddressFor(remoteAddr) like this:

object ExternalAddress extends ExtensionKey[ExternalAddressExt]

class ExternalAddressExt(system: ExtendedActorSystem) extends Extension {
def addressFor(remoteAddr: Address): Address =
system.provider.getExternalAddressFor(remoteAddr) getOrElse

(throw new UnsupportedOperationException("cannot send to " + remoteAddr))
}

def serializeTo(ref: ActorRef, remote: Address): String =
ref.path.toSerializationFormatWithAddress(ExternalAddress(extendedSystem).
addressFor(remote))

Note: ActorPath.toSerializationFormatWithAddress differs from toString if the address
does not already have host and port components, i.e. it only inserts address information for local addresses.

toSerializationFormatWithAddress also adds the unique id of the actor, which will change when the
actor is stopped and then created again with the same name. Sending messages to a reference pointing the old
actor will not be delivered to the new actor. If you don’t want this behavior, e.g. in case of long term storage of
the reference, you can use toStringWithAddress, which doesn’t include the unique id.

This requires that you know at least which type of address will be supported by the system which will deserialize
the resulting actor reference; if you have no concrete address handy you can create a dummy one for the right
protocol using Address(protocol, "", "", 0) (assuming that the actual transport used is as lenient as
Akka’s RemoteActorRefProvider).

There is also a default remote address which is the one used by cluster support (and typical systems have just this
one); you can get it like this:

object ExternalAddress extends ExtensionKey[ExternalAddressExt]

class ExternalAddressExt(system: ExtendedActorSystem) extends Extension {
def addressForAkka: Address = system.provider.getDefaultAddress

}

def serializeAkkaDefault(ref: ActorRef): String =
ref.path.toSerializationFormatWithAddress(ExternalAddress(theActorSystem).
addressForAkka)

Deep serialization of Actors

The current recommended approach to do deep serialization of internal actor state is to use Event Sourcing, for
more reading on the topic, see these examples:

Martin Krasser on EventSourcing Part1

Martin Krasser on EventSourcing Part2

Note: Built-in API support for persisting Actors will come in a later release, see the roadmap for more info:

Akka 2.0 roadmap

5.4. Serialization 227

http://krasserm.blogspot.com/2011/11/building-event-sourced-web-application.html
http://krasserm.blogspot.com/2012/01/building-event-sourced-web-application.html
https://docs.google.com/a/typesafe.com/document/d/18W9-fKs55wiFNjXL9q50PYOnR7-nnsImzJqHOPPbM4E

Akka Scala Documentation, Release 2.2.5

5.4.3 A Word About Java Serialization

When using Java serialization without employing the JavaSerializer for the task, you must make sure to
supply a valid ExtendedActorSystem in the dynamic variable JavaSerializer.currentSystem.
This is used when reading in the representation of an ActorRef for turning the string representation into a real
reference. DynamicVariable is a thread-local variable, so be sure to have it set while deserializing anything
which might contain actor references.

5.4.4 External Akka Serializers

Akka-protostuff by Roman Levenstein

Akka-quickser by Roman Levenstein

Akka-kryo by Roman Levenstein

5.5 I/O

5.5.1 Introduction

The akka.io package has been developed in collaboration between the Akka and spray.io teams. Its design
combines experiences from the spray-io module with improvements that were jointly developed for more
general consumption as an actor-based service.

Warning: The IO implementation is marked as “experimental” as of its introduction in Akka 2.2.0. We
will continue to improve this API based on our users’ feedback, which implies that while we try to keep
incompatible changes to a minimum the binary compatibility guarantee for maintenance releases does not
apply to the contents of the akka.io package.

The guiding design goal for this I/O implementation was to reach extreme scalability, make no compromises
in providing an API correctly matching the underlying transport mechanism and to be fully event-driven, non-
blocking and asynchronous. The API is meant to be a solid foundation for the implementation of network protocols
and building higher abstractions; it is not meant to be a full-service high-level NIO wrapper for end users.

Note: The old I/O implementation has been deprecated and its documentation has been moved: Old IO

5.5.2 Terminology, Concepts

The I/O API is completely actor based, meaning that all operations are implemented with message passing instead
of direct method calls. Every I/O driver (TCP, UDP) has a special actor, called a manager that serves as an entry
point for the API. I/O is broken into several drivers. The manager for a particular driver is accessible through the
IO entry point. For example the following code looks up the TCP manager and returns its ActorRef:

import akka.io.{ IO, Tcp }
import context.system // implicitly used by IO(Tcp)

val manager = IO(Tcp)

The manager receives I/O command messages and instantiates worker actors in response. The worker actors
present themselves to the API user in the reply to the command that was sent. For example after a Connect
command sent to the TCP manager the manager creates an actor representing the TCP connection. All operations
related to the given TCP connections can be invoked by sending messages to the connection actor which announces
itself by sending a Connected message.

5.5. I/O 228

https://github.com/romix/akka-protostuff-serialization
https://github.com/romix/akka-quickser-serialization
https://github.com/romix/akka-kryo-serialization
http://spray.io

Akka Scala Documentation, Release 2.2.5

DeathWatch and Resource Management

I/O worker actors receive commands and also send out events. They usually need a user-side counterpart actor
listening for these events (such events could be inbound connections, incoming bytes or acknowledgements for
writes). These worker actors watch their listener counterparts. If the listener stops then the worker will automati-
cally release any resources that it holds. This design makes the API more robust against resource leaks.

Thanks to the completely actor based approach of the I/O API the opposite direction works as well: a user actor
responsible for handling a connection can watch the connection actor to be notified if it unexpectedly terminates.

Write models (Ack, Nack)

I/O devices have a maximum throughput which limits the frequency and size of writes. When an application tries
to push more data than a device can handle, the driver has to buffer bytes until the device is able to write them.
With buffering it is possible to handle short bursts of intensive writes — but no buffer is infinite. “Flow control”
is needed to avoid overwhelming device buffers.

Akka supports two types of flow control:

• Ack-based, where the driver notifies the writer when writes have succeeded.

• Nack-based, where the driver notifies the writer when writes have failed.

Each of these models is available in both the TCP and the UDP implementations of Akka I/O.

Individual writes can be acknowledged by providing an ack object in the write message (Write in the case of
TCP and Send for UDP). When the write is complete the worker will send the ack object to the writing actor. This
can be used to implement ack-based flow control; sending new data only when old data has been acknowledged.

If a write (or any other command) fails, the driver notifies the actor that sent the command with a special message
(CommandFailed in the case of UDP and TCP). This message will also notify the writer of a failed write,
serving as a nack for that write. Please note, that in a nack-based flow-control setting the writer has to be prepared
for the fact that the failed write might not be the most recent write it sent. For example, the failure notification for
a write W1 might arrive after additional write commands W2 and W3 have been sent. If the writer wants to resend
any nacked messages it may need to keep a buffer of pending messages.

Warning: An acknowledged write does not mean acknowledged delivery or storage; receiving an ack for a
write simply signals that the I/O driver has successfully processed the write. The Ack/Nack protocol described
here is a means of flow control not error handling. In other words, data may still be lost, even if every write is
acknowledged.

ByteString

To maintain isolation, actors should communicate with immutable objects only. ByteString is an immutable
container for bytes. It is used by Akka’s I/O system as an efficient, immutable alternative the traditional byte
containers used for I/O on the JVM, such as Array[Byte] and ByteBuffer.

ByteString is a rope-like data structure that is immutable and provides fast concatenation and slicing op-
erations (perfect for I/O). When two ByteStrings are concatenated together they are both stored within the
resulting ByteString instead of copying both to a new Array. Operations such as drop and take return
ByteStrings that still reference the original Array, but just change the offset and length that is visible. Great
care has also been taken to make sure that the internal Array cannot be modified. Whenever a potentially unsafe
Array is used to create a new ByteString a defensive copy is created. If you require a ByteString that only
blocks as much memory as necessary for it’s content, use the compact method to get a CompactByteString
instance. If the ByteString represented only a slice of the original array, this will result in copying all bytes in
that slice.

ByteString inherits all methods from IndexedSeq, and it also has some new ones. For more information,
look up the akka.util.ByteString class and it’s companion object in the ScalaDoc.

5.5. I/O 229

http://en.wikipedia.org/wiki/Rope_(computer_science)

Akka Scala Documentation, Release 2.2.5

ByteString also comes with its own optimized builder and iterator classes ByteStringBuilder and
ByteIterator which provide extra features in addition to those of normal builders and iterators.

Compatibility with java.io

A ByteStringBuilder can be wrapped in a java.io.OutputStream via the asOutputStream
method. Likewise, ByteIterator can be wrapped in a java.io.InputStream via asInputStream.
Using these, akka.io applications can integrate legacy code based on java.io streams.

5.5.3 Architecture in-depth

For further details on the design and internal architecture see I/O Layer Design.

5.5.4 Link to the old IO documentation

Old IO

Warning: This is the documentation of the old IO implementation that is considered now deprecated. Please
take a look at new IO API: I/O

Introduction

This documentation is in progress and some sections may be incomplete. More will be coming.

Components

ByteString A primary goal of Akka’s IO support is to only communicate between actors with immutable objects.
When dealing with network IO on the jvm Array[Byte] and ByteBuffer are commonly used to represent
collections of Bytes, but they are mutable. Scala’s collection library also lacks a suitably efficient immutable
collection for Bytes. Being able to safely and efficiently move Bytes around is very important for this IO
support, so ByteString was developed.

ByteString is a Rope-like data structure that is immutable and efficient. When 2 ByteStrings are concate-
nated together they are both stored within the resulting ByteString instead of copying both to a new Array.
Operations such as drop and take return ByteStrings that still reference the original Array, but just change
the offset and length that is visible. Great care has also been taken to make sure that the internal Array cannot
be modified. Whenever a potentially unsafe Array is used to create a new ByteString a defensive copy is
created. If you require a ByteString that only blocks a much memory as necessary for it’s content, use the
compact method to get a CompactByteString instance. If the ByteString represented only a slice of
the original array, this will result in copying all bytes in that slice.

ByteString inherits all methods from IndexedSeq, and it also has some new ones. For more information,
look up the akka.util.ByteString class and it’s companion object in the ScalaDoc.

ByteString also comes with it’s own optimized builder and iterator classes ByteStringBuilder and
ByteIterator which provides special features in addition to the standard builder / iterator methods:

Compatibility with java.io A ByteStringBuilder can be wrapped in a java.io.OutputStream via the
asOutputStream method. Likewise, ByteIterator can we wrapped in a java.io.InputStream via
asInputStream. Using these, akka.io applications can integrate legacy code based on java.io streams.

5.5. I/O 230

http://en.wikipedia.org/wiki/Rope_(computer_science)

Akka Scala Documentation, Release 2.2.5

Encoding and decoding of binary data ByteStringBuilder and ByteIterator support encoding and
decoding of binary data. As an example, consider a stream of binary data frames with the following format:

frameLen: Int
n: Int
m: Int
n times {

a: Short
b: Long

}
data: m times Double

In this example, the data is to be stored in arrays of a, b and data.

Decoding of such frames can be efficiently implemented in the following fashion:

implicit val byteOrder = java.nio.ByteOrder.BIG_ENDIAN

val FrameDecoder = for {
frameLenBytes ← IO.take(4)
frameLen = frameLenBytes.iterator.getInt
frame ← IO.take(frameLen)

} yield {
val in = frame.iterator

val n = in.getInt
val m = in.getInt

val a = Array.newBuilder[Short]
val b = Array.newBuilder[Long]

for (i ← 1 to n) {
a += in.getShort
b += in.getInt

}

val data = Array.ofDim[Double](m)
in.getDoubles(data)

(a.result, b.result, data)
}

This implementation naturally follows the example data format. In a true Scala application, one might, of course,
want use specialized immutable Short/Long/Double containers instead of mutable Arrays.

After extracting data from a ByteIterator, the remaining content can also be turned back into a ByteString
using the toSeq method

val n = in.getInt
val m = in.getInt
// ... in.get...
val rest: ByteString = in.toSeq

with no copying from bytes to rest involved. In general, conversions from ByteString to ByteIterator and vice
versa are O(1) for non-chunked ByteStrings and (at worst) O(nChunks) for chunked ByteStrings.

Encoding of data also is very natural, using ByteStringBuilder

implicit val byteOrder = java.nio.ByteOrder.BIG_ENDIAN

val a: Array[Short]
val b: Array[Long]
val data: Array[Double]

val frameBuilder = ByteString.newBuilder

5.5. I/O 231

Akka Scala Documentation, Release 2.2.5

val n = a.length
val m = data.length

frameBuilder.putInt(n)
frameBuilder.putInt(m)

for (i ← 0 to n - 1) {
frameBuilder.putShort(a(i))
frameBuilder.putLong(b(i))

}
frameBuilder.putDoubles(data)
val frame = frameBuilder.result()

The encoded data then can be sent over socket (see IOManager):

val socket: IO.SocketHandle
socket.write(ByteString.newBuilder.putInt(frame.length).result)
socket.write(frame)

IO.Handle IO.Handle is an immutable reference to a Java NIO Channel. Passing mutable Channels
between Actors could lead to unsafe behavior, so instead subclasses of the IO.Handle trait are used.
Currently there are 2 concrete subclasses: IO.SocketHandle (representing a SocketChannel) and
IO.ServerHandle (representing a ServerSocketChannel).

IOManager The IOManager takes care of the low level IO details. Each ActorSystem has it’s own
IOManager, which can be accessed calling IOManager(system: ActorSystem). Actors commu-
nicate with the IOManager with specific messages. The messages sent from an Actor to the IOManager
are handled automatically when using certain methods and the messages sent from an IOManager are handled
within an Actor‘s receive method.

Connecting to a remote host:

val address = new InetSocketAddress("remotehost", 80)
val socket = IOManager(actorSystem).connect(address)

val socket = IOManager(actorSystem).connect("remotehost", 80)

Creating a server:

val address = new InetSocketAddress("localhost", 80)
val serverSocket = IOManager(actorSystem).listen(address)

val serverSocket = IOManager(actorSystem).listen("localhost", 80)

Receiving messages from the IOManager:

def receive = {

case IO.Listening(server, address) =>
println("The server is listening on socket " + address)

case IO.Connected(socket, address) =>
println("Successfully connected to " + address)

case IO.NewClient(server) =>
println("New incoming connection on server")
val socket = server.accept()
println("Writing to new client socket")
socket.write(bytes)
println("Closing socket")
socket.close()

5.5. I/O 232

Akka Scala Documentation, Release 2.2.5

case IO.Read(socket, bytes) =>
println("Received incoming data from socket")

case IO.Closed(socket: IO.SocketHandle, cause) =>
println("Socket has closed, cause: " + cause)

case IO.Closed(server: IO.ServerHandle, cause) =>
println("Server socket has closed, cause: " + cause)

}

IO.Iteratee Included with Akka’s IO support is a basic implementation of Iteratees. Iteratees are an
effective way of handling a stream of data without needing to wait for all the data to arrive. This is especially
useful when dealing with non blocking IO since we will usually receive data in chunks which may not include
enough information to process, or it may contain much more data than we currently need.

This Iteratee implementation is much more basic than what is usually found. There is only support for
ByteString input, and enumerators aren’t used. The reason for this limited implementation is to reduce
the amount of explicit type signatures needed and to keep things simple. It is important to note that Akka’s
Iteratees are completely optional, incoming data can be handled in any way, including other Iteratee
libraries.

Iteratees work by processing the data that it is given and returning either the result (with any unused input)
or a continuation if more input is needed. They are monadic, so methods like flatMap can be used to pass the
result of an Iteratee to another.

The basic Iteratees included in the IO support can all be found in the ScalaDoc under akka.actor.IO,
and some of them are covered in the example below.

Examples

Http Server This example will create a simple high performance HTTP server. We begin with our imports:

import akka.actor._
import akka.util.{ ByteString, ByteStringBuilder }
import java.net.InetSocketAddress

Some commonly used constants:

object HttpConstants {
val SP = ByteString(" ")
val HT = ByteString("\t")
val CRLF = ByteString("\r\n")
val COLON = ByteString(":")
val PERCENT = ByteString("%")
val PATH = ByteString("/")
val QUERY = ByteString("?")

}

And case classes to hold the resulting request:

case class Request(meth: String, path: List[String], query: Option[String],
httpver: String, headers: List[Header], body: Option[ByteString])

case class Header(name: String, value: String)

Now for our first Iteratee. There are 3 main sections of a HTTP request: the request line, the headers, and an
optional body. The main request Iteratee handles each section separately:

object HttpIteratees {
import HttpConstants._

5.5. I/O 233

Akka Scala Documentation, Release 2.2.5

def readRequest =
for {

requestLine ← readRequestLine
(meth, (path, query), httpver) = requestLine
headers ← readHeaders
body ← readBody(headers)

} yield Request(meth, path, query, httpver, headers, body)

In the above code readRequest takes the results of 3 different Iteratees (readRequestLine,
readHeaders, readBody) and combines them into a single Request object. readRequestLine ac-
tually returns a tuple, so we extract it’s individual components. readBody depends on values contained within
the header section, so we must pass those to the method.

The request line has 3 parts to it: the HTTP method, the requested URI, and the HTTP version. The parts are
separated by a single space, and the entire request line ends with a CRLF.

def ascii(bytes: ByteString): String = bytes.decodeString("US-ASCII").trim

def readRequestLine =
for {
meth ← IO takeUntil SP
uri ← readRequestURI
_ ← IO takeUntil SP // ignore the rest
httpver ← IO takeUntil CRLF

} yield (ascii(meth), uri, ascii(httpver))

Reading the request method is simple as it is a single string ending in a space. The simple Iteratee that per-
forms this is IO.takeUntil(delimiter: ByteString): Iteratee[ByteString]. It keeps
consuming input until the specified delimiter is found. Reading the HTTP version is also a simple string that ends
with a CRLF.

The ascii method is a helper that takes a ByteString and parses it as a US-ASCII String.

Reading the request URI is a bit more complicated because we want to parse the individual components of the
URI instead of just returning a simple string:

def readRequestURI = IO peek 1 flatMap {
case PATH ⇒
for {

path ← readPath
query ← readQuery

} yield (path, query)
case _ ⇒ sys.error("Not Implemented")

}

For this example we are only interested in handling absolute paths. To detect if we the URI is an absolute path
we use IO.peek(length: Int): Iteratee[ByteString], which returns a ByteString of the
request length but doesn’t actually consume the input. We peek at the next bit of input and see if it matches our
PATH constant (defined above as ByteString("/")). If it doesn’t match we throw an error, but for a more
robust solution we would want to handle other valid URIs.

Next we handle the path itself:

def readPath = {
def step(segments: List[String]): IO.Iteratee[List[String]] =
IO peek 1 flatMap {

case PATH ⇒ IO drop 1 flatMap (_ ⇒ readUriPart(pathchar) flatMap (
segment ⇒ step(segment :: segments)))

case _ ⇒ segments match {
case "" :: rest ⇒ IO Done rest.reverse
case _ ⇒ IO Done segments.reverse

}
}

5.5. I/O 234

Akka Scala Documentation, Release 2.2.5

step(Nil)
}

The step method is a recursive method that takes a List of the accumulated path segments. It first checks if the
remaining input starts with the PATH constant, and if it does, it drops that input, and returns the readUriPart
Iteratee which has it’s result added to the path segment accumulator and the step method is run again.

If after reading in a path segment the next input does not start with a path, we reverse the accumulated segments
and return it (dropping the last segment if it is blank).

Following the path we read in the query (if it exists):

def readQuery: IO.Iteratee[Option[String]] = IO peek 1 flatMap {
case QUERY ⇒ IO drop 1 flatMap (_ ⇒ readUriPart(querychar) map (Some(_)))
case _ ⇒ IO Done None

}

It is much simpler than reading the path since we aren’t doing any parsing of the query since there is no standard
format of the query string.

Both the path and query used the readUriPart Iteratee, which is next:

val alpha = Set.empty ++ ('a' to 'z') ++ ('A' to 'Z') map (_.toByte)
val digit = Set.empty ++ ('0' to '9') map (_.toByte)
val hexdigit = digit ++ (Set.empty ++ ('a' to 'f') ++ ('A' to 'F') map (_.toByte))
val subdelim = Set('!', '$', '&', '\'', '(', ')', '*', '+', ',', ';', '=') map

(_.toByte)
val pathchar = alpha ++ digit ++ subdelim ++ (Set(':', '@') map (_.toByte))
val querychar = pathchar ++ (Set('/', '?') map (_.toByte))

def readUriPart(allowed: Set[Byte]): IO.Iteratee[String] = for {
str ← IO takeWhile allowed map ascii
pchar ← IO peek 1 map (_ == PERCENT)
all ← if (pchar) readPChar flatMap (ch ⇒ readUriPart(allowed) map
(str + ch + _))

else IO Done str
} yield all

def readPChar = IO take 3 map {
case Seq('%', rest @ _*) if rest forall hexdigit ⇒
java.lang.Integer.parseInt(rest map (_.toChar) mkString, 16).toChar

}

Here we have several Sets that contain valid characters pulled from the URI spec. The readUriPart method
takes a Set of valid characters (already mapped to Bytes) and will continue to match characters until it reaches
on that is not part of the Set. If it is a percent encoded character then that is handled as a valid character and
processing continues, or else we are done collecting this part of the URI.

Headers are next:

def readHeaders = {
def step(found: List[Header]): IO.Iteratee[List[Header]] = {
IO peek 2 flatMap {

case CRLF ⇒ IO takeUntil CRLF flatMap (_ ⇒ IO Done found)
case _ ⇒ readHeader flatMap (header ⇒ step(header :: found))

}
}
step(Nil)

}

def readHeader =
for {
name ← IO takeUntil COLON
value ← IO takeUntil CRLF flatMap readMultiLineValue

} yield Header(ascii(name), ascii(value))

5.5. I/O 235

Akka Scala Documentation, Release 2.2.5

def readMultiLineValue(initial: ByteString): IO.Iteratee[ByteString] =
IO peek 1 flatMap {
case SP ⇒ IO takeUntil CRLF flatMap (

bytes ⇒ readMultiLineValue(initial ++ bytes))
case _ ⇒ IO Done initial

}

And if applicable, we read in the message body:

def readBody(headers: List[Header]) =
if (headers.exists(header ⇒ header.name == "Content-Length" ||
header.name == "Transfer-Encoding"))
IO.takeAll map (Some(_))

else
IO Done None

Finally we get to the actual Actor:

class HttpServer(port: Int) extends Actor {

val state = IO.IterateeRef.Map.async[IO.Handle]()(context.dispatcher)

override def preStart {
IOManager(context.system) listen new InetSocketAddress(port)

}

def receive = {

case IO.NewClient(server) ⇒
val socket = server.accept()
state(socket) flatMap (_ ⇒ HttpServer.processRequest(socket))

case IO.Read(socket, bytes) ⇒
state(socket)(IO Chunk bytes)

case IO.Closed(socket, cause) ⇒
state(socket)(IO EOF)
state -= socket

}

}

And it’s companion object:

object HttpServer {
import HttpIteratees._

def processRequest(socket: IO.SocketHandle): IO.Iteratee[Unit] =
IO repeat {

for {
request ← readRequest

} yield {
val rsp = request match {
case Request("GET", "ping" :: Nil, _, _, headers, _) ⇒
OKResponse(ByteString("<p>pong</p>"),
request.headers.exists {
case Header(n, v) ⇒
n.toLowerCase == "connection" && v.toLowerCase == "keep-alive"

})
case req ⇒

OKResponse(ByteString("<p>" + req.toString + "</p>"),
request.headers.exists {

5.5. I/O 236

Akka Scala Documentation, Release 2.2.5

case Header(n, v) ⇒
n.toLowerCase == "connection" && v.toLowerCase == "keep-alive"

})
}
socket write OKResponse.bytes(rsp).compact
if (!rsp.keepAlive) socket.close()

}
}

}

And the OKResponse:

object OKResponse {
import HttpConstants.CRLF

val okStatus = ByteString("HTTP/1.1 200 OK")
val contentType = ByteString("Content-Type: text/html; charset=utf-8")
val cacheControl = ByteString("Cache-Control: no-cache")
val date = ByteString("Date: ")
val server = ByteString("Server: Akka")
val contentLength = ByteString("Content-Length: ")
val connection = ByteString("Connection: ")
val keepAlive = ByteString("Keep-Alive")
val close = ByteString("Close")

def bytes(rsp: OKResponse) = {
new ByteStringBuilder ++=

okStatus ++= CRLF ++=
contentType ++= CRLF ++=
cacheControl ++= CRLF ++=
date ++= ByteString(new java.util.Date().toString) ++= CRLF ++=
server ++= CRLF ++=
contentLength ++= ByteString(rsp.body.length.toString) ++= CRLF ++=
connection ++= (if (rsp.keepAlive) keepAlive else close) ++= CRLF ++=
CRLF ++= rsp.body result

}

}
case class OKResponse(body: ByteString, keepAlive: Boolean)

A main method to start everything up:

object Main extends App {
val port = Option(System.getenv("PORT")) map (_.toInt) getOrElse 8080
val system = ActorSystem()
val server = system.actorOf(Props(classOf[HttpServer], port))

}

5.6 Encoding and decoding binary data

Note: Previously Akka offered a specialized Iteratee implementation in the akka.actor.IO object which is
now deprecated in favor of the pipeline mechanism described here. The documentation for Iteratees can be found
here.

Warning: The IO implementation is marked as “experimental” as of its introduction in Akka 2.2.0. We
will continue to improve this API based on our users’ feedback, which implies that while we try to keep
incompatible changes to a minimum the binary compatibility guarantee for maintenance releases does not
apply to the contents of the akka.io package.

5.6. Encoding and decoding binary data 237

http://doc.akka.io/docs/akka/2.1.4/scala/io.html#Encoding_and_decoding_of_binary_data

Akka Scala Documentation, Release 2.2.5

Akka adopted and adapted the implementation of data processing pipelines found in the spray-io module. The
idea is that encoding and decoding often go hand in hand and keeping the code pertaining to one protocol layer
together is deemed more important than writing down the complete read side—say—in the iteratee style in one go;
pipelines encourage packaging the stages in a form which lends itself better to reuse in a protocol stack. Another
reason for choosing this abstraction is that it is at times necessary to change the behavior of encoding and decoding
within a stage based on a message stream’s state, and pipeline stages allow communication between the read and
write halves quite naturally.

The actual byte-fiddling can be done within pipeline stages, for example using the rich API of ByteIterator
and ByteStringBuilder as shown below. All these activities are synchronous transformations which benefit
greatly from CPU affinity to make good use of those data caches. Therefore the design of the pipeline infrastruc-
ture is completely synchronous, every stage’s handler code can only directly return the events and/or commands
resulting from an input, there are no callbacks. Exceptions thrown within a pipeline stage will abort processing
of the whole pipeline under the assumption that recoverable error conditions will be signaled in-band to the next
stage instead of raising an exception.

An overall “logical” pipeline can span multiple execution contexts, for example starting with the low-level protocol
layers directly within an actor handling the reads and writes to a TCP connection and then being passed to a number
of higher-level actors which do the costly application level processing. This is supported by feeding the generated
events into a sink which sends them to another actor, and that other actor will then upon reception feed them into
its own pipeline.

5.6.1 Introducing the Sample Protocol

In the following the process of implementing a protocol stack using pipelines is demonstrated on the following
simple example:

frameLen: Int
persons: Int
persons times {

first: String
last: String

}
points: Int
points times Double

mapping to the following data type:

case class Person(first: String, last: String)
case class HappinessCurve(points: IndexedSeq[Double])
case class Message(persons: Seq[Person], stats: HappinessCurve)

We will split the handling of this protocol into two parts: the frame-length encoding handles the buffering neces-
sary on the read side and the actual encoding of the frame contents is done in a separate stage.

5.6.2 Building a Pipeline Stage

As a common example, which is also included in the akka-actor package, let us look at a framing protocol
which works by prepending a length field to each message.

/**
* Pipeline stage for length-field encoded framing. It will prepend a

* four-byte length header to the message; the header contains the length of

* the resulting frame including header in big-endian representation.

*
* The `maxSize` argument is used to protect the communication channel sanity:

* larger frames will not be sent (silently dropped) or received (in which case

* stream decoding would be broken, hence throwing an IllegalArgumentException).

*/
class LengthFieldFrame(maxSize: Int,

5.6. Encoding and decoding binary data 238

Akka Scala Documentation, Release 2.2.5

byteOrder: ByteOrder = ByteOrder.BIG_ENDIAN,
headerSize: Int = 4,
lengthIncludesHeader: Boolean = true)

extends SymmetricPipelineStage[PipelineContext, ByteString, ByteString] {

// range checks omitted ...

override def apply(ctx: PipelineContext) =
new SymmetricPipePair[ByteString, ByteString] {

var buffer = None: Option[ByteString]
implicit val byteOrder = LengthFieldFrame.this.byteOrder

/**
* Extract as many complete frames as possible from the given ByteString

* and return the remainder together with the extracted frames in reverse

* order.

*/
@tailrec
def extractFrames(bs: ByteString, acc: List[ByteString]) //
: (Option[ByteString], Seq[ByteString]) = {

if (bs.isEmpty) {
(None, acc)

} else if (bs.length < headerSize) {
(Some(bs.compact), acc)

} else {
val length = bs.iterator.getLongPart(headerSize).toInt
if (length < 0 || length > maxSize)

throw new IllegalArgumentException(
s"received too large frame of size $length (max = $maxSize)")

val total = if (lengthIncludesHeader) length else length + headerSize
if (bs.length >= total) {
extractFrames(bs drop total, bs.slice(headerSize, total) :: acc)

} else {
(Some(bs.compact), acc)

}
}

}

/*
* This is how commands (writes) are transformed: calculate length

* including header, write that to a ByteStringBuilder and append the

* payload data. The result is a single command (i.e. `Right(...)`).

*/
override def commandPipeline =

{ bs: ByteString ⇒
val length =
if (lengthIncludesHeader) bs.length + headerSize else bs.length

if (length > maxSize) Seq()
else {

val bb = ByteString.newBuilder
bb.putLongPart(length, headerSize)
bb ++= bs
ctx.singleCommand(bb.result)

}
}

/*
* This is how events (reads) are transformed: append the received

* ByteString to the buffer (if any) and extract the frames from the

* result. In the end store the new buffer contents and return the

* list of events (i.e. `Left(...)`).

*/
override def eventPipeline =

5.6. Encoding and decoding binary data 239

Akka Scala Documentation, Release 2.2.5

{ bs: ByteString ⇒
val data = if (buffer.isEmpty) bs else buffer.get ++ bs
val (nb, frames) = extractFrames(data, Nil)
buffer = nb
/*
* please note the specialized (optimized) facility for emitting

* just a single event

*/
frames match {

case Nil ⇒ Nil
case one :: Nil ⇒ ctx.singleEvent(one)
case many ⇒ many reverseMap (Left(_))

}
}

}
}

In the end a pipeline stage is nothing more than a set of three functions: one transforming commands arriving from
above, one transforming events arriving from below and the third transforming incoming management commands
(not shown here, see below for more information). The result of the transformation can in either case be a sequence
of commands flowing downwards or events flowing upwards (or a combination thereof).

In the case above the data type for commands and events are equal as both functions operate only on
ByteString, and the transformation does not change that type because it only adds or removes four octets
at the front.

The pair of command and event transformation functions is represented by an object of type PipePair, or in
this case a SymmetricPipePair. This object could benefit from knowledge about the context it is running in,
for example an Actor, and this context is introduced by making a PipelineStage be a factory for producing
a PipePair. The factory method is called apply (in good Scala tradition) and receives the context object as its
argument. The implementation of this factory method could now make use of the context in whatever way it sees
fit, you will see an example further down.

5.6.3 Manipulating ByteStrings

The second stage of our sample protocol stack illustrates in more depth what showed only a little in the pipeline
stage built above: constructing and deconstructing byte strings. Let us first take a look at the encoder:

/**
* This trait is used to formualate a requirement for the pipeline context.

* In this example it is used to configure the byte order to be used.

*/
trait HasByteOrder extends PipelineContext {

def byteOrder: java.nio.ByteOrder
}

class MessageStage extends SymmetricPipelineStage[HasByteOrder, Message, ByteString] {

override def apply(ctx: HasByteOrder) = new SymmetricPipePair[Message, ByteString] {

implicit val byteOrder = ctx.byteOrder

/**
* Append a length-prefixed UTF-8 encoded string to the ByteStringBuilder.

*/
def putString(builder: ByteStringBuilder, str: String): Unit = {

val bs = ByteString(str, "UTF-8")
builder putInt bs.length
builder ++= bs

}

5.6. Encoding and decoding binary data 240

Akka Scala Documentation, Release 2.2.5

override val commandPipeline = { msg: Message ⇒
val bs = ByteString.newBuilder

// first store the persons
bs putInt msg.persons.size
msg.persons foreach { p ⇒
putString(bs, p.first)
putString(bs, p.last)

}

// then store the doubles
bs putInt msg.stats.points.length
bs putDoubles (msg.stats.points.toArray)

// and return the result as a command
ctx.singleCommand(bs.result)

}

// decoding omitted ...
}

}

Note how the byte order to be used by this stage is fixed in exactly one place, making it impossible get wrong
between commands and events; the way how the byte order is passed into the stage demonstrates one possible use
for the stage’s context parameter.

The basic tool for constucting a ByteString is a ByteStringBuilder which can be obtained by calling
ByteString.newBuilder since byte strings implement the IndexesSeq[Byte] interface of the standard
Scala collections. This builder knows a few extra tricks, though, for appending byte representations of the primitive
data types like Int and Double or arrays thereof. Encoding a String requires a bit more work because not only
the sequence of bytes needs to be encoded but also the length, otherwise the decoding stage would not know where
the String terminates. When all values making up the Message have been appended to the builder, we simply
pass the resulting ByteString on to the next stage as a command using the optimized singleCommand
facility.

Warning: The singleCommand and singleEvent methods provide a way to generate responses
which transfer exactly one result from one pipeline stage to the next without suffering the overhead of ob-
ject allocations. This means that the returned collection object will not work for anything else (you will get
ClassCastExceptions!) and this facility can only be used EXACTLY ONCE during the processing of
one input (command or event).

Now let us look at the decoder side:

def getString(iter: ByteIterator): String = {
val length = iter.getInt
val bytes = new Array[Byte](length)
iter getBytes bytes
ByteString(bytes).utf8String

}

override val eventPipeline = { bs: ByteString ⇒
val iter = bs.iterator

val personLength = iter.getInt
val persons =
(1 to personLength) map (_ ⇒ Person(getString(iter), getString(iter)))

val curveLength = iter.getInt
val curve = new Array[Double](curveLength)
iter getDoubles curve

// verify that this was all; could be left out to allow future extensions

5.6. Encoding and decoding binary data 241

Akka Scala Documentation, Release 2.2.5

assert(iter.isEmpty)

ctx.singleEvent(Message(persons, HappinessCurve(curve)))
}

The decoding side does the same things that the encoder does in the same order, it just uses a ByteIterator
to retrieve primitive data types or arrays of those from the underlying ByteString. And in the end it hands
the assembled Message as an event to the next stage using the optimized singleEvent facility (see warning
above).

5.6.4 Building a Pipeline

Given the two pipeline stages introduced in the sections above we can now put them to some use. First we define
some message to be encoded:

val msg =
Message(
Seq(

Person("Alice", "Gibbons"),
Person("Bob", "Sparsely")),

HappinessCurve(Array(1.0, 3.0, 5.0)))

Then we need to create a pipeline context which satisfies our declared needs:

val ctx = new HasByteOrder {
def byteOrder = java.nio.ByteOrder.BIG_ENDIAN

}

Building the pipeline and encoding this message then is quite simple:

val stages =
new MessageStage >>
new LengthFieldFrame(10000)

// using the extractor for the returned case class here
val PipelinePorts(cmd, evt, mgmt) =

PipelineFactory.buildFunctionTriple(ctx, stages)

val encoded: (Iterable[Message], Iterable[ByteString]) = cmd(msg)

The tuple returned from buildFunctionTriple contains one function for injecting commands, one for events
and a third for injecting management commands (see below). In this case we demonstrate how a single message
msg is encoded by passing it into the cmd function. The return value is a pair of sequences, one for the re-
sulting events and the other for the resulting commands. For the sample pipeline this will contain exactly one
command—one ByteString. Decoding works in the same way, only with the evt function (which can again
also result in commands being generated, although that is not demonstrated in this sample).

Besides the more functional style there is also an explicitly side-effecting one:

val stages =
new MessageStage >>
new LengthFieldFrame(10000)

val injector = PipelineFactory.buildWithSinkFunctions(ctx, stages)(
commandHandler ! _, // will receive messages of type Try[ByteString]
eventHandler ! _ // will receive messages of type Try[Message]
)

injector.injectCommand(msg)

The functions passed into the buildWithSinkFunctions factory method describe what shall happen to the
commands and events as they fall out of the pipeline. In this case we just send those to some actors, since that is
usually quite a good strategy for distributing the work represented by the messages.

5.6. Encoding and decoding binary data 242

Akka Scala Documentation, Release 2.2.5

The types of commands or events fed into the provided sink functions are wrapped within Try so that failures
can also be encoded and acted upon. This means that injecting into a pipeline using a PipelineInjector
will catch exceptions resulting from processing the input, in which case the exception (there can only be one per
injection) is passed into the respective sink.

5.6.5 Using the Pipeline’s Context

Up to this point there was always a parameter ctx which was used when constructing a pipeline, but it was
not explained in full. The context is a piece of information which is made available to all stages of a pipeline.
The context may also carry behavior, provide infrastructure or helper methods etc. It should be noted that the
context is bound to the pipeline and as such must not be accessed concurrently from different threads unless care
is taken to properly synchronize such access. Since the context will in many cases be provided by an actor it is not
recommended to share this context with code executing outside of the actor’s message handling.

Warning: A PipelineContext instance MUST NOT be used by two different pipelines since it contains mutable
fields which are used during message processing.

5.6.6 Using Management Commands

Since pipeline stages do not have any reference to the pipeline or even to their neighbors they cannot directly
effect the injection of commands or events outside of their normal processing. But sometimes things need to
happen driven by a timer, for example. In this case the timer would need to cause sending tick messages to
the whole pipeline, and those stages which wanted to receive them would act upon those. In order to keep
the type signatures for events and commands useful, such external triggers are sent out-of-band, via a different
channel—the management port. One example which makes use of this facility is the TickGenerator which
comes included with akka-actor:

/**
* This trait expresses that the pipeline’s context needs to live within an

* actor and provide its ActorContext.

*/
trait HasActorContext extends PipelineContext {

/**
* Retrieve the [[akka.actor.ActorContext]] for this pipeline’s context.

*/
def getContext: ActorContext

}

object TickGenerator {
/**
* This message type is used by the TickGenerator to trigger

* the rescheduling of the next Tick. The actor hosting the pipeline

* which includes a TickGenerator must arrange for messages of this

* type to be injected into the management port of the pipeline.

*/
trait Trigger

/**
* This message type is emitted by the TickGenerator to the whole

* pipeline, informing all stages about the time at which this Tick

* was emitted (relative to some arbitrary epoch).

*/
case class Tick(@BeanProperty timestamp: FiniteDuration) extends Trigger

}

/**
* This pipeline stage does not alter the events or commands

*/

5.6. Encoding and decoding binary data 243

Akka Scala Documentation, Release 2.2.5

class TickGenerator[Cmd <: AnyRef, Evt <: AnyRef](interval: FiniteDuration)
extends PipelineStage[HasActorContext, Cmd, Cmd, Evt, Evt] {
import TickGenerator._

override def apply(ctx: HasActorContext) =
new PipePair[Cmd, Cmd, Evt, Evt] {

// use unique object to avoid double-activation on actor restart
private val trigger: Trigger = {

val path = ctx.getContext.self.path

new Trigger {
override def toString = s"Tick[$path]"

}
}

private def schedule() =
ctx.getContext.system.scheduler.scheduleOnce(
interval, ctx.getContext.self, trigger)(ctx.getContext.dispatcher)

// automatically activate this generator
schedule()

override val commandPipeline = (cmd: Cmd) ⇒ ctx.singleCommand(cmd)

override val eventPipeline = (evt: Evt) ⇒ ctx.singleEvent(evt)

override val managementPort: Mgmt = {
case `trigger` ⇒
ctx.getContext.self ! Tick(Deadline.now.time)
schedule()
Nil

}
}

}

This pipeline stage is to be used within an actor, and it will make use of this context in order to schedule the
delivery of TickGenerator.Trigger messages; the actor is then supposed to feed these messages into the
management port of the pipeline. An example could look like this:

class Processor(cmds: ActorRef, evts: ActorRef) extends Actor {

val ctx = new HasActorContext with HasByteOrder {
def getContext = Processor.this.context
def byteOrder = java.nio.ByteOrder.BIG_ENDIAN

}

val pipeline = PipelineFactory.buildWithSinkFunctions(ctx,
new TickGenerator(1000.millis) >>

new MessageStage >>
new LengthFieldFrame(10000) //
)(
// failure in the pipeline will fail this actor
cmd ⇒ cmds ! cmd.get,
evt ⇒ evts ! evt.get)

def receive = {
case m: Message ⇒ pipeline.injectCommand(m)
case b: ByteString ⇒ pipeline.injectEvent(b)
case t: TickGenerator.Trigger ⇒ pipeline.managementCommand(t)

}
}

5.6. Encoding and decoding binary data 244

Akka Scala Documentation, Release 2.2.5

This actor extends our well-known pipeline with the tick generator and attaches the outputs to functions which
send commands and events to actors for further processing. The pipeline stages will then all receive one Tick
per second which can be used like so:

var lastTick = Duration.Zero

override val managementPort: Mgmt = {
case TickGenerator.Tick(timestamp) ⇒
// omitted ...
println(s"time since last tick: ${timestamp - lastTick}")
lastTick = timestamp
Nil

}

Note: Management commands are delivered to all stages of a pipeline “effectively parallel”, like on a broadcast
medium. No code will actually run concurrently since a pipeline is strictly single-threaded, but the order in which
these commands are processed is not specified.

The intended purpose of management commands is for each stage to define its special command types and then
listen only to those (where the aforementioned Tick message is a useful counter-example), exactly like sending
packets on a wifi network where every station receives all traffic but reacts only to those messages which are
destined for it.

If you need all stages to react upon something in their defined order, then this must be modeled either as a command
or event, i.e. it will be part of the “business” type of the pipeline.

5.7 Using TCP

Warning: The IO implementation is marked as “experimental” as of its introduction in Akka 2.2.0. We
will continue to improve this API based on our users’ feedback, which implies that while we try to keep
incompatible changes to a minimum the binary compatibility guarantee for maintenance releases does not
apply to the contents of the akka.io package.

The code snippets through-out this section assume the following imports:

import akka.actor.{ Actor, ActorRef, Props }
import akka.io.{ IO, Tcp }
import akka.util.ByteString
import java.net.InetSocketAddress

All of the Akka I/O APIs are accessed through manager objects. When using an I/O API, the first step is to acquire
a reference to the appropriate manager. The code below shows how to acquire a reference to the Tcp manager.

import akka.io.{ IO, Tcp }
import context.system // implicitly used by IO(Tcp)

val manager = IO(Tcp)

The manager is an actor that handles the underlying low level I/O resources (selectors, channels) and instantiates
workers for specific tasks, such as listening to incoming connections.

5.7.1 Connecting

object Client {
def props(remote: InetSocketAddress, replies: ActorRef) =
Props(classOf[Client], remote, replies)

}

5.7. Using TCP 245

Akka Scala Documentation, Release 2.2.5

class Client(remote: InetSocketAddress, listener: ActorRef) extends Actor {

import Tcp._
import context.system

IO(Tcp) ! Connect(remote)

def receive = {
case CommandFailed(_: Connect) ⇒

listener ! "failed"
context stop self

case c @ Connected(remote, local) ⇒
listener ! c
val connection = sender
connection ! Register(self)
context become {

case data: ByteString ⇒ connection ! Write(data)
case CommandFailed(w: Write) ⇒ // O/S buffer was full
case Received(data) ⇒ listener ! data
case "close" ⇒ connection ! Close
case _: ConnectionClosed ⇒ context stop self

}
}

}

The first step of connecting to a remote address is sending a Connect message to the TCP manager; in addition
to the simplest form shown above there is also the possibility to specify a local InetSocketAddress to bind
to and a list of socket options to apply.

Note: The SO_NODELAY (TCP_NODELAY on Windows) socket option defaults to true in Akka, indepen-
dently of the OS default settings. This setting disables Nagle’s algorithm, considerably improving latency for
most applications. This setting could be overridden by passing SO.TcpNoDelay(false) in the list of socket
options of the Connect message.

The TCP manager will then reply either with a CommandFailed or it will spawn an internal actor representing
the new connection. This new actor will then send a Connected message to the original sender of the Connect
message.

In order to activate the new connection a Register message must be sent to the connection actor, informing
that one about who shall receive data from the socket. Before this step is done the connection cannot be used, and
there is an internal timeout after which the connection actor will shut itself down if no Register message is
received.

The connection actor watches the registered handler and closes the connection when that one terminates, thereby
cleaning up all internal resources associated with that connection.

The actor in the example above uses become to switch from unconnected to connected operation, demonstrating
the commands and events which are observed in that state. For a discussion on CommandFailed see Throttling
Reads and Writes below. ConnectionClosed is a trait, which marks the different connection close events.
The last line handles all connection close events in the same way. It is possible to listen for more fine-grained
connection close events, see Closing Connections below.

5.7.2 Accepting connections

class Server extends Actor {

import Tcp._
import context.system

IO(Tcp) ! Bind(self, new InetSocketAddress("localhost", 0))

5.7. Using TCP 246

Akka Scala Documentation, Release 2.2.5

def receive = {
case b @ Bound(localAddress) ⇒
// do some logging or setup ...

case CommandFailed(_: Bind) ⇒ context stop self

case c @ Connected(remote, local) ⇒
val handler = context.actorOf(Props[SimplisticHandler])
val connection = sender
connection ! Register(handler)

}

}

To create a TCP server and listen for inbound connections, a Bind command has to be sent to the TCP manager.
This will instruct the TCP manager to listen for TCP connections on a particular InetSocketAddress; the
port may be specified as 0 in order to bind to a random port.

The actor sending the Bind message will receive a Bound message signalling that the server is ready to accept
incoming connections; this message also contains the InetSocketAddress to which the socket was actually
bound (i.e. resolved IP address and correct port number).

From this point forward the process of handling connections is the same as for outgoing connections. The example
demonstrates that handling the reads from a certain connection can be delegated to another actor by naming it as
the handler when sending the Register message. Writes can be sent from any actor in the system to the
connection actor (i.e. the actor which sent the Connected message). The simplistic handler is defined as:

class SimplisticHandler extends Actor {
import Tcp._
def receive = {
case Received(data) ⇒ sender ! Write(data)
case PeerClosed ⇒ context stop self

}
}

For a more complete sample which also takes into account the possibility of failures when sending please see
Throttling Reads and Writes below.

The only difference to outgoing connections is that the internal actor managing the listen port—the sender of the
Bound message—watches the actor which was named as the recipient for Connected messages in the Bind
message. When that actor terminates the listen port will be closed and all resources associated with it will be
released; existing connections will not be terminated at this point.

5.7.3 Closing connections

A connection can be closed by sending one of the commands Close, ConfirmedClose or Abort to the
connection actor.

Closewill close the connection by sending a FINmessage, but without waiting for confirmation from the remote
endpoint. Pending writes will be flushed. If the close is successful, the listener will be notified with Closed.

ConfirmedClose will close the sending direction of the connection by sending a FIN message, but data will
continue to be received until the remote endpoint closes the connection, too. Pending writes will be flushed. If the
close is successful, the listener will be notified with ConfirmedClosed.

Abort will immediately terminate the connection by sending a RST message to the remote endpoint. Pending
writes will be not flushed. If the close is successful, the listener will be notified with Aborted.

PeerClosed will be sent to the listener if the connection has been closed by the remote endpoint. Per default,
the connection will then automatically be closed from this endpoint as well. To support half-closed connections
set the keepOpenOnPeerClosed member of the Register message to true in which case the connection
stays open until it receives one of the above close commands.

5.7. Using TCP 247

Akka Scala Documentation, Release 2.2.5

ErrorClosed will be sent to the listener whenever an error happened that forced the connection to be closed.

All close notifications are sub-types of ConnectionClosed so listeners who do not need fine-grained close
events may handle all close events in the same way.

5.7.4 Writing to a connection

Once a connection has been established data can be sent to it from any actor in the form of a
Tcp.WriteCommand. Tcp.WriteCommand is an abstract class with three concrete implementations:

Tcp.Write The simplest WriteCommand implementation which wraps a ByteString instance and an “ack”
event. A ByteString (as explained in this section) models one or more chunks of immutable in-memory
data with a maximum (total) size of 2 GB (2^31 bytes).

Tcp.WriteFile If you want to send “raw” data from a file you can do so efficiently with the Tcp.WriteFile
command. This allows you do designate a (contiguous) chunk of on-disk bytes for sending across the
connection without the need to first load them into the JVM memory. As such Tcp.WriteFile can
“hold” more than 2GB of data and an “ack” event if required.

Tcp.CompoundWrite Sometimes you might want to group (or interleave) several Tcp.Write and/or
Tcp.WriteFile commands into one atomic write command which gets written to the connection in
one go. The Tcp.CompoundWrite allows you to do just that and offers three benefits:

1. As explained in the following section the TCP connection actor can only handle one single write
command at a time. By combining several writes into one CompoundWrite you can have them be
sent across the connection with minimum overhead and without the need to spoon feed them to the
connection actor via an ACK-based message protocol.

2. Because a WriteCommand is atomic you can be sure that no other actor can “inject” other writes
into your series of writes if you combine them into one single CompoundWrite. In scenarios where
several actors write to the same connection this can be an important feature which can be somewhat
hard to achieve otherwise.

3. The “sub writes” of a CompoundWrite are regular Write or WriteFile commands that them-
selves can request “ack” events. These ACKs are sent out as soon as the respective “sub write” has
been completed. This allows you to attach more than one ACK to a Write or WriteFile (by com-
bining it with an empty write that itself requests an ACK) or to have the connection actor acknowledge
the progress of transmitting the CompoundWrite by sending out intermediate ACKs at arbitrary
points.

5.7.5 Throttling Reads and Writes

The basic model of the TCP connection actor is that it has no internal buffering (i.e. it can only process one write
at a time, meaning it can buffer one write until it has been passed on to the O/S kernel in full). Congestion needs
to be handled at the user level, for which there are three modes of operation:

• ACK-based: every Write command carries an arbitrary object, and if this object is not Tcp.NoAck then
it will be returned to the sender of the Write upon successfully writing all contained data to the socket. If
no other write is initiated before having received this acknowledgement then no failures can happen due to
buffer overrun.

• NACK-based: every write which arrives while a previous write is not yet completed will be replied to with
a CommandFailed message containing the failed write. Just relying on this mechanism requires the
implemented protocol to tolerate skipping writes (e.g. if each write is a valid message on its own and it
is not required that all are delivered). This mode is enabled by setting the useResumeWriting flag to
false within the Register message during connection activation.

• NACK-based with write suspending: this mode is very similar to the NACK-based one, but once a single
write has failed no further writes will succeed until a ResumeWriting message is received. This message
will be answered with a WritingResumed message once the last accepted write has completed. If the

5.7. Using TCP 248

Akka Scala Documentation, Release 2.2.5

actor driving the connection implements buffering and resends the NACK’ed messages after having awaited
the WritingResumed signal then every message is delivered exactly once to the network socket.

These models (with the exception of the second which is rather specialised) are demonstrated in complete exam-
ples below. The full and contiguous source is available on github.

Note: It should be obvious that all these flow control schemes only work between one writer and one connection
actor; as soon as multiple actors send write commands to a single connection no consistent result can be achieved.

5.7.6 ACK-Based Back-Pressure

For proper function of the following example it is important to configure the connection to remain half-open when
the remote side closed its writing end: this allows the example EchoHandler to write all outstanding data back
to the client before fully closing the connection. This is enabled using a flag upon connection activation (observe
the Register message):

case Connected(remote, local) ⇒
log.info("received connection from {}", remote)
val handler = context.actorOf(Props(handlerClass, sender, remote))
sender ! Register(handler, keepOpenOnPeerClosed = true)

With this preparation let us dive into the handler itself:

// storage omitted ...
class SimpleEchoHandler(connection: ActorRef, remote: InetSocketAddress)

extends Actor with ActorLogging {

import Tcp._

// sign death pact: this actor terminates when connection breaks
context watch connection

case object Ack extends Event

def receive = {
case Received(data) ⇒
buffer(data)
connection ! Write(data, Ack)

context.become({
case Received(data) ⇒ buffer(data)
case Ack ⇒ acknowledge()
case PeerClosed ⇒ closing = true

}, discardOld = false)

case PeerClosed ⇒ context stop self
}

// storage omitted ...
}

The principle is simple: when having written a chunk always wait for the Ack to come back before sending the
next chunk. While waiting we switch behavior such that new incoming data are buffered. The helper functions
used are a bit lengthy but not complicated:

private def buffer(data: ByteString): Unit = {
storage :+= data
stored += data.size

if (stored > maxStored) {
log.warning(s"drop connection to [$remote] (buffer overrun)")
context stop self

5.7. Using TCP 249

http://github.com/akka/akka/tree/v2.2.5/akka-docs/rst/scala/code/docs/io/EchoServer.scala

Akka Scala Documentation, Release 2.2.5

} else if (stored > highWatermark) {
log.debug(s"suspending reading")
connection ! SuspendReading
suspended = true

}
}

private def acknowledge(): Unit = {
require(storage.nonEmpty, "storage was empty")

val size = storage(0).size
stored -= size
transferred += size

storage = storage drop 1

if (suspended && stored < lowWatermark) {
log.debug("resuming reading")
connection ! ResumeReading
suspended = false

}

if (storage.isEmpty) {
if (closing) context stop self
else context.unbecome()

} else connection ! Write(storage(0), Ack)
}

The most interesting part is probably the last: an Ack removes the oldest data chunk from the buffer, and if that
was the last chunk then we either close the connection (if the peer closed its half already) or return to the idle
behavior; otherwise we just send the next buffered chunk and stay waiting for the next Ack.

Back-pressure can be propagated also across the reading side back to the writer on the other end of the connection
by sending the SuspendReading command to the connection actor. This will lead to no data being read from
the socket anymore (although this does happen after a delay because it takes some time until the connection actor
processes this command, hence appropriate head-room in the buffer should be present), which in turn will lead
to the O/S kernel buffer filling up on our end, then the TCP window mechanism will stop the remote side from
writing, filling up its write buffer, until finally the writer on the other side cannot push any data into the socket
anymore. This is how end-to-end back-pressure is realized across a TCP connection.

5.7.7 NACK-Based Back-Pressure with Write Suspending

class EchoHandler(connection: ActorRef, remote: InetSocketAddress)
extends Actor with ActorLogging {

import Tcp._

case class Ack(offset: Int) extends Event

// sign death pact: this actor terminates when connection breaks
context watch connection

// start out in optimistic write-through mode
def receive = writing

def writing: Receive = {
case Received(data) ⇒
connection ! Write(data, Ack(currentOffset))
buffer(data)

case Ack(ack) ⇒

5.7. Using TCP 250

Akka Scala Documentation, Release 2.2.5

acknowledge(ack)

case CommandFailed(Write(_, Ack(ack))) ⇒
connection ! ResumeWriting
context become buffering(ack)

case PeerClosed ⇒
if (storage.isEmpty) context stop self
else context become closing

}

// buffering ...

// closing ...

override def postStop(): Unit = {
log.info(s"transferred $transferred bytes from/to [$remote]")

}

// storage omitted ...
}

// storage omitted ...

The principle here is to keep writing until a CommandFailed is received, using acknowledgements only to
prune the resend buffer. When a such a failure was received, transition into a different state for handling and
handle resending of all queued data:

def buffering(nack: Int): Receive = {
var toAck = 10
var peerClosed = false

{
case Received(data) ⇒ buffer(data)
case WritingResumed ⇒ writeFirst()
case PeerClosed ⇒ peerClosed = true
case Ack(ack) if ack < nack ⇒ acknowledge(ack)
case Ack(ack) ⇒

acknowledge(ack)
if (storage.nonEmpty) {

if (toAck > 0) {
// stay in ACK-based mode for a while
writeFirst()
toAck -= 1

} else {
// then return to NACK-based again
writeAll()
context become (if (peerClosed) closing else writing)

}
} else if (peerClosed) context stop self
else context become writing

}
}

It should be noted that all writes which are currently buffered have also been sent to the connection actor upon
entering this state, which means that the ResumeWriting message is enqueued after those writes, leading to
the reception of all outstanding CommandFailed messages (which are ignored in this state) before receiving
the WritingResumed signal. That latter message is sent by the connection actor only once the internally
queued write has been fully completed, meaning that a subsequent write will not fail. This is exploited by the
EchoHandler to switch to an ACK-based approach for the first ten writes after a failure before resuming the
optimistic write-through behavior.

5.7. Using TCP 251

Akka Scala Documentation, Release 2.2.5

def closing: Receive = {
case CommandFailed(_: Write) ⇒
connection ! ResumeWriting
context.become({

case WritingResumed ⇒
writeAll()
context.unbecome()

case ack: Int ⇒ acknowledge(ack)

}, discardOld = false)

case Ack(ack) ⇒
acknowledge(ack)
if (storage.isEmpty) context stop self

}

Closing the connection while still sending all data is a bit more involved than in the ACK-based approach: the
idea is to always send all outstanding messages and acknowledge all successful writes, and if a failure happens
then switch behavior to await the WritingResumed event and start over.

The helper functions are very similar to the ACK-based case:

private def buffer(data: ByteString): Unit = {
storage :+= data
stored += data.size

if (stored > maxStored) {
log.warning(s"drop connection to [$remote] (buffer overrun)")
context stop self

} else if (stored > highWatermark) {
log.debug(s"suspending reading at $currentOffset")
connection ! SuspendReading
suspended = true

}
}

private def acknowledge(ack: Int): Unit = {
require(ack == storageOffset, s"received ack $ack at $storageOffset")
require(storage.nonEmpty, s"storage was empty at ack $ack")

val size = storage(0).size
stored -= size
transferred += size

storageOffset += 1
storage = storage drop 1

if (suspended && stored < lowWatermark) {
log.debug("resuming reading")
connection ! ResumeReading
suspended = false

}
}

5.7.8 Usage Example: TcpPipelineHandler and SSL

This example shows the different parts described above working together:

5.7. Using TCP 252

Akka Scala Documentation, Release 2.2.5

class AkkaSslServer(local: InetSocketAddress) extends Actor with ActorLogging {

import Tcp._

implicit def system = context.system
IO(Tcp) ! Bind(self, local)

def receive: Receive = {
case _: Bound ⇒

context.become(bound(sender))
}

def bound(listener: ActorRef): Receive = {
case Connected(remote, _) ⇒

val init = TcpPipelineHandler.withLogger(log,
new StringByteStringAdapter("utf-8") >>
new DelimiterFraming(maxSize = 1024, delimiter = ByteString('\n'),

includeDelimiter = true) >>
new TcpReadWriteAdapter >>
new SslTlsSupport(sslEngine(remote, client = false)) >>
new BackpressureBuffer(lowBytes = 100, highBytes = 1000, maxBytes = 1000000))

val connection = sender
val handler = context.actorOf(Props(new AkkaSslHandler(init)).withDeploy(Deploy.local))
val pipeline = context.actorOf(TcpPipelineHandler.props(

init, connection, handler).withDeploy(Deploy.local))

connection ! Tcp.Register(pipeline)
}

}

The actor above binds to a local port and registers itself as the handler for new connections. When a new con-
nection comes in it will create a javax.net.ssl.SSLEngine (details not shown here since they vary widely
for different setups, please refer to the JDK documentation) and wrap that in an SslTlsSupport pipeline stage
(which is included in akka-actor).

This sample demonstrates a few more things: below the SSL pipeline stage we have inserted a backpressure
buffer which will generate a HighWatermarkReached event to tell the upper stages to suspend writing and
a LowWatermarkReached when they can resume writing. The implementation is very similar to the NACK-
based backpressure approach presented above, please refer to the API docs for details on its usage. Above the SSL
stage comes an adapter which extracts only the payload data from the TCP commands and events, i.e. it speaks
ByteString above. The resulting byte streams are broken into frames by a DelimiterFraming stage which
chops them up on newline characters. The top-most stage then converts between String and UTF-8 encoded
ByteString.

As a result the pipeline will accept simple String commands, encode them using UTF-8, delimit them with
newlines (which are expected to be already present in the sending direction), transform them into TCP commands
and events, encrypt them and send them off to the connection actor while buffering writes.

This pipeline is driven by a TcpPipelineHandler actor which is also included in akka-actor. In order
to capture the generic command and event types consumed and emitted by that actor we need to create a wrap-
per—the nested Init class—which also provides the the pipeline context needed by the supplied pipeline; in this
case we use the withLogger convenience method which supplies a context that implements HasLogger and
HasActorContext and should be sufficient for typical pipelines. With those things bundled up all that remains
is creating a TcpPipelineHandler and registering that one as the recipient of inbound traffic from the TCP
connection. The pipeline handler is instructed to send the decrypted payload data to the following actor:

class AkkaSslHandler(init: Init[WithinActorContext, String, String])
extends Actor with ActorLogging {

def receive = {
case init.Event(data) ⇒
val input = data.dropRight(1)

5.7. Using TCP 253

Akka Scala Documentation, Release 2.2.5

log.debug("akka-io Server received {} from {}", input, sender)
val response = serverResponse(input)
sender ! init.Command(response)
log.debug("akka-io Server sent: {}", response.dropRight(1))

case _: Tcp.ConnectionClosed ⇒ context.stop(self)
}

}

This actor computes a response and replies by sending back a String. It should be noted that communication
with the TcpPipelineHandler wraps commands and events in the inner types of the init object in order to
keep things well separated.

Warning: The SslTlsSupport currently does not support using a Tcp.WriteCommand other than
Tcp.Write, like for example Tcp.WriteFile. It also doesn’t support messages that are larger than
the size of the send buffer on the socket. Trying to send such a message will result in a CommandFailed. If
you need to send large messages over SSL, then they have to be sent in chunks.

5.8 Using UDP

Warning: The IO implementation is marked as “experimental” as of its introduction in Akka 2.2.0. We
will continue to improve this API based on our users’ feedback, which implies that while we try to keep
incompatible changes to a minimum the binary compatibility guarantee for maintenance releases does not
apply to the contents of the akka.io package.

UDP is a connectionless datagram protocol which offers two different ways of communication on the JDK level:

• sockets which are free to send datagrams to any destination and receive datagrams from any origin

• sockets which are restricted to communication with one specific remote socket address

In the low-level API the distinction is made—confusingly—by whether or not connect has been called on the
socket (even when connect has been called the protocol is still connectionless). These two forms of UDP usage
are offered using distinct IO extensions described below.

5.8.1 Unconnected UDP

Simple Send

class SimpleSender(remote: InetSocketAddress) extends Actor {
import context.system
IO(Udp) ! Udp.SimpleSender

def receive = {
case Udp.SimpleSenderReady ⇒

context.become(ready(sender))
}

def ready(send: ActorRef): Receive = {
case msg: String ⇒

send ! Udp.Send(ByteString(msg), remote)
}

}

The simplest form of UDP usage is to just send datagrams without the need of getting a reply. To this end a “simple
sender” facility is provided as demonstrated above. The UDP extension is queried using the SimpleSender
message, which is answered by a SimpleSenderReady notification. The sender of this message is the newly

5.8. Using UDP 254

Akka Scala Documentation, Release 2.2.5

created sender actor which from this point onward can be used to send datagrams to arbitrary destinations; in this
example it will just send any UTF-8 encoded String it receives to a predefined remote address.

Note: The simple sender will not shut itself down because it cannot know when you are done with it. You will
need to send it a PoisonPill when you want to close the ephemeral port the sender is bound to.

Bind (and Send)

class Listener(nextActor: ActorRef) extends Actor {
import context.system
IO(Udp) ! Udp.Bind(self, new InetSocketAddress("localhost", 0))

def receive = {
case Udp.Bound(local) ⇒
context.become(ready(sender))

}

def ready(socket: ActorRef): Receive = {
case Udp.Received(data, remote) ⇒

val processed = // parse data etc., e.g. using PipelineStage
socket ! Udp.Send(data, remote) // example server echoes back
nextActor ! processed

case Udp.Unbind ⇒ socket ! Udp.Unbind
case Udp.Unbound ⇒ context.stop(self)

}
}

If you want to implement a UDP server which listens on a socket for incoming datagrams then you need to use the
Bind command as shown above. The local address specified may have a zero port in which case the operating
system will automatically choose a free port and assign it to the new socket. Which port was actually bound can
be found out by inspecting the Bound message.

The sender of the Bound message is the actor which manages the new socket. Sending datagrams is achieved by
using the Send message type and the socket can be closed by sending a Unbind command, in which case the
socket actor will reply with a Unbound notification.

Received datagrams are sent to the actor designated in the Bind message, whereas the Bound message will be
sent to the sender of the Bind.

5.8.2 Connected UDP

The service provided by the connection based UDP API is similar to the bind-and-send service we saw earlier, but
the main difference is that a connection is only able to send to the remoteAddress it was connected to, and
will receive datagrams only from that address.

class Connected(remote: InetSocketAddress) extends Actor {
import context.system
IO(UdpConnected) ! UdpConnected.Connect(self, remote)

def receive = {
case UdpConnected.Connected ⇒
context.become(ready(sender))

}

def ready(connection: ActorRef): Receive = {
case UdpConnected.Received(data) ⇒
// process data, send it on, etc.

case msg: String ⇒
connection ! UdpConnected.Send(ByteString(msg))

case d @ UdpConnected.Disconnect ⇒ connection ! d

5.8. Using UDP 255

Akka Scala Documentation, Release 2.2.5

case UdpConnected.Disconnected ⇒ context.stop(self)
}

}

Consequently the example shown here looks quite similar to the previous one, the biggest difference is the absence
of remote address information in Send and Received messages.

Note: There is a small performance benefit in using connection based UDP API over the connectionless one. If
there is a SecurityManager enabled on the system, every connectionless message send has to go through a security
check, while in the case of connection-based UDP the security check is cached after connect, thus writes do not
suffer an additional performance penalty.

5.9 ZeroMQ

Akka provides a ZeroMQ module which abstracts a ZeroMQ connection and therefore allows interaction between
Akka actors to take place over ZeroMQ connections. The messages can be of a proprietary format or they can be
defined using Protobuf. The socket actor is fault-tolerant by default and when you use the newSocket method to
create new sockets it will properly reinitialize the socket.

ZeroMQ is very opinionated when it comes to multi-threading so configuration option akka.zeromq.socket-
dispatcher always needs to be configured to a PinnedDispatcher, because the actual ZeroMQ socket can only
be accessed by the thread that created it.

The ZeroMQ module for Akka is written against an API introduced in JZMQ, which uses JNI to interact with
the native ZeroMQ library. Instead of using JZMQ, the module uses ZeroMQ binding for Scala that uses the
native ZeroMQ library through JNA. In other words, the only native library that this module requires is the native
ZeroMQ library. The benefit of the scala library is that you don’t need to compile and manage native dependencies
at the cost of some runtime performance. The scala-bindings are compatible with the JNI bindings so they are a
drop-in replacement, in case you really need to get that extra bit of performance out.

Note: The currently used version of zeromq-scala-bindings is only compatible with zeromq 2; zeromq
3 is not supported.

5.9.1 Connection

ZeroMQ supports multiple connectivity patterns, each aimed to meet a different set of requirements. Cur-
rently, this module supports publisher-subscriber connections and connections based on dealers and routers.
For connecting or accepting connections, a socket must be created. Sockets are always created using the
akka.zeromq.ZeroMQExtension, for example:

import akka.zeromq.ZeroMQExtension
val pubSocket = ZeroMQExtension(system).newSocket(SocketType.Pub,

Bind("tcp://127.0.0.1:21231"))

Above examples will create a ZeroMQ Publisher socket that is Bound to the port 21231 on localhost.

Similarly you can create a subscription socket, with a listener, that subscribes to all messages from the publisher
using:

import akka.zeromq._

class Listener extends Actor {
def receive: Receive = {
case Connecting ⇒ //...
case m: ZMQMessage ⇒ //...
case _ ⇒ //...

}

5.9. ZeroMQ 256

Akka Scala Documentation, Release 2.2.5

}

val listener = system.actorOf(Props(classOf[Listener], this))
val subSocket = ZeroMQExtension(system).newSocket(SocketType.Sub,

Listener(listener), Connect("tcp://127.0.0.1:21231"), SubscribeAll)

The following sub-sections describe the supported connection patterns and how they can be used in an Akka
environment. However, for a comprehensive discussion of connection patterns, please refer to ZeroMQ – The
Guide.

Publisher-Subscriber Connection

In a publisher-subscriber (pub-sub) connection, the publisher accepts one or more subscribers. Each subscriber
shall subscribe to one or more topics, whereas the publisher publishes messages to a set of topics. Also, a sub-
scriber can subscribe to all available topics. In an Akka environment, pub-sub connections shall be used when an
actor sends messages to one or more actors that do not interact with the actor that sent the message.

When you’re using zeromq pub/sub you should be aware that it needs multicast - check your cloud - to work
properly and that the filtering of events for topics happens client side, so all events are always broadcasted to every
subscriber.

An actor is subscribed to a topic as follows:

val subTopicSocket = ZeroMQExtension(system).newSocket(SocketType.Sub,
Listener(listener), Connect("tcp://127.0.0.1:21231"), Subscribe("foo.bar"))

It is a prefix match so it is subscribed to all topics starting with foo.bar. Note that if the given string is empty
or SubscribeAll is used, the actor is subscribed to all topics.

To unsubscribe from a topic you do the following:

subTopicSocket ! Unsubscribe("foo.bar")

To publish messages to a topic you must use two Frames with the topic in the first frame.

pubSocket ! ZMQMessage(ByteString("foo.bar"), ByteString(payload))

Pub-Sub in Action

The following example illustrates one publisher with two subscribers.

The publisher monitors current heap usage and system load and periodically publishes Heap events on the
"health.heap" topic and Load events on the "health.load" topic.

import akka.zeromq._
import akka.actor.Actor
import akka.actor.Props
import akka.actor.ActorLogging
import akka.serialization.SerializationExtension
import java.lang.management.ManagementFactory

case object Tick
case class Heap(timestamp: Long, used: Long, max: Long)
case class Load(timestamp: Long, loadAverage: Double)

class HealthProbe extends Actor {

val pubSocket = ZeroMQExtension(context.system).newSocket(SocketType.Pub,
Bind("tcp://127.0.0.1:1235"))

val memory = ManagementFactory.getMemoryMXBean
val os = ManagementFactory.getOperatingSystemMXBean
val ser = SerializationExtension(context.system)

5.9. ZeroMQ 257

http://zguide.zeromq.org/page:all
http://zguide.zeromq.org/page:all

Akka Scala Documentation, Release 2.2.5

import context.dispatcher

override def preStart() {
context.system.scheduler.schedule(1 second, 1 second, self, Tick)

}

override def postRestart(reason: Throwable) {
// don't call preStart, only schedule once

}

def receive: Receive = {
case Tick ⇒

val currentHeap = memory.getHeapMemoryUsage
val timestamp = System.currentTimeMillis

// use akka SerializationExtension to convert to bytes
val heapPayload = ser.serialize(Heap(timestamp, currentHeap.getUsed,

currentHeap.getMax)).get
// the first frame is the topic, second is the message
pubSocket ! ZMQMessage(ByteString("health.heap"), ByteString(heapPayload))

// use akka SerializationExtension to convert to bytes
val loadPayload = ser.serialize(Load(timestamp, os.getSystemLoadAverage)).get
// the first frame is the topic, second is the message
pubSocket ! ZMQMessage(ByteString("health.load"), ByteString(loadPayload))

}
}

system.actorOf(Props[HealthProbe], name = "health")

Let’s add one subscriber that logs the information. It subscribes to all topics starting with "health", i.e. both
Heap and Load events.

class Logger extends Actor with ActorLogging {

ZeroMQExtension(context.system).newSocket(SocketType.Sub, Listener(self),
Connect("tcp://127.0.0.1:1235"), Subscribe("health"))

val ser = SerializationExtension(context.system)
val timestampFormat = new SimpleDateFormat("HH:mm:ss.SSS")

def receive = {
// the first frame is the topic, second is the message
case m: ZMQMessage if m.frames(0).utf8String == "health.heap" ⇒

val Heap(timestamp, used, max) = ser.deserialize(m.frames(1).toArray,
classOf[Heap]).get

log.info("Used heap {} bytes, at {}", used,
timestampFormat.format(new Date(timestamp)))

case m: ZMQMessage if m.frames(0).utf8String == "health.load" ⇒
val Load(timestamp, loadAverage) = ser.deserialize(m.frames(1).toArray,

classOf[Load]).get
log.info("Load average {}, at {}", loadAverage,

timestampFormat.format(new Date(timestamp)))
}

}

system.actorOf(Props[Logger], name = "logger")

Another subscriber keep track of used heap and warns if too much heap is used. It only subscribes to Heap events.

class HeapAlerter extends Actor with ActorLogging {

ZeroMQExtension(context.system).newSocket(SocketType.Sub,

5.9. ZeroMQ 258

Akka Scala Documentation, Release 2.2.5

Listener(self), Connect("tcp://127.0.0.1:1235"), Subscribe("health.heap"))
val ser = SerializationExtension(context.system)
var count = 0

def receive = {
// the first frame is the topic, second is the message
case m: ZMQMessage if m.frames(0).utf8String == "health.heap" ⇒
val Heap(timestamp, used, max) =

ser.deserialize(m.frames(1).toArray, classOf[Heap]).get
if ((used.toDouble / max) > 0.9) count += 1
else count = 0
if (count > 10) log.warning("Need more memory, using {} %",

(100.0 * used / max))
}

}

system.actorOf(Props[HeapAlerter], name = "alerter")

Router-Dealer Connection

While Pub/Sub is nice the real advantage of zeromq is that it is a “lego-box” for reliable messaging. And because
there are so many integrations the multi-language support is fantastic. When you’re using ZeroMQ to integrate
many systems you’ll probably need to build your own ZeroMQ devices. This is where the router and dealer socket
types come in handy. With those socket types you can build your own reliable pub sub broker that uses TCP/IP
and does publisher side filtering of events.

To create a Router socket that has a high watermark configured, you would do:

val highWatermarkSocket = ZeroMQExtension(system).newSocket(
SocketType.Router,
Listener(listener),
Bind("tcp://127.0.0.1:21233"),
HighWatermark(50000))

The akka-zeromq module accepts most if not all the available configuration options for a zeromq socket.

Push-Pull Connection

Akka ZeroMQ module supports Push-Pull connections.

You can create a Push connection through the:

def newPushSocket(socketParameters: Array[SocketOption]): ActorRef

You can create a Pull connection through the:

def newPullSocket(socketParameters: Array[SocketOption]): ActorRef

More documentation and examples will follow soon.

Rep-Req Connection

Akka ZeroMQ module supports Rep-Req connections.

You can create a Rep connection through the:

def newRepSocket(socketParameters: Array[SocketOption]): ActorRef

You can create a Req connection through the:

5.9. ZeroMQ 259

Akka Scala Documentation, Release 2.2.5

def newReqSocket(socketParameters: Array[SocketOption]): ActorRef

More documentation and examples will follow soon.

5.10 Camel

5.10.1 Introduction

The akka-camel module allows Untyped Actors to receive and send messages over a great variety of protocols and
APIs. In addition to the native Scala and Java actor API, actors can now exchange messages with other systems
over large number of protocols and APIs such as HTTP, SOAP, TCP, FTP, SMTP or JMS, to mention a few. At
the moment, approximately 80 protocols and APIs are supported.

Apache Camel

The akka-camel module is based on Apache Camel, a powerful and light-weight integration framework for the
JVM. For an introduction to Apache Camel you may want to read this Apache Camel article. Camel comes with
a large number of components that provide bindings to different protocols and APIs. The camel-extra project
provides further components.

Consumer

Usage of Camel’s integration components in Akka is essentially a one-liner. Here’s an example.

import akka.camel.{ CamelMessage, Consumer }

class MyEndpoint extends Consumer {
def endpointUri = "mina2:tcp://localhost:6200?textline=true"

def receive = {
case msg: CamelMessage ⇒ { /* ... */ }
case _ ⇒ { /* ... */ }

}
}

// start and expose actor via tcp
import akka.actor.{ ActorSystem, Props }

val system = ActorSystem("some-system")
val mina = system.actorOf(Props[MyEndpoint])

The above example exposes an actor over a TCP endpoint via Apache Camel’s Mina component. The actor
implements the endpointUri method to define an endpoint from which it can receive messages. After starting
the actor, TCP clients can immediately send messages to and receive responses from that actor. If the message
exchange should go over HTTP (via Camel’s Jetty component), only the actor’s endpointUri method must be
changed.

import akka.camel.{ CamelMessage, Consumer }

class MyEndpoint extends Consumer {
def endpointUri = "jetty:http://localhost:8877/example"

def receive = {
case msg: CamelMessage ⇒ { /* ... */ }
case _ ⇒ { /* ... */ }

}
}

5.10. Camel 260

http://camel.apache.org/
http://architects.dzone.com/articles/apache-camel-integration
http://camel.apache.org/components.html
http://code.google.com/p/camel-extra/
http://camel.apache.org/mina.html
http://camel.apache.org/jetty.html

Akka Scala Documentation, Release 2.2.5

Producer

Actors can also trigger message exchanges with external systems i.e. produce to Camel endpoints.

import akka.actor.Actor
import akka.camel.{ Producer, Oneway }
import akka.actor.{ ActorSystem, Props }

class Orders extends Actor with Producer with Oneway {
def endpointUri = "jms:queue:Orders"

}

val sys = ActorSystem("some-system")
val orders = sys.actorOf(Props[Orders])

orders ! <order amount="100" currency="PLN" itemId="12345"/>

In the above example, any message sent to this actor will be sent to the JMS queue orders. Producer actors may
choose from the same set of Camel components as Consumer actors do.

CamelMessage

The number of Camel components is constantly increasing. The akka-camel module can support these in a plug-
and-play manner. Just add them to your application’s classpath, define a component-specific endpoint URI and
use it to exchange messages over the component-specific protocols or APIs. This is possible because Camel com-
ponents bind protocol-specific message formats to a Camel-specific normalized message format. The normalized
message format hides protocol-specific details from Akka and makes it therefore very easy to support a large
number of protocols through a uniform Camel component interface. The akka-camel module further converts
mutable Camel messages into immutable representations which are used by Consumer and Producer actors for
pattern matching, transformation, serialization or storage. In the above example of the Orders Producer, the XML
message is put in the body of a newly created Camel Message with an empty set of headers. You can also create a
CamelMessage yourself with the appropriate body and headers as you see fit.

CamelExtension

The akka-camel module is implemented as an Akka Extension, the CamelExtension object. Extensions will
only be loaded once per ActorSystem, which will be managed by Akka. The CamelExtension object
provides access to the Camel trait. The Camel trait in turn provides access to two important Apache Camel
objects, the CamelContext and the ProducerTemplate. Below you can see how you can get access to these Apache
Camel objects.

val system = ActorSystem("some-system")
val camel = CamelExtension(system)
val camelContext = camel.context
val producerTemplate = camel.template

One CamelExtension is only loaded once for every one ActorSystem, which makes it safe to call the
CamelExtension at any point in your code to get to the Apache Camel objects associated with it. There is one
CamelContext and one ProducerTemplate for every one ActorSystem that uses a CamelExtension. Below
an example on how to add the ActiveMQ component to the CamelContext, which is required when you would like
to use the ActiveMQ component.

// import org.apache.activemq.camel.component.ActiveMQComponent
val system = ActorSystem("some-system")
val camel = CamelExtension(system)
val camelContext = camel.context
// camelContext.addComponent("activemq", ActiveMQComponent.activeMQComponent(
// "vm://localhost?broker.persistent=false"))

5.10. Camel 261

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Message.java
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Camel.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Camel.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java

Akka Scala Documentation, Release 2.2.5

The CamelContext joins the lifecycle of the ActorSystem and CamelExtension it is associated with;
the CamelContext is started when the CamelExtension is created, and it is shut down when the associated
ActorSystem is shut down. The same is true for the ProducerTemplate.

The CamelExtension is used by both Producer and Consumer actors to interact with Apache Camel internally.
You can access the CamelExtension inside a Producer or a Consumer using the camel definition, or get
straight at the CamelContext using the camelContext definition. Actors are created and started asynchronously.
When a Consumer actor is created, the Consumer is published at its Camel endpoint (more precisely, the route is
added to the CamelContext from the Endpoint to the actor). When a Producer actor is created, a SendProcessor
and Endpoint are created so that the Producer can send messages to it. Publication is done asynchronously; setting
up an endpoint may still be in progress after you have requested the actor to be created. Some Camel components
can take a while to startup, and in some cases you might want to know when the endpoints are activated and ready
to be used. The Camel trait allows you to find out when the endpoint is activated or deactivated.

import akka.camel.{ CamelMessage, Consumer }
import scala.concurrent.duration._

class MyEndpoint extends Consumer {
def endpointUri = "mina2:tcp://localhost:6200?textline=true"

def receive = {
case msg: CamelMessage ⇒ { /* ... */ }
case _ ⇒ { /* ... */ }

}
}
val system = ActorSystem("some-system")
val camel = CamelExtension(system)
val actorRef = system.actorOf(Props[MyEndpoint])
// get a future reference to the activation of the endpoint of the Consumer Actor
val activationFuture = camel.activationFutureFor(actorRef)(timeout = 10 seconds,

executor = system.dispatcher)

The above code shows that you can get a Future to the activation of the route from the endpoint to the actor,
or you can wait in a blocking fashion on the activation of the route. An ActivationTimeoutException is
thrown if the endpoint could not be activated within the specified timeout. Deactivation works in a similar fashion:

system.stop(actorRef)
// get a future reference to the deactivation of the endpoint of the Consumer Actor
val deactivationFuture = camel.deactivationFutureFor(actorRef)(timeout = 10 seconds,

executor = system.dispatcher)

Deactivation of a Consumer or a Producer actor happens when the actor is terminated. For a Consumer, the route
to the actor is stopped. For a Producer, the SendProcessor is stopped. A DeActivationTimeoutException
is thrown if the associated camel objects could not be deactivated within the specified timeout.

5.10.2 Consumer Actors

For objects to receive messages, they must mixin the Consumer trait. For example, the following actor class
(Consumer1) implements the endpointUri method, which is declared in the Consumer trait, in order to receive
messages from the file:data/input/actor Camel endpoint.

import akka.camel.{ CamelMessage, Consumer }

class Consumer1 extends Consumer {
def endpointUri = "file:data/input/actor"

def receive = {
case msg: CamelMessage ⇒ println("received %s" format msg.bodyAs[String])

}
}

5.10. Camel 262

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/CamelContext.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Endpoint.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/processor/SendProcessor.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Endpoint.java
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Camel.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/processor/SendProcessor.java
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Consumer.scala

Akka Scala Documentation, Release 2.2.5

Whenever a file is put into the data/input/actor directory, its content is picked up by the Camel file component and
sent as message to the actor. Messages consumed by actors from Camel endpoints are of type CamelMessage.
These are immutable representations of Camel messages.

Here’s another example that sets the endpointUri to jetty:http://localhost:8877/camel/default.
It causes Camel’s Jetty component to start an embedded Jetty server, accepting HTTP connections from localhost
on port 8877.

import akka.camel.{ CamelMessage, Consumer }

class Consumer2 extends Consumer {
def endpointUri = "jetty:http://localhost:8877/camel/default"

def receive = {
case msg: CamelMessage ⇒ sender ! ("Hello %s" format msg.bodyAs[String])

}
}

After starting the actor, clients can send messages to that actor by POSTing to
http://localhost:8877/camel/default. The actor sends a response by using the sender !
method. For returning a message body and headers to the HTTP client the response type should be CamelMes-
sage. For any other response type, a new CamelMessage object is created by akka-camel with the actor response
as message body.

Delivery acknowledgements

With in-out message exchanges, clients usually know that a message exchange is done when they receive a re-
ply from a consumer actor. The reply message can be a CamelMessage (or any object which is then internally
converted to a CamelMessage) on success, and a Failure message on failure.

With in-only message exchanges, by default, an exchange is done when a message is added to the consumer actor’s
mailbox. Any failure or exception that occurs during processing of that message by the consumer actor cannot
be reported back to the endpoint in this case. To allow consumer actors to positively or negatively acknowledge
the receipt of a message from an in-only message exchange, they need to override the autoAck method to
return false. In this case, consumer actors must reply either with a special akka.camel.Ack message (positive
acknowledgement) or a akka.actor.Status.Failure (negative acknowledgement).

import akka.camel.{ CamelMessage, Consumer }
import akka.camel.Ack
import akka.actor.Status.Failure

class Consumer3 extends Consumer {
override def autoAck = false

def endpointUri = "jms:queue:test"

def receive = {
case msg: CamelMessage ⇒

sender ! Ack
// on success
// ..
val someException = new Exception("e1")
// on failure
sender ! Failure(someException)

}
}

Consumer timeout

Camel Exchanges (and their corresponding endpoints) that support two-way communications need to wait for a
response from an actor before returning it to the initiating client. For some endpoint types, timeout values can be

5.10. Camel 263

http://camel.apache.org/file2.html
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/CamelMessage.scala
http://camel.apache.org/jetty.html
http://www.eclipse.org/jetty/
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/CamelMessage.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/CamelMessage.scala

Akka Scala Documentation, Release 2.2.5

defined in an endpoint-specific way which is described in the documentation of the individual Camel components.
Another option is to configure timeouts on the level of consumer actors.

Two-way communications between a Camel endpoint and an actor are initiated by sending the request message to
the actor with the ask pattern and the actor replies to the endpoint when the response is ready. The ask request to
the actor can timeout, which will result in the Exchange failing with a TimeoutException set on the failure of the
Exchange. The timeout on the consumer actor can be overridden with the replyTimeout, as shown below.

import akka.camel.{ CamelMessage, Consumer }
import scala.concurrent.duration._

class Consumer4 extends Consumer {
def endpointUri = "jetty:http://localhost:8877/camel/default"
override def replyTimeout = 500 millis
def receive = {
case msg: CamelMessage ⇒ sender ! ("Hello %s" format msg.bodyAs[String])

}
}

5.10.3 Producer Actors

For sending messages to Camel endpoints, actors need to mixin the Producer trait and implement the endpointUri
method.

import akka.actor.Actor
import akka.actor.{ Props, ActorSystem }
import akka.camel.{ Producer, CamelMessage }
import akka.util.Timeout

class Producer1 extends Actor with Producer {
def endpointUri = "http://localhost:8080/news"

}

Producer1 inherits a default implementation of the receive method from the Producer trait. To cus-
tomize a producer actor’s default behavior you must override the Producer.transformResponse and Pro-
ducer.transformOutgoingMessage methods. This is explained later in more detail. Producer Actors cannot over-
ride the default Producer.receive method.

Any message sent to a Producer actor will be sent to the associated Camel endpoint, in the above example to
http://localhost:8080/news. The Producer always sends messages asynchronously. Response mes-
sages (if supported by the configured endpoint) will, by default, be returned to the original sender. The following
example uses the ask pattern to send a message to a Producer actor and waits for a response.

import akka.pattern.ask
import scala.concurrent.duration._
implicit val timeout = Timeout(10 seconds)

val system = ActorSystem("some-system")
val producer = system.actorOf(Props[Producer1])
val future = producer.ask("some request").mapTo[CamelMessage]

The future contains the response CamelMessage, or an AkkaCamelException when an error occurred, which
contains the headers of the response.

Custom Processing

Instead of replying to the initial sender, producer actors can implement custom response processing by overriding
the routeResponse method. In the following example, the response message is forwarded to a target actor instead
of being replied to the original sender.

5.10. Camel 264

http://camel.apache.org/components.html
http://github.com/akka/akka/tree/v2.2.5/akka-actor/src/main/scala/akka/pattern/AskSupport.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Exchange.java
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/Exchange.java
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala

Akka Scala Documentation, Release 2.2.5

import akka.actor.{ Actor, ActorRef }
import akka.camel.{ Producer, CamelMessage }
import akka.actor.{ Props, ActorSystem }

class ResponseReceiver extends Actor {
def receive = {
case msg: CamelMessage ⇒
// do something with the forwarded response

}
}

class Forwarder(uri: String, target: ActorRef) extends Actor with Producer {
def endpointUri = uri

override def routeResponse(msg: Any) { target forward msg }
}
val system = ActorSystem("some-system")
val receiver = system.actorOf(Props[ResponseReceiver])
val forwardResponse = system.actorOf(

Props(classOf[Forwarder], this, "http://localhost:8080/news/akka", receiver))
// the Forwarder sends out a request to the web page and forwards the response to
// the ResponseReceiver
forwardResponse ! "some request"

Before producing messages to endpoints, producer actors can pre-process them by overriding the Pro-
ducer.transformOutgoingMessage method.

import akka.actor.Actor
import akka.camel.{ Producer, CamelMessage }

class Transformer(uri: String) extends Actor with Producer {
def endpointUri = uri

def upperCase(msg: CamelMessage) = msg.mapBody {
body: String ⇒ body.toUpperCase

}

override def transformOutgoingMessage(msg: Any) = msg match {
case msg: CamelMessage ⇒ upperCase(msg)

}
}

Producer configuration options

The interaction of producer actors with Camel endpoints can be configured to be one-way or two-way (by initiating
in-only or in-out message exchanges, respectively). By default, the producer initiates an in-out message exchange
with the endpoint. For initiating an in-only exchange, producer actors have to override the oneway method to
return true.

import akka.actor.{ Actor, Props, ActorSystem }
import akka.camel.Producer

class OnewaySender(uri: String) extends Actor with Producer {
def endpointUri = uri
override def oneway: Boolean = true

}

val system = ActorSystem("some-system")
val producer = system.actorOf(Props(classOf[OnewaySender], this, "activemq:FOO.BAR"))
producer ! "Some message"

5.10. Camel 265

http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala

Akka Scala Documentation, Release 2.2.5

Message correlation

To correlate request with response messages, applications can set the Message.MessageExchangeId message
header.

import akka.camel.{ Producer, CamelMessage }
import akka.actor.Actor
import akka.actor.{ Props, ActorSystem }

class Producer2 extends Actor with Producer {
def endpointUri = "activemq:FOO.BAR"

}
val system = ActorSystem("some-system")
val producer = system.actorOf(Props[Producer2])

producer ! CamelMessage("bar", Map(CamelMessage.MessageExchangeId -> "123"))

ProducerTemplate

The Producer trait is a very convenient way for actors to produce messages to Camel endpoints. Actors may also
use a Camel ProducerTemplate for producing messages to endpoints.

import akka.actor.Actor
class MyActor extends Actor {

def receive = {
case msg ⇒

val template = CamelExtension(context.system).template
template.sendBody("direct:news", msg)

}
}

For initiating a a two-way message exchange, one of the ProducerTemplate.request* methods must be
used.

import akka.actor.Actor
class MyActor extends Actor {

def receive = {
case msg ⇒

val template = CamelExtension(context.system).template
sender ! template.requestBody("direct:news", msg)

}
}

5.10.4 Asynchronous routing

In-out message exchanges between endpoints and actors are designed to be asynchronous. This is the case for
both, consumer and producer actors.

• A consumer endpoint sends request messages to its consumer actor using the ! (tell) operator and the actor
returns responses with sender ! once they are ready.

• A producer actor sends request messages to its endpoint using Camel’s asynchronous routing engine. Asyn-
chronous responses are wrapped and added to the producer actor’s mailbox for later processing. By default,
response messages are returned to the initial sender but this can be overridden by Producer implementations
(see also description of the routeResponse method in Custom Processing).

However, asynchronous two-way message exchanges, without allocating a thread for the full duration of exchange,
cannot be generically supported by Camel’s asynchronous routing engine alone. This must be supported by the
individual Camel components (from which endpoints are created) as well. They must be able to suspend any work
started for request processing (thereby freeing threads to do other work) and resume processing when the response
is ready. This is currently the case for a subset of components such as the Jetty component. All other Camel

5.10. Camel 266

http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/Producer.scala
https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/ProducerTemplate.java
http://camel.apache.org/components.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/jetty.html

Akka Scala Documentation, Release 2.2.5

components can still be used, of course, but they will cause allocation of a thread for the duration of an in-out
message exchange. There’s also a Asynchronous routing and transformation example that implements both, an
asynchronous consumer and an asynchronous producer, with the jetty component.

If the used Camel component is blocking it might be necessary to use a separate dispatcher for the producer. The
Camel processor is invoked by a child actor of the producer and the dispatcher can be defined in the deployment
section of the configuration. For example, if your producer actor has path /user/integration/output the
dispatcher of the child actor can be defined with:

akka.actor.deployment {
/integration/output/* {
dispatcher = my-dispatcher

}
}

5.10.5 Custom Camel routes

In all the examples so far, routes to consumer actors have been automatically constructed by akka-camel, when the
actor was started. Although the default route construction templates, used by akka-camel internally, are sufficient
for most use cases, some applications may require more specialized routes to actors. The akka-camel module
provides two mechanisms for customizing routes to actors, which will be explained in this section. These are:

• Usage of Akka Camel components to access actors. Any Camel route can use these components to access
Akka actors.

• Intercepting route construction to actors. This option gives you the ability to change routes that have already
been added to Camel. Consumer actors have a hook into the route definition process which can be used to
change the route.

Akka Camel components

Akka actors can be accessed from Camel routes using the actor Camel component. This component can be used
to access any Akka actor (not only consumer actors) from Camel routes, as described in the following sections.

Access to actors

To access actors from custom Camel routes, the actor Camel component should be used. It fully supports Camel’s
asynchronous routing engine.

This component accepts the following endpoint URI format:

• [<actor-path>]?<options>

where <actor-path> is the ActorPath to the actor. The <options> are name-value pairs separated by &
(i.e. name1=value1&name2=value2&...).

URI options

The following URI options are supported:

5.10. Camel 267

http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/internal/component/ActorComponent.scala
http://github.com/akka/akka/tree/v2.2.5/akka-camel/src/main/scala/akka/camel/internal/component/ActorComponent.scala
http://camel.apache.org/asynchronous-routing-engine.html

Akka Scala Documentation, Release 2.2.5

Name Type Default Description
replyTimeout Duration false The reply timeout, specified in the same way that you use the

duration in akka, for instance 10 seconds except that in the url it
is handy to use a + between the amount and the unit, like for example
200+millis
See also Consumer timeout.

autoAck Boolean true If set to true, in-only message exchanges are auto-acknowledged
when the message is added to the actor’s mailbox. If set to false,
actors must acknowledge the receipt of the message.
See also Delivery acknowledgements.

Here’s an actor endpoint URI example containing an actor path:

akka://some-system/user/myconsumer?autoAck=false&replyTimeout=100+millis

In the following example, a custom route to an actor is created, using the actor’s path. the akka camel package
contains an implicit toActorRouteDefinition that allows for a route to reference an ActorRef directly
as shown in the below example, The route starts from a Jetty endpoint and ends at the target actor.

import akka.actor.{ Props, ActorSystem, Actor, ActorRef }
import akka.camel.{ CamelMessage, CamelExtension }
import org.apache.camel.builder.RouteBuilder
import akka.camel._
class Responder extends Actor {

def receive = {
case msg: CamelMessage ⇒

sender ! (msg.mapBody {
body: String ⇒ "received %s" format body

})
}

}

class CustomRouteBuilder(system: ActorSystem, responder: ActorRef)
extends RouteBuilder {
def configure {
from("jetty:http://localhost:8877/camel/custom").to(responder)

}
}
val system = ActorSystem("some-system")
val camel = CamelExtension(system)
val responder = system.actorOf(Props[Responder], name = "TestResponder")
camel.context.addRoutes(new CustomRouteBuilder(system, responder))

When a message is received on the jetty endpoint, it is routed to the Responder actor, which in return replies back
to the client of the HTTP request.

Intercepting route construction

The previous section, Akka Camel components, explained how to setup a route to an actor manually. It was the
application’s responsibility to define the route and add it to the current CamelContext. This section explains a
more convenient way to define custom routes: akka-camel is still setting up the routes to consumer actors (and
adds these routes to the current CamelContext) but applications can define extensions to these routes. Extensions
can be defined with Camel’s Java DSL or Scala DSL. For example, an extension could be a custom error handler
that redelivers messages from an endpoint to an actor’s bounded mailbox when the mailbox was full.

The following examples demonstrate how to extend a route to a consumer actor for handling exceptions thrown
by that actor.

import akka.camel.Consumer

import org.apache.camel.builder.Builder
import org.apache.camel.model.RouteDefinition

5.10. Camel 268

http://www.eclipse.org/jetty/
http://camel.apache.org/dsl.html
http://camel.apache.org/scala-dsl.html

Akka Scala Documentation, Release 2.2.5

class ErrorThrowingConsumer(override val endpointUri: String) extends Consumer {
def receive = {
case msg: CamelMessage ⇒ throw new Exception("error: %s" format msg.body)

}
override def onRouteDefinition = (rd) ⇒ rd.onException(classOf[Exception]).
handled(true).transform(Builder.exceptionMessage).end

final override def preRestart(reason: Throwable, message: Option[Any]) {
sender ! Failure(reason)

}
}

The above ErrorThrowingConsumer sends the Failure back to the sender in preRestart because the Exception that
is thrown in the actor would otherwise just crash the actor, by default the actor would be restarted, and the response
would never reach the client of the Consumer.

The akka-camel module creates a RouteDefinition instance by calling from(endpointUri) on a Camel RouteBuilder
(where endpointUri is the endpoint URI of the consumer actor) and passes that instance as argument to the route
definition handler *). The route definition handler then extends the route and returns a ProcessorDefinition (in the
above example, the ProcessorDefinition returned by the end method. See the org.apache.camel.model package for
details). After executing the route definition handler, akka-camel finally calls a to(targetActorUri) on the returned
ProcessorDefinition to complete the route to the consumer actor (where targetActorUri is the actor component
URI as described in Access to actors). If the actor cannot be found, a ActorNotRegisteredException is thrown.

*) Before passing the RouteDefinition instance to the route definition handler, akka-camel may make some further
modifications to it.

5.10.6 Examples

Asynchronous routing and transformation example

This example demonstrates how to implement consumer and producer actors that support Asynchronous routing
with their Camel endpoints. The sample application transforms the content of the Akka homepage, http://akka.io,
by replacing every occurrence of Akka with AKKA. To run this example, add a Boot class that starts the actors.
After starting the Microkernel, direct the browser to http://localhost:8875 and the transformed Akka homepage
should be displayed. Please note that this example will probably not work if you’re behind an HTTP proxy.

The following figure gives an overview how the example actors interact with external systems and with each other.
A browser sends a GET request to http://localhost:8875 which is the published endpoint of the HttpConsumer
actor. The HttpConsumer actor forwards the requests to the HttpProducer actor which retrieves the Akka
homepage from http://akka.io. The retrieved HTML is then forwarded to the HttpTransformer actor which
replaces all occurrences of Akka with AKKA. The transformation result is sent back the HttpConsumer which
finally returns it to the browser.

5.10. Camel 269

https://svn.apache.org/repos/asf/camel/tags/camel-2.8.0/camel-core/src/main/java/org/apache/camel/model/
http://akka.io
http://localhost:8875
http://localhost:8875
http://akka.io

Akka Scala Documentation, Release 2.2.5

Implementing the example actor classes and wiring them together is rather easy as shown in the following snippet.

import org.apache.camel.Exchange
import akka.actor.{ Actor, ActorRef, Props, ActorSystem }
import akka.camel.{ Producer, CamelMessage, Consumer }
import akka.actor.Status.Failure

class HttpConsumer(producer: ActorRef) extends Consumer {
def endpointUri = "jetty:http://0.0.0.0:8875/"

def receive = {
case msg ⇒ producer forward msg

}
}

class HttpProducer(transformer: ActorRef) extends Actor with Producer {
def endpointUri = "jetty://http://akka.io/?bridgeEndpoint=true"

override def transformOutgoingMessage(msg: Any) = msg match {
case msg: CamelMessage ⇒ msg.copy(headers = msg.headers ++

msg.headers(Set(Exchange.HTTP_PATH)))
}

override def routeResponse(msg: Any) { transformer forward msg }
}

class HttpTransformer extends Actor {
def receive = {
case msg: CamelMessage ⇒
sender ! (msg.mapBody { body: Array[Byte] ⇒

new String(body).replaceAll("Akka ", "AKKA ")
})

case msg: Failure ⇒ sender ! msg
}

}

// Create the actors. this can be done in a Boot class so you can
// run the example in the MicroKernel. Just add the three lines below
// to your boot class.
val system = ActorSystem("some-system")
val httpTransformer = system.actorOf(Props[HttpTransformer])
val httpProducer = system.actorOf(Props(classOf[HttpProducer], httpTransformer))
val httpConsumer = system.actorOf(Props(classOf[HttpConsumer], httpProducer))

5.10. Camel 270

Akka Scala Documentation, Release 2.2.5

The jetty endpoints of HttpConsumer and HttpProducer support asynchronous in-out message exchanges and do
not allocate threads for the full duration of the exchange. This is achieved by using Jetty continuations on the
consumer-side and by using Jetty’s asynchronous HTTP client on the producer side. The following high-level
sequence diagram illustrates that.

Custom Camel route example

This section also demonstrates the combined usage of a Producer and a Consumer actor as well as the inclu-
sion of a custom Camel route. The following figure gives an overview.

5.10. Camel 271

http://camel.apache.org/jetty.html
http://wiki.eclipse.org/Jetty/Feature/Continuations
http://wiki.eclipse.org/Jetty/Tutorial/HttpClient

Akka Scala Documentation, Release 2.2.5

• A consumer actor receives a message from an HTTP client

• It forwards the message to another actor that transforms the message (encloses the original message into
hyphens)

• The transformer actor forwards the transformed message to a producer actor

• The producer actor sends the message to a custom Camel route beginning at the direct:welcome end-
point

• A processor (transformer) in the custom Camel route prepends “Welcome” to the original message and
creates a result message

• The producer actor sends the result back to the consumer actor which returns it to the HTTP client

The consumer, transformer and producer actor implementations are as follows.

import akka.actor.{ Actor, ActorRef, Props, ActorSystem }
import akka.camel.{ CamelMessage, Consumer, Producer, CamelExtension }
import org.apache.camel.builder.RouteBuilder
import org.apache.camel.{ Exchange, Processor }

class Consumer3(transformer: ActorRef) extends Actor with Consumer {
def endpointUri = "jetty:http://0.0.0.0:8877/camel/welcome"

def receive = {
// Forward a string representation of the message body to transformer
case msg: CamelMessage ⇒ transformer.forward(msg.bodyAs[String])

}
}

class Transformer(producer: ActorRef) extends Actor {
def receive = {
// example: transform message body "foo" to "- foo -" and forward result
// to producer
case msg: CamelMessage ⇒
producer.forward(msg.mapBody((body: String) ⇒ "- %s -" format body))

}
}

class Producer1 extends Actor with Producer {
def endpointUri = "direct:welcome"

5.10. Camel 272

Akka Scala Documentation, Release 2.2.5

}

class CustomRouteBuilder extends RouteBuilder {
def configure {
from("direct:welcome").process(new Processor() {

def process(exchange: Exchange) {
// Create a 'welcome' message from the input message
exchange.getOut.setBody("Welcome %s" format exchange.getIn.getBody)

}
})

}
}
// the below lines can be added to a Boot class, so that you can run the
// example from a MicroKernel
val system = ActorSystem("some-system")
val producer = system.actorOf(Props[Producer1])
val mediator = system.actorOf(Props(classOf[Transformer], producer))
val consumer = system.actorOf(Props(classOf[Consumer3], mediator))
CamelExtension(system).context.addRoutes(new CustomRouteBuilder)

The producer actor knows where to reply the message to because the consumer and transformer actors have
forwarded the original sender reference as well. The application configuration and the route starting from di-
rect:welcome are done in the code above.

To run the example, add the lines shown in the example to a Boot class and the start the Microkernel and POST a
message to http://localhost:8877/camel/welcome.

curl -H "Content-Type: text/plain" -d "Anke" http://localhost:8877/camel/welcome

The response should be:

Welcome - Anke -

Quartz Scheduler Example

Here is an example showing how simple is to implement a cron-style scheduler by using the Camel Quartz com-
ponent in Akka.

The following example creates a “timer” actor which fires a message every 2 seconds:

import akka.actor.{ ActorSystem, Props }

import akka.camel.{ Consumer }

class MyQuartzActor extends Consumer {

def endpointUri = "quartz://example?cron=0/2+*+*+*+*+?"

def receive = {

case msg ⇒ println("==============> received %s " format msg)

} // end receive

} // end MyQuartzActor

object MyQuartzActor {

def main(str: Array[String]) {
val system = ActorSystem("my-quartz-system")
system.actorOf(Props[MyQuartzActor])

} // end main

5.10. Camel 273

Akka Scala Documentation, Release 2.2.5

} // end MyQuartzActor

For more information about the Camel Quartz component, see here: http://camel.apache.org/quartz.html

5.10.7 Additional Resources

For an introduction to akka-camel 2, see also the Peter Gabryanczyk’s talk Migrating akka-camel module to Akka
2.x.

For an introduction to akka-camel 1, see also the Appendix E - Akka and Camel (pdf) of the book Camel in Action.

Other, more advanced external articles (for version 1) are:

• Akka Consumer Actors: New Features and Best Practices

• Akka Producer Actors: New Features and Best Practices

5.10. Camel 274

http://camel.apache.org/quartz.html
http://skillsmatter.com/podcast/scala/akka-2-x
http://skillsmatter.com/podcast/scala/akka-2-x
http://www.manning.com/ibsen/appEsample.pdf
http://www.manning.com/ibsen/
http://krasserm.blogspot.com/2011/02/akka-consumer-actors-new-features-and.html
http://krasserm.blogspot.com/2011/02/akka-producer-actor-new-features-and.html

CHAPTER

SIX

UTILITIES

6.1 Event Bus

Originally conceived as a way to send messages to groups of actors, the EventBus has been generalized into a
set of composable traits implementing a simple interface:

• subscribe(subscriber: Subscriber, classifier: Classifier): Boolean
subscribes the given subscriber to events with the given classifier

• unsubscribe(subscriber: Subscriber, classifier: Classifier): Boolean
undoes a specific subscription

• unsubscribe(subscriber: Subscriber) undoes all subscriptions for the given subscriber

• publish(event: Event) publishes an event, which first is classified according to the specific bus
(see Classifiers) and then published to all subscribers for the obtained classifier

Note: Please note that the EventBus does not preserve the sender of the published messages. If you need a
reference to the original sender you have to provide it inside the message.

This mechanism is used in different places within Akka, e.g. the DeathWatch and the Event Stream. Implementa-
tions can make use of the specific building blocks presented below.

An event bus must define the following three abstract types:

• Event is the type of all events published on that bus

• Subscriber is the type of subscribers allowed to register on that event bus

• Classifier defines the classifier to be used in selecting subscribers for dispatching events

The traits below are still generic in these types, but they need to be defined for any concrete implementation.

6.1.1 Classifiers

The classifiers presented here are part of the Akka distribution, but rolling your own in case you do not find a
perfect match is not difficult, check the implementation of the existing ones on github.

Lookup Classification

The simplest classification is just to extract an arbitrary classifier from each event and maintaining a set of
subscribers for each possible classifier. This can be compared to tuning in on a radio station. The trait
LookupClassification is still generic in that it abstracts over how to compare subscribers and how ex-
actly to classify. The necessary methods to be implemented are the following:

• classify(event: Event): Classifier is used for extracting the classifier from the incoming
events.

275

https://github.com/akka/akka/blob/master/akka-actor/src/main/scala/akka/event/EventBus.scala

Akka Scala Documentation, Release 2.2.5

• compareSubscribers(a: Subscriber, b: Subscriber): Int must define a partial
order over the subscribers, expressed as expected from java.lang.Comparable.compare.

• publish(event: Event, subscriber: Subscriber)will be invoked for each event for all
subscribers which registered themselves for the event’s classifier.

• mapSize: Int determines the initial size of the index data structure used internally (i.e. the expected
number of different classifiers).

This classifier is efficient in case no subscribers exist for a particular event.

Subchannel Classification

If classifiers form a hierarchy and it is desired that subscription be possible not only at the leaf nodes, this clas-
sification may be just the right one. It can be compared to tuning in on (possibly multiple) radio channels by
genre. This classification has been developed for the case where the classifier is just the JVM class of the event
and subscribers may be interested in subscribing to all subclasses of a certain class, but it may be used with any
classifier hierarchy. The abstract members needed by this classifier are

• subclassification: Subclassification[Classifier] is an object providing
isEqual(a: Classifier, b: Classifier) and isSubclass(a: Classifier,
b: Classifier) to be consumed by the other methods of this classifier.

• classify(event: Event): Classifier is used for extracting the classifier from the incoming
events.

• publish(event: Event, subscriber: Subscriber)will be invoked for each event for all
subscribers which registered themselves for the event’s classifier.

This classifier is also efficient in case no subscribers are found for an event, but it uses conventional locking to
synchronize an internal classifier cache, hence it is not well-suited to use cases in which subscriptions change
with very high frequency (keep in mind that “opening” a classifier by sending the first message will also have to
re-check all previous subscriptions).

Scanning Classification

The previous classifier was built for multi-classifier subscriptions which are strictly hierarchical, this classifier is
useful if there are overlapping classifiers which cover various parts of the event space without forming a hierarchy.
It can be compared to tuning in on (possibly multiple) radio stations by geographical reachability (for old-school
radio-wave transmission). The abstract members for this classifier are:

• compareClassifiers(a: Classifier, b: Classifier): Int is needed for deter-
mining matching classifiers and storing them in an ordered collection.

• compareSubscribers(a: Subscriber, b: Subscriber): Int is needed for storing
subscribers in an ordered collection.

• matches(classifier: Classifier, event: Event): Boolean determines whether
a given classifier shall match a given event; it is invoked for each subscription for all received events,
hence the name of the classifier.

• publish(event: Event, subscriber: Subscriber)will be invoked for each event for all
subscribers which registered themselves for a classifier matching this event.

This classifier takes always a time which is proportional to the number of subscriptions, independent of how many
actually match.

Actor Classification

This classification has been developed specifically for implementing DeathWatch: subscribers as well as classifiers
are of type ActorRef. The abstract members are

6.1. Event Bus 276

Akka Scala Documentation, Release 2.2.5

• classify(event: Event): ActorRef is used for extracting the classifier from the incoming
events.

• mapSize: Int determines the initial size of the index data structure used internally (i.e. the expected
number of different classifiers).

This classifier is still is generic in the event type, and it is efficient for all use cases.

6.1.2 Event Stream

The event stream is the main event bus of each actor system: it is used for carrying log messages and Dead Letters
and may be used by the user code for other purposes as well. It uses Subchannel Classification which enables
registering to related sets of channels (as is used for RemoteLifeCycleMessage). The following example
demonstrates how a simple subscription works:

import akka.actor.{ Actor, DeadLetter, Props }

class Listener extends Actor {
def receive = {
case d: DeadLetter ⇒ println(d)

}
}
val listener = system.actorOf(Props(classOf[Listener], this))
system.eventStream.subscribe(listener, classOf[DeadLetter])

Default Handlers

Upon start-up the actor system creates and subscribes actors to the event stream for logging: these are the handlers
which are configured for example in application.conf:

akka {
loggers = ["akka.event.Logging$DefaultLogger"]

}

The handlers listed here by fully-qualified class name will be subscribed to all log event classes with priority higher
than or equal to the configured log-level and their subscriptions are kept in sync when changing the log-level at
runtime:

system.eventStream.setLogLevel(Logging.DebugLevel)

This means that log events for a level which will not be logged are not typically not dispatched at all (unless
manual subscriptions to the respective event class have been done)

Dead Letters

As described at Stopping actors, messages queued when an actor terminates or sent after its death are re-routed
to the dead letter mailbox, which by default will publish the messages wrapped in DeadLetter. This wrapper
holds the original sender, receiver and message of the envelope which was redirected.

Other Uses

The event stream is always there and ready to be used, just publish your own events (it accepts AnyRef) and
subscribe listeners to the corresponding JVM classes.

6.1. Event Bus 277

Akka Scala Documentation, Release 2.2.5

6.2 Logging

Logging in Akka is not tied to a specific logging backend. By default log messages are printed to STDOUT, but
you can plug-in a SLF4J logger or your own logger. Logging is performed asynchronously to ensure that logging
has minimal performance impact. Logging generally means IO and locks, which can slow down the operations of
your code if it was performed synchronously.

6.2.1 How to Log

Create a LoggingAdapter and use the error, warning, info, or debug methods, as illustrated in this
example:

import akka.event.Logging

class MyActor extends Actor {
val log = Logging(context.system, this)
override def preStart() = {
log.debug("Starting")

}
override def preRestart(reason: Throwable, message: Option[Any]) {
log.error(reason, "Restarting due to [{}] when processing [{}]",

reason.getMessage, message.getOrElse(""))
}
def receive = {
case "test" ⇒ log.info("Received test")
case x ⇒ log.warning("Received unknown message: {}", x)

}
}

For convenience you can mixin the log member into actors, instead of defining it as above.

class MyActor extends Actor with akka.actor.ActorLogging {
...

}

The second parameter to the Logging is the source of this logging channel. The source object is translated to a
String according to the following rules:

• if it is an Actor or ActorRef, its path is used

• in case of a String it is used as is

• in case of a class an approximation of its simpleName

• and in all other cases a compile error occurs unless and implicit LogSource[T] is in scope for the type
in question.

The log message may contain argument placeholders {}, which will be substituted if the log level is enabled.
Giving more arguments as there are placeholders results in a warning being appended to the log statement (i.e.
on the same line with the same severity). You may pass a Java array as the only substitution argument to have its
elements be treated individually:

val args = Array("The", "brown", "fox", "jumps", 42)
system.log.debug("five parameters: {}, {}, {}, {}, {}", args)

The Java Class of the log source is also included in the generated LogEvent. In case of a simple string this
is replaced with a “marker” class akka.event.DummyClassForStringSources in order to allow special
treatment of this case, e.g. in the SLF4J event listener which will then use the string instead of the class’ name for
looking up the logger instance to use.

6.2. Logging 278

Akka Scala Documentation, Release 2.2.5

Logging of Dead Letters

By default messages sent to dead letters are logged at info level. Existence of dead letters does not necessarily
indicate a problem, but it might be, and therefore they are logged by default. After a few messages this logging
is turned off, to avoid flooding the logs. You can disable this logging completely or adjust how many dead letters
that are logged. During system shutdown it is likely that you see dead letters, since pending messages in the actor
mailboxes are sent to dead letters. You can also disable logging of dead letters during shutdown.

akka {
log-dead-letters = 10
log-dead-letters-during-shutdown = on

}

To customize the logging further or take other actions for dead letters you can subscribe to the Event Stream.

Auxiliary logging options

Akka has a couple of configuration options for very low level debugging, that makes most sense in for developers
and not for operations.

You almost definitely need to have logging set to DEBUG to use any of the options below:

akka {
loglevel = "DEBUG"

}

This config option is very good if you want to know what config settings are loaded by Akka:

akka {
Log the complete configuration at INFO level when the actor system is started.
This is useful when you are uncertain of what configuration is used.
log-config-on-start = on

}

If you want very detailed logging of user-level messages then wrap your actors’ behaviors with
akka.event.LoggingReceive and enable the receive option:

akka {
actor {
debug {

enable function of LoggingReceive, which is to log any received message at
DEBUG level
receive = on

}
}

}

If you want very detailed logging of all automatically received messages that are processed by Actors:

akka {
actor {
debug {

enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill et.c.)
autoreceive = on

}
}

}

If you want very detailed logging of all lifecycle changes of Actors (restarts, deaths etc):

akka {
actor {
debug {

enable DEBUG logging of actor lifecycle changes

6.2. Logging 279

Akka Scala Documentation, Release 2.2.5

lifecycle = on
}

}
}

If you want very detailed logging of all events, transitions and timers of FSM Actors that extend LoggingFSM:

akka {
actor {
debug {

enable DEBUG logging of all LoggingFSMs for events, transitions and timers
fsm = on

}
}

}

If you want to monitor subscriptions (subscribe/unsubscribe) on the ActorSystem.eventStream:

akka {
actor {
debug {

enable DEBUG logging of subscription changes on the eventStream
event-stream = on

}
}

}

Auxiliary remote logging options

If you want to see all messages that are sent through remoting at DEBUG log level: (This is logged as they are
sent by the transport layer, not by the Actor)

akka {
remote {
If this is "on", Akka will log all outbound messages at DEBUG level,
if off then they are not logged
log-sent-messages = on

}
}

If you want to see all messages that are received through remoting at DEBUG log level: (This is logged as they
are received by the transport layer, not by any Actor)

akka {
remote {
If this is "on", Akka will log all inbound messages at DEBUG level,
if off then they are not logged
log-received-messages = on

}
}

If you want to see message types with payload size in bytes larger than a specified limit at INFO log level:

akka {
remote {
Logging of message types with payload size in bytes larger than
this value. Maximum detected size per message type is logged once,
with an increase threshold of 10%.
By default this feature is turned off. Activate it by setting the property to
a value in bytes, such as 1000b. Note that for all messages larger than this
limit there will be extra performance and scalability cost.
log-frame-size-exceeding = 1000b

6.2. Logging 280

Akka Scala Documentation, Release 2.2.5

}
}

Also see the logging options for TestKit: Tracing Actor Invocations.

Translating Log Source to String and Class

The rules for translating the source object to the source string and class which are inserted into the LogEvent
during runtime are implemented using implicit parameters and thus fully customizable: simply create your own
instance of LogSource[T] and have it in scope when creating the logger.

import akka.event.LogSource
import akka.actor.ActorSystem

object MyType {
implicit val logSource: LogSource[AnyRef] = new LogSource[AnyRef] {
def genString(o: AnyRef): String = o.getClass.getName
override def getClazz(o: AnyRef): Class[_] = o.getClass

}
}

class MyType(system: ActorSystem) {
import MyType._
import akka.event.Logging

val log = Logging(system, this)
}

This example creates a log source which mimics traditional usage of Java loggers, which are based upon the
originating object’s class name as log category. The override of getClazz is only included for demonstration
purposes as it contains exactly the default behavior.

Note: You may also create the string representation up front and pass that in as the
log source, but be aware that then the Class[_] which will be put in the LogEvent is
akka.event.DummyClassForStringSources.

The SLF4J event listener treats this case specially (using the actual string to look up the logger instance to use
instead of the class’ name), and you might want to do this also in case you implement your own logging adapter.

Turn Off Logging

To turn off logging you can configure the log levels to be OFF like this.

akka {
stdout-loglevel = "OFF"
loglevel = "OFF"

}

The stdout-loglevel is only in effect during system startup and shutdown, and setting it to OFF as well,
ensures that nothing gets logged during system startup or shutdown.

6.2.2 Loggers

Logging is performed asynchronously through an event bus. Log events are processed by an event handler actor
and it will receive the log events in the same order as they were emitted.

One gotcha is that currently the timestamp is attributed in the event handler, not when actually doing the logging.

You can configure which event handlers are created at system start-up and listen to logging events. That is done
using the loggers element in the Configuration. Here you can also define the log level.

6.2. Logging 281

Akka Scala Documentation, Release 2.2.5

akka {
Loggers to register at boot time (akka.event.Logging$DefaultLogger logs
to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]
Options: OFF, ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

}

The default one logs to STDOUT and is registered by default. It is not intended to be used for production. There
is also an SLF4J logger available in the ‘akka-slf4j’ module.

Example of creating a listener:

import akka.event.Logging.InitializeLogger
import akka.event.Logging.LoggerInitialized
import akka.event.Logging.Error
import akka.event.Logging.Warning
import akka.event.Logging.Info
import akka.event.Logging.Debug

class MyEventListener extends Actor {
def receive = {
case InitializeLogger(_) ⇒ sender ! LoggerInitialized
case Error(cause, logSource, logClass, message) ⇒ // ...
case Warning(logSource, logClass, message) ⇒ // ...
case Info(logSource, logClass, message) ⇒ // ...
case Debug(logSource, logClass, message) ⇒ // ...

}
}

6.2.3 SLF4J

Akka provides a logger for SL4FJ. This module is available in the ‘akka-slf4j.jar’. It has one single dependency;
the slf4j-api jar. In runtime you also need a SLF4J backend, we recommend Logback:

lazy val logback = "ch.qos.logback" % "logback-classic" % "1.0.7"

You need to enable the Slf4jLogger in the ‘loggers’ element in the Configuration. Here you can also define the
log level of the event bus. More fine grained log levels can be defined in the configuration of the SLF4J backend
(e.g. logback.xml).

akka {
loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = "DEBUG"

}

The SLF4J logger selected for each log event is chosen based on the Class[_] of the log source spec-
ified when creating the LoggingAdapter, unless that was given directly as a string in which case
that string is used (i.e. LoggerFactory.getLogger(c: Class[_]) is used in the first case and
LoggerFactory.getLogger(s: String) in the second).

Note: Beware that the actor system’s name is appended to a String log source if the LoggingAdapter was
created giving an ActorSystem to the factory. If this is not intended, give a LoggingBus instead as shown
below:

val log = Logging(system.eventStream, "my.nice.string")

6.2. Logging 282

http://www.slf4j.org/
http://logback.qos.ch/

Akka Scala Documentation, Release 2.2.5

Logging Thread and Akka Source in MDC

Since the logging is done asynchronously the thread in which the logging was performed is captured in Mapped
Diagnostic Context (MDC) with attribute name sourceThread. With Logback the thread name is available
with %X{sourceThread} specifier within the pattern layout configuration:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%date{ISO8601} %-5level %logger{36} %X{sourceThread} - %msg%n</pattern>

</encoder>
</appender>

Note: It will probably be a good idea to use the sourceThread MDC value also in non-Akka parts of the
application in order to have this property consistently available in the logs.

Another helpful facility is that Akka captures the actor’s address when instantiating a logger within it, meaning
that the full instance identification is available for associating log messages e.g. with members of a router. This
information is available in the MDC with attribute name akkaSource:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%date{ISO8601} %-5level %logger{36} %X{akkaSource} - %msg%n</pattern>

</encoder>
</appender>

For more details on what this attribute contains—also for non-actors—please see How to Log.

More accurate timestamps for log output in MDC

Akka’s logging is asynchronous which means that the timestamp of a log entry is taken from when the underlying
logger implementation is called, which can be surprising at first. If you want to more accurately output the
timestamp, use the MDC attribute akkaTimestamp:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%X{akkaTimestamp} %-5level %logger{36} %X{akkaSource} - %msg%n</pattern>

</encoder>
</appender>

6.3 Scheduler

Sometimes the need for making things happen in the future arises, and where do you go look then? Look
no further than ActorSystem! There you find the scheduler method that returns an instance of
akka.actor.Scheduler, this instance is unique per ActorSystem and is used internally for scheduling things
to happen at specific points in time.

You can schedule sending of messages to actors and execution of tasks (functions or Runnable). You will get a
Cancellable back that you can call cancel on to cancel the execution of the scheduled operation.

Warning: The default implementation of Scheduler used by Akka is based on job buckets which
are emptied according to a fixed schedule. It does not execute tasks at the exact time, but on every tick,
it will run everything that is (over)due. The accuracy of the default Scheduler can be modified by the
akka.scheduler.tick-duration configuration property.

6.3. Scheduler 283

Akka Scala Documentation, Release 2.2.5

6.3.1 Some examples

import akka.actor.Actor
import akka.actor.Props
import scala.concurrent.duration._

//Use the system's dispatcher as ExecutionContext
import system.dispatcher

//Schedules to send the "foo"-message to the testActor after 50ms
system.scheduler.scheduleOnce(50 milliseconds, testActor, "foo")

//Schedules a function to be executed (send a message to the testActor) after 50ms
system.scheduler.scheduleOnce(50 milliseconds) {

testActor ! System.currentTimeMillis
}

val Tick = "tick"
class TickActor extends Actor {

def receive = {
case Tick ⇒ //Do something

}
}
val tickActor = system.actorOf(Props(classOf[TickActor], this))
//Use system's dispatcher as ExecutionContext
import system.dispatcher

//This will schedule to send the Tick-message
//to the tickActor after 0ms repeating every 50ms
val cancellable =

system.scheduler.schedule(0 milliseconds,
50 milliseconds,
tickActor,
Tick)

//This cancels further Ticks to be sent
cancellable.cancel()

Warning: If you schedule functions or Runnable instances you should be extra careful to not close over
unstable references. In practice this means not using this inside the closure in the scope of an Actor instance,
not accessing sender directly and not calling the methods of the Actor instance directly. If you need to
schedule an invocation schedule a message to self instead (containing the necessary parameters) and then
call the method when the message is received.

6.3.2 From akka.actor.ActorSystem

/**
* Light-weight scheduler for running asynchronous tasks after some deadline

* in the future. Not terribly precise but cheap.

*/
def scheduler: Scheduler

6.3.3 The Scheduler interface

The actual scheduler implementation is loaded reflectively upon ActorSystem start-up, which means that it is
possible to provide a different one using the akka.scheduler.implementation configuration property.
The referenced class must implement the following interface:

6.3. Scheduler 284

Akka Scala Documentation, Release 2.2.5

/**
* An Akka scheduler service. This one needs one special behavior: if

* Closeable, it MUST execute all outstanding tasks upon .close() in order

* to properly shutdown all dispatchers.

*
* Furthermore, this timer service MUST throw IllegalStateException if it

* cannot schedule a task. Once scheduled, the task MUST be executed. If

* executed upon close(), the task may execute before its timeout.

*
* Scheduler implementation are loaded reflectively at ActorSystem start-up

* with the following constructor arguments:

* 1) the system’s com.typesafe.config.Config (from system.settings.config)

* 2) a akka.event.LoggingAdapter

* 3) a java.util.concurrent.ThreadFactory

*/
trait Scheduler {

/**
* Schedules a message to be sent repeatedly with an initial delay and

* frequency. E.g. if you would like a message to be sent immediately and

* thereafter every 500ms you would set delay=Duration.Zero and

* interval=Duration(500, TimeUnit.MILLISECONDS)

*
* Java & Scala API

*/
final def schedule(
initialDelay: FiniteDuration,
interval: FiniteDuration,
receiver: ActorRef,
message: Any)(implicit executor: ExecutionContext,

sender: ActorRef = Actor.noSender): Cancellable =
schedule(initialDelay, interval, new Runnable {

def run = {
receiver ! message
if (receiver.isTerminated)
throw new SchedulerException("timer active for terminated actor")

}
})

/**
* Schedules a function to be run repeatedly with an initial delay and a

* frequency. E.g. if you would like the function to be run after 2 seconds

* and thereafter every 100ms you would set delay = Duration(2, TimeUnit.SECONDS)

* and interval = Duration(100, TimeUnit.MILLISECONDS)

*
* Scala API

*/
final def schedule(
initialDelay: FiniteDuration,
interval: FiniteDuration)(f: ⇒ Unit)(

implicit executor: ExecutionContext): Cancellable =
schedule(initialDelay, interval, new Runnable { override def run = f })

/**
* Schedules a function to be run repeatedly with an initial delay and

* a frequency. E.g. if you would like the function to be run after 2

* seconds and thereafter every 100ms you would set delay = Duration(2,

* TimeUnit.SECONDS) and interval = Duration(100, TimeUnit.MILLISECONDS)

*
* Java API

*/
def schedule(
initialDelay: FiniteDuration,
interval: FiniteDuration,

6.3. Scheduler 285

Akka Scala Documentation, Release 2.2.5

runnable: Runnable)(implicit executor: ExecutionContext): Cancellable

/**
* Schedules a message to be sent once with a delay, i.e. a time period that has

* to pass before the message is sent.

*
* Java & Scala API

*/
final def scheduleOnce(
delay: FiniteDuration,
receiver: ActorRef,
message: Any)(implicit executor: ExecutionContext,

sender: ActorRef = Actor.noSender): Cancellable =
scheduleOnce(delay, new Runnable {

override def run = receiver ! message
})

/**
* Schedules a function to be run once with a delay, i.e. a time period that has

* to pass before the function is run.

*
* Scala API

*/
final def scheduleOnce(delay: FiniteDuration)(f: ⇒ Unit)(
implicit executor: ExecutionContext): Cancellable =
scheduleOnce(delay, new Runnable { override def run = f })

/**
* Schedules a Runnable to be run once with a delay, i.e. a time period that

* has to pass before the runnable is executed.

*
* Java & Scala API

*/
def scheduleOnce(
delay: FiniteDuration,
runnable: Runnable)(implicit executor: ExecutionContext): Cancellable

/**
* The maximum supported task frequency of this scheduler, i.e. the inverse

* of the minimum time interval between executions of a recurring task, in Hz.

*/
def maxFrequency: Double

}

6.3.4 The Cancellable interface

Scheduling a task will result in a Cancellable (or throw an IllegalStateException if attempted after
the scheduler’s shutdown). This allows you to cancel something that has been scheduled for execution.

Warning: This does not abort the execution of the task, if it had already been started. Check the return value
of cancel to detect whether the scheduled task was canceled or will (eventually) have run.

/**
* Signifies something that can be cancelled

* There is no strict guarantee that the implementation is thread-safe,

* but it should be good practice to make it so.

*/
trait Cancellable {

/**

6.3. Scheduler 286

Akka Scala Documentation, Release 2.2.5

* Cancels this Cancellable and returns true if that was successful.

* If this cancellable was (concurrently) cancelled already, then this method

* will return false although isCancelled will return true.

*
* Java & Scala API

*/
def cancel(): Boolean

/**
* Returns true if and only if this Cancellable has been successfully cancelled

*
* Java & Scala API

*/
def isCancelled: Boolean

}

6.4 Duration

Durations are used throughout the Akka library, wherefore this concept is represented by a special data type,
scala.concurrent.duration.Duration. Values of this type may represent infinite (Duration.Inf,
Duration.MinusInf) or finite durations, or be Duration.Undefined.

6.4.1 Finite vs. Infinite

Since trying to convert an infinite duration into a concrete time unit like seconds will throw an exception, there are
different types available for distinguishing the two kinds at compile time:

• FiniteDuration is guaranteed to be finite, calling toNanos and friends is safe

• Duration can be finite or infinite, so this type should only be used when finite-ness does not matter; this
is a supertype of FiniteDuration

6.4.2 Scala

In Scala durations are constructable using a mini-DSL and support all expected arithmetic operations:

import scala.concurrent.duration._

val fivesec = 5.seconds
val threemillis = 3.millis
val diff = fivesec - threemillis
assert(diff < fivesec)
val fourmillis = threemillis * 4 / 3 // you cannot write it the other way around
val n = threemillis / (1 millisecond)

Note: You may leave out the dot if the expression is clearly delimited (e.g. within parentheses or in an argument
list), but it is recommended to use it if the time unit is the last token on a line, otherwise semi-colon inference
might go wrong, depending on what starts the next line.

6.4.3 Java

Java provides less syntactic sugar, so you have to spell out the operations as method calls instead:

import scala.concurrent.duration.Duration;
import scala.concurrent.duration.Deadline;

6.4. Duration 287

Akka Scala Documentation, Release 2.2.5

final Duration fivesec = Duration.create(5, "seconds");
final Duration threemillis = Duration.create("3 millis");
final Duration diff = fivesec.minus(threemillis);
assert diff.lt(fivesec);
assert Duration.Zero().lt(Duration.Inf());

6.4.4 Deadline

Durations have a brother named Deadline, which is a class holding a representation of an absolute point in
time, and support deriving a duration from this by calculating the difference between now and the deadline. This
is useful when you want to keep one overall deadline without having to take care of the book-keeping wrt. the
passing of time yourself:

val deadline = 10.seconds.fromNow
// do something
val rest = deadline.timeLeft

In Java you create these from durations:

final Deadline deadline = Duration.create(10, "seconds").fromNow();
final Duration rest = deadline.timeLeft();

6.5 Circuit Breaker

6.5.1 Why are they used?

A circuit breaker is used to provide stability and prevent cascading failures in distributed systems. These should
be used in conjunction with judicious timeouts at the interfaces between remote systems to prevent the failure of
a single component from bringing down all components.

As an example, we have a web application interacting with a remote third party web service. Let’s say the third
party has oversold their capacity and their database melts down under load. Assume that the database fails in such
a way that it takes a very long time to hand back an error to the third party web service. This in turn makes calls
fail after a long period of time. Back to our web application, the users have noticed that their form submissions
take much longer seeming to hang. Well the users do what they know to do which is use the refresh button, adding
more requests to their already running requests. This eventually causes the failure of the web application due to
resource exhaustion. This will affect all users, even those who are not using functionality dependent on this third
party web service.

Introducing circuit breakers on the web service call would cause the requests to begin to fail-fast, letting the user
know that something is wrong and that they need not refresh their request. This also confines the failure behavior
to only those users that are using functionality dependent on the third party, other users are no longer affected as
there is no resource exhaustion. Circuit breakers can also allow savvy developers to mark portions of the site that
use the functionality unavailable, or perhaps show some cached content as appropriate while the breaker is open.

The Akka library provides an implementation of a circuit breaker called akka.pattern.CircuitBreaker
which has the behavior described below.

6.5.2 What do they do?

• During normal operation, a circuit breaker is in the Closed state:

– Exceptions or calls exceeding the configured callTimeout increment a failure counter

– Successes reset the failure count to zero

– When the failure counter reaches a maxFailures count, the breaker is tripped into Open state

• While in Open state:

6.5. Circuit Breaker 288

Akka Scala Documentation, Release 2.2.5

– All calls fail-fast with a CircuitBreakerOpenException

– After the configured resetTimeout, the circuit breaker enters a Half-Open state

• In Half-Open state:

– The first call attempted is allowed through without failing fast

– All other calls fail-fast with an exception just as in Open state

– If the first call succeeds, the breaker is reset back to Closed state

– If the first call fails, the breaker is tripped again into the Open state for another full resetTimeout

• State transition listeners:

– Callbacks can be provided for every state entry via onOpen, onClose, and onHalfOpen

– These are executed in the ExecutionContext provided.

6.5.3 Examples

Initialization

Here’s how a CircuitBreaker would be configured for:

• 5 maximum failures

• a call timeout of 10 seconds

• a reset timeout of 1 minute

Scala

import scala.concurrent.duration._
import akka.pattern.CircuitBreaker
import akka.pattern.pipe
import akka.actor.Actor
import akka.actor.ActorLogging
import scala.concurrent.Future
import akka.event.Logging

class DangerousActor extends Actor with ActorLogging {
import context.dispatcher

val breaker =
new CircuitBreaker(context.system.scheduler,

maxFailures = 5,
callTimeout = 10.seconds,
resetTimeout = 1.minute).onOpen(notifyMeOnOpen())

6.5. Circuit Breaker 289

Akka Scala Documentation, Release 2.2.5

def notifyMeOnOpen(): Unit =
log.warning("My CircuitBreaker is now open, and will not close for one minute")

Java

import akka.actor.UntypedActor;
import scala.concurrent.Future;
import akka.event.LoggingAdapter;
import scala.concurrent.duration.Duration;
import akka.pattern.CircuitBreaker;
import akka.event.Logging;

import static akka.pattern.Patterns.pipe;
import static akka.dispatch.Futures.future;

import java.util.concurrent.Callable;

public class DangerousJavaActor extends UntypedActor {

private final CircuitBreaker breaker;
private final LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public DangerousJavaActor() {
this.breaker = new CircuitBreaker(

getContext().dispatcher(), getContext().system().scheduler(),
5, Duration.create(10, "s"), Duration.create(1, "m"))
.onOpen(new Runnable() {

public void run() {
notifyMeOnOpen();

}
});

}

public void notifyMeOnOpen() {
log.warning("My CircuitBreaker is now open, and will not close for one minute");

}

Call Protection

Here’s how the CircuitBreaker would be used to protect an asynchronous call as well as a synchronous one:

Scala

def dangerousCall: String = "This really isn't that dangerous of a call after all"

def receive = {
case "is my middle name" ⇒
breaker.withCircuitBreaker(Future(dangerousCall)) pipeTo sender

case "block for me" ⇒
sender ! breaker.withSyncCircuitBreaker(dangerousCall)

}

Java

public String dangerousCall() {
return "This really isn't that dangerous of a call after all";

6.5. Circuit Breaker 290

Akka Scala Documentation, Release 2.2.5

}

@Override
public void onReceive(Object message) {

if (message instanceof String) {
String m = (String) message;
if ("is my middle name".equals(m)) {

final Future<String> f = future(
new Callable<String>() {
public String call() {

return dangerousCall();
}

}, getContext().dispatcher());

pipe(breaker.callWithCircuitBreaker(
new Callable<Future<String>>() {
public Future<String> call() throws Exception {

return f;
}

}), getContext().dispatcher()).to(getSender());
}
if ("block for me".equals(m)) {

getSender().tell(breaker
.callWithSyncCircuitBreaker(
new Callable<String>() {
@Override
public String call() throws Exception {
return dangerousCall();

}
}), getSelf());

}
}

}

Note: Using the CircuitBreaker companion object’s apply or create methods will return a
CircuitBreaker where callbacks are executed in the caller’s thread. This can be useful if the asynchronous
Future behavior is unnecessary, for example invoking a synchronous-only API.

6.6 Akka Extensions

If you want to add features to Akka, there is a very elegant, but powerful mechanism for doing so. It’s called Akka
Extensions and is comprised of 2 basic components: an Extension and an ExtensionId.

Extensions will only be loaded once per ActorSystem, which will be managed by Akka. You can choose
to have your Extension loaded on-demand or at ActorSystem creation time through the Akka configuration.
Details on how to make that happens are below, in the “Loading from Configuration” section.

Warning: Since an extension is a way to hook into Akka itself, the implementor of the extension needs to
ensure the thread safety of his/her extension.

6.6.1 Building an Extension

So let’s create a sample extension that just lets us count the number of times something has happened.

First, we define what our Extension should do:

6.6. Akka Extensions 291

Akka Scala Documentation, Release 2.2.5

import akka.actor.Extension

class CountExtensionImpl extends Extension {
//Since this Extension is a shared instance
// per ActorSystem we need to be threadsafe
private val counter = new AtomicLong(0)

//This is the operation this Extension provides
def increment() = counter.incrementAndGet()

}

Then we need to create an ExtensionId for our extension so we can grab ahold of it.

import akka.actor.ActorSystem
import akka.actor.ExtensionId
import akka.actor.ExtensionIdProvider
import akka.actor.ExtendedActorSystem

object CountExtension
extends ExtensionId[CountExtensionImpl]
with ExtensionIdProvider {
//The lookup method is required by ExtensionIdProvider,
// so we return ourselves here, this allows us
// to configure our extension to be loaded when
// the ActorSystem starts up
override def lookup = CountExtension

//This method will be called by Akka
// to instantiate our Extension
override def createExtension(system: ExtendedActorSystem) = new CountExtensionImpl

/**
* Java API: retrieve the Count extension for the given system.

*/
override def get(system: ActorSystem): CountExtensionImpl = super.get(system)

}

Wicked! Now all we need to do is to actually use it:

CountExtension(system).increment

Or from inside of an Akka Actor:

class MyActor extends Actor {
def receive = {
case someMessage ⇒

CountExtension(context.system).increment()
}

}

You can also hide extension behind traits:

trait Counting { self: Actor ⇒
def increment() = CountExtension(context.system).increment()

}
class MyCounterActor extends Actor with Counting {

def receive = {
case someMessage ⇒ increment()

}
}

That’s all there is to it!

6.6. Akka Extensions 292

Akka Scala Documentation, Release 2.2.5

6.6.2 Loading from Configuration

To be able to load extensions from your Akka configuration you must add FQCNs of implementations of either
ExtensionId or ExtensionIdProvider in the akka.extensions section of the config you provide to
your ActorSystem.

akka {
extensions = ["docs.extension.CountExtension"]

}

6.6.3 Applicability

The sky is the limit! By the way, did you know that Akka’s Typed Actors, Serialization and other
features are implemented as Akka Extensions?

Application specific settings

The Configuration can be used for application specific settings. A good practice is to place those settings in an
Extension.

Sample configuration:

myapp {
db {
uri = "mongodb://example1.com:27017,example2.com:27017"

}
circuit-breaker {
timeout = 30 seconds

}
}

The Extension:

import akka.actor.ActorSystem
import akka.actor.Extension
import akka.actor.ExtensionId
import akka.actor.ExtensionIdProvider
import akka.actor.ExtendedActorSystem
import scala.concurrent.duration.Duration
import com.typesafe.config.Config
import java.util.concurrent.TimeUnit

class SettingsImpl(config: Config) extends Extension {
val DbUri: String = config.getString("myapp.db.uri")
val CircuitBreakerTimeout: Duration =
Duration(config.getMilliseconds("myapp.circuit-breaker.timeout"),

TimeUnit.MILLISECONDS)
}
object Settings extends ExtensionId[SettingsImpl] with ExtensionIdProvider {

override def lookup = Settings

override def createExtension(system: ExtendedActorSystem) =
new SettingsImpl(system.settings.config)

/**
* Java API: retrieve the Settings extension for the given system.

*/
override def get(system: ActorSystem): SettingsImpl = super.get(system)

}

6.6. Akka Extensions 293

Akka Scala Documentation, Release 2.2.5

Use it:

class MyActor extends Actor {
val settings = Settings(context.system)
val connection = connect(settings.DbUri, settings.CircuitBreakerTimeout)

6.7 Durable Mailboxes

6.7.1 Overview

A durable mailbox is a mailbox which stores the messages on durable storage. What this means in practice is that
if there are pending messages in the actor’s mailbox when the node of the actor resides on crashes, then when
you restart the node, the actor will be able to continue processing as if nothing had happened; with all pending
messages still in its mailbox.

You configure durable mailboxes through the dispatcher or the actor deployment (see Mailboxes). The actor is
oblivious to which type of mailbox it is using.

This gives you an excellent way of creating bulkheads in your application, where groups of actors sharing the
same dispatcher also share the same backing storage. Read more about that in the Dispatchers documentation.

One basic file based durable mailbox is provided by Akka out-of-the-box. Other implementations can easily be
added. Some are available as separate community Open Source projects, such as:

• AMQP Durable Mailbox

A durable mailbox is like any other mailbox not likely to be transactional. It’s possible if the actor crashes after
receiving a message, but before completing processing of it, that the message could be lost.

Warning: A durable mailbox typically doesn’t work with blocking message send, i.e. the message send
operations that are relying on futures; ? or ask. If the node has crashed and then restarted, the thread that was
blocked waiting for the reply is gone and there is no way we can deliver the message.

6.7.2 File-based durable mailbox

This mailbox is backed by a journaling transaction log on the local file system. It is the simplest to use since it
does not require an extra infrastructure piece to administer, but it is usually sufficient and just what you need.

In the configuration of the dispatcher you specify the fully qualified class name of the mailbox:

my-dispatcher {
mailbox-type = akka.actor.mailbox.filebased.FileBasedMailboxType

}

Here is an example of how to create an actor with a durable dispatcher:

import akka.actor.Props

val myActor = system.actorOf(Props[MyActor].
withDispatcher("my-dispatcher"), name = "myactor")

You can also configure and tune the file-based durable mailbox. This is done in the
akka.actor.mailbox.file-based section in the Configuration.

###
Akka File Mailboxes Reference Config File
###

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

6.7. Durable Mailboxes 294

https://github.com/drexin/akka-amqp-mailbox

Akka Scala Documentation, Release 2.2.5

#
For more information see <https://github.com/robey/kestrel/>

akka {
actor {
mailbox {

file-based {
directory below which this queue resides
directory-path = "./_mb"

attempting to add an item after the queue reaches this size (in items)
will fail.
max-items = 2147483647

attempting to add an item after the queue reaches this size (in bytes)
will fail.
max-size = 2147483647 bytes

attempting to add an item larger than this size (in bytes) will fail.
max-item-size = 2147483647 bytes

maximum expiration time for this queue (seconds).
max-age = 0s

maximum journal size before the journal should be rotated.
max-journal-size = 16 MiB

maximum size of a queue before it drops into read-behind mode.
max-memory-size = 128 MiB

maximum overflow (multiplier) of a journal file before we re-create it.
max-journal-overflow = 10

absolute maximum size of a journal file until we rebuild it,
no matter what.
max-journal-size-absolute = 9223372036854775807 bytes

whether to drop older items (instead of newer) when the queue is full
discard-old-when-full = on

whether to keep a journal file at all
keep-journal = on

whether to sync the journal after each transaction
sync-journal = off

circuit breaker configuration
circuit-breaker {
maximum number of failures before opening breaker
max-failures = 3

duration of time beyond which a call is assumed to be timed out and
considered a failure
call-timeout = 3 seconds

duration of time to wait until attempting to reset the breaker during
which all calls fail-fast
reset-timeout = 30 seconds

}
}

}
}

}

6.7. Durable Mailboxes 295

Akka Scala Documentation, Release 2.2.5

6.7.3 How to implement a durable mailbox

Here is an example of how to implement a custom durable mailbox. Essentially it consists of a configurator
(MailboxType) and a queue implementation (DurableMessageQueue).

The envelope contains the message sent to the actor, and information about sender. It is the envelope that needs to
be stored. As a help utility you can mixin DurableMessageSerialization to serialize and deserialize the envelope
using the ordinary Serialization mechanism. This optional and you may store the envelope data in any way you
like. Durable mailboxes are an excellent fit for usage of circuit breakers. These are described in the Circuit
Breaker documentation.

import com.typesafe.config.Config
import akka.actor.ActorContext
import akka.actor.ActorRef
import akka.actor.ActorSystem
import akka.dispatch.Envelope
import akka.dispatch.MailboxType
import akka.dispatch.MessageQueue
import akka.actor.mailbox.DurableMessageQueue
import akka.actor.mailbox.DurableMessageSerialization
import akka.pattern.CircuitBreaker
import scala.concurrent.duration._

class MyMailboxType(systemSettings: ActorSystem.Settings, config: Config)
extends MailboxType {

override def create(owner: Option[ActorRef],
system: Option[ActorSystem]): MessageQueue =

(owner zip system) headOption match {
case Some((o, s: ExtendedActorSystem)) ⇒ new MyMessageQueue(o, s)
case _ ⇒
throw new IllegalArgumentException("requires an owner " +
"(i.e. does not work with BalancingDispatcher)")

}
}

class MyMessageQueue(_owner: ActorRef, _system: ExtendedActorSystem)
extends DurableMessageQueue(_owner, _system) with DurableMessageSerialization {

val storage = new QueueStorage
// A real-world implementation would use configuration to set the last
// three parameters below
val breaker = CircuitBreaker(system.scheduler, 5, 30.seconds, 1.minute)

def enqueue(receiver: ActorRef, envelope: Envelope): Unit =
breaker.withSyncCircuitBreaker {

val data: Array[Byte] = serialize(envelope)
storage.push(data)

}

def dequeue(): Envelope = breaker.withSyncCircuitBreaker {
val data: Option[Array[Byte]] = storage.pull()
data.map(deserialize).orNull

}

def hasMessages: Boolean = breaker.withSyncCircuitBreaker { !storage.isEmpty }

def numberOfMessages: Int = breaker.withSyncCircuitBreaker { storage.size }

/**
* Called when the mailbox is disposed.

* An ordinary mailbox would send remaining messages to deadLetters,

* but the purpose of a durable mailbox is to continue

6.7. Durable Mailboxes 296

Akka Scala Documentation, Release 2.2.5

* with the same message queue when the actor is started again.

*/
def cleanUp(owner: ActorRef, deadLetters: MessageQueue): Unit = ()

}

To facilitate testing of a durable mailbox you may use DurableMailboxSpec as base class. To use
DurableMailboxDocSpec add this dependency:

"com.typesafe.akka" %% "akka-mailboxes-common" %
"2.2.5" classifier "test"

It implements a few basic tests and helps you setup the a fixture. More tests can be added in concrete subclass like
this:

import akka.actor.mailbox.DurableMailboxSpec

object MyMailboxSpec {
val config = """
MyStorage-dispatcher {

mailbox-type = docs.actor.mailbox.MyMailboxType
}
"""

}

class MyMailboxSpec extends DurableMailboxSpec("MyStorage", MyMailboxSpec.config) {
override def atStartup() {
}

override def afterTermination() {
}

"MyMailbox" must {
"deliver a message" in {

val actor = createMailboxTestActor()
implicit val sender = testActor
actor ! "hello"
expectMsg("hello")

}

// add more tests
}

}

For more inspiration you can look at the old implementations based on Redis, MongoDB, Beanstalk, and
ZooKeeper, which can be found in Akka git repository tag v2.0.1.

6.8 Microkernel

The purpose of the Akka Microkernel is to offer a bundling mechanism so that you can distribute an Akka appli-
cation as a single payload, without the need to run in a Java Application Server or manually having to create a
launcher script.

The Akka Microkernel is included in the Akka download found at downloads.

To run an application with the microkernel you need to create a Bootable class that handles the startup and shut-
down the application. An example is included below.

Put your application jar in the deploy directory to have it automatically loaded.

To start the kernel use the scripts in the bin directory, passing the boot classes for your application. Example
command (on a unix-based system):

6.8. Microkernel 297

https://github.com/akka/akka/tree/v2.0.1/akka-durable-mailboxes
http://typesafe.com/stack/downloads/akka

Akka Scala Documentation, Release 2.2.5

bin/akka sample.kernel.hello.HelloKernel

Use Ctrl-C to interrupt and exit the microkernel.

On a Windows machine you can also use the bin/akka.bat script.

The code for the Hello Kernel example (see the HelloKernel class for an example of creating a Bootable):

/**
* Copyright (C) 2009-2013 Typesafe Inc. <http://www.typesafe.com>

*/
package sample.kernel.hello

import akka.actor.{ Actor, ActorSystem, Props }
import akka.kernel.Bootable

case object Start

class HelloActor extends Actor {
val worldActor = context.actorOf(Props[WorldActor])

def receive = {
case Start ⇒ worldActor ! "Hello"
case message: String ⇒
println("Received message '%s'" format message)

}
}

class WorldActor extends Actor {
def receive = {
case message: String ⇒ sender ! (message.toUpperCase + " world!")

}
}

class HelloKernel extends Bootable {
val system = ActorSystem("hellokernel")

def startup = {
system.actorOf(Props[HelloActor]) ! Start

}

def shutdown = {
system.shutdown()

}
}

6.8.1 Distribution of microkernel application

To make a distribution package of the microkernel and your application the akka-sbt-plugin provides
AkkaKernelPlugin. It creates the directory structure, with jar files, configuration files and start scripts.

To use the sbt plugin you define it in your project/plugins.sbt:

addSbtPlugin("com.typesafe.akka" % "akka-sbt-plugin" % "2.2.5")

Make sure that you have a project/build.properties file:

sbt.version=0.12.4

Then you add it to the settings of your project/Build.scala. It is also important that you add the
akka-kernel dependency. This is an example of a complete sbt build file:

6.8. Microkernel 298

Akka Scala Documentation, Release 2.2.5

import sbt._
import Keys._
import akka.sbt.AkkaKernelPlugin
import akka.sbt.AkkaKernelPlugin.{ Dist, outputDirectory, distJvmOptions}

object HelloKernelBuild extends Build {
val Organization = "akka.sample"
val Version = "2.2.5"
val ScalaVersion = "2.10.2"

lazy val HelloKernel = Project(
id = "hello-kernel",
base = file("."),
settings = defaultSettings ++ AkkaKernelPlugin.distSettings ++ Seq(

libraryDependencies ++= Dependencies.helloKernel,
distJvmOptions in Dist := "-Xms256M -Xmx1024M",
outputDirectory in Dist := file("target/hello-dist")

)
)

lazy val buildSettings = Defaults.defaultSettings ++ Seq(
organization := Organization,
version := Version,
scalaVersion := ScalaVersion,
crossPaths := false,
organizationName := "Typesafe Inc.",
organizationHomepage := Some(url("http://www.typesafe.com"))

)

lazy val defaultSettings = buildSettings ++ Seq(
// compile options
scalacOptions ++= Seq("-encoding", "UTF-8", "-deprecation", "-unchecked"),
javacOptions ++= Seq("-Xlint:unchecked", "-Xlint:deprecation")

)
}

object Dependencies {
import Dependency._

val helloKernel = Seq(
akkaKernel, akkaSlf4j, logback

)
}

object Dependency {
// Versions
object V {
val Akka = "2.2.5"

}

val akkaKernel = "com.typesafe.akka" %% "akka-kernel" % V.Akka
val akkaSlf4j = "com.typesafe.akka" %% "akka-slf4j" % V.Akka
val logback = "ch.qos.logback" % "logback-classic" % "1.0.0"

}

Run the plugin with sbt:

> dist
> dist:clean

There are several settings that can be defined:

• outputDirectory - destination directory of the package, default target/dist

6.8. Microkernel 299

Akka Scala Documentation, Release 2.2.5

• distJvmOptions - JVM parameters to be used in the start script

• configSourceDirs - Configuration files are copied from these directories, default src/config,
src/main/config, src/main/resources

• distMainClass - Kernel main class to use in start script

• libFilter - Filter of dependency jar files

• additionalLibs - Additional dependency jar files

6.8. Microkernel 300

CHAPTER

SEVEN

HOWTO: COMMON PATTERNS

This section lists common actor patterns which have been found to be useful, elegant or instructive. Anything is
welcome, example topics being message routing strategies, supervision patterns, restart handling, etc. As a special
bonus, additions to this section are marked with the contributor’s name, and it would be nice if every Akka user
who finds a recurring pattern in his or her code could share it for the profit of all. Where applicable it might also
make sense to add to the akka.pattern package for creating an OTP-like library.

7.1 Throttling Messages

Contributed by: Kaspar Fischer

“A message throttler that ensures that messages are not sent out at too high a rate.”

The pattern is described in Throttling Messages in Akka 2.

7.2 Balancing Workload Across Nodes

Contributed by: Derek Wyatt

“Often times, people want the functionality of the BalancingDispatcher with the stipulation that the Actors doing
the work have distinct Mailboxes on remote nodes. In this post we’ll explore the implementation of such a
concept.”

The pattern is described Balancing Workload across Nodes with Akka 2.

7.3 Work Pulling Pattern to throttle and distribute work, and pre-
vent mailbox overflow

Contributed by: Michael Pollmeier

“This pattern ensures that your mailboxes don’t overflow if creating work is fast than actually doing it – which
can lead to out of memory errors when the mailboxes eventually become too full. It also let’s you distribute work
around your cluster, scale dynamically scale and is completely non-blocking. This pattern is a specialisation of
the above ‘Balancing Workload Pattern’.”

The pattern is described Work Pulling Pattern to prevent mailbox overflow, throttle and distribute work.

7.4 Ordered Termination

Contributed by: Derek Wyatt

“When an Actor stops, its children stop in an undefined order. Child termination is asynchronous and thus non-
deterministic.

301

http://www.erlang.org/doc/man_index.html
http://letitcrash.com/post/28901663062/throttling-messages-in-akka-2
http://letitcrash.com/post/29044669086/balancing-workload-across-nodes-with-akka-2
http://www.michaelpollmeier.com/akka-work-pulling-pattern/

Akka Scala Documentation, Release 2.2.5

If an Actor has children that have order dependencies, then you might need to ensure a particular shutdown order
of those children so that their postStop() methods get called in the right order.”

The pattern is described An Akka 2 Terminator.

7.5 Akka AMQP Proxies

Contributed by: Fabrice Drouin

““AMQP proxies” is a simple way of integrating AMQP with Akka to distribute jobs across a network of com-
puting nodes. You still write “local” code, have very little to configure, and end up with a distributed, elastic,
fault-tolerant grid where computing nodes can be written in nearly every programming language.”

The pattern is described Akka AMQP Proxies.

7.6 Shutdown Patterns in Akka 2

Contributed by: Derek Wyatt

“How do you tell Akka to shut down the ActorSystem when everything’s finished? It turns out that there’s
no magical flag for this, no configuration setting, no special callback you can register for, and neither will the
illustrious shutdown fairy grace your application with her glorious presence at that perfect moment. She’s just
plain mean.

In this post, we’ll discuss why this is the case and provide you with a simple option for shutting down “at the right
time”, as well as a not-so-simple-option for doing the exact same thing.”

The pattern is described Shutdown Patterns in Akka 2.

7.7 Distributed (in-memory) graph processing with Akka

Contributed by: Adelbert Chang

“Graphs have always been an interesting structure to study in both mathematics and computer science (among
other fields), and have become even more interesting in the context of online social networks such as Facebook
and Twitter, whose underlying network structures are nicely represented by graphs.”

The pattern is described Distributed In-Memory Graph Processing with Akka.

7.8 Case Study: An Auto-Updating Cache Using Actors

Contributed by: Eric Pederson

“We recently needed to build a caching system in front of a slow backend system with the following requirements:

The data in the backend system is constantly being updated so the caches need to be updated every N minutes.
Requests to the backend system need to be throttled. The caching system we built used Akka actors and Scala’s
support for functions as first class objects.”

The pattern is described Case Study: An Auto-Updating Cache using Actors.

7.9 Discovering message flows in actor systems with the Spider
Pattern

Contributed by: Raymond Roestenburg

7.5. Akka AMQP Proxies 302

http://letitcrash.com/post/29773618510/an-akka-2-terminator
http://letitcrash.com/post/29988753572/akka-amqp-proxies
http://letitcrash.com/post/30165507578/shutdown-patterns-in-akka-2
http://letitcrash.com/post/30257014291/distributed-in-memory-graph-processing-with-akka
http://letitcrash.com/post/30509298968/case-study-an-auto-updating-cache-using-actors

Akka Scala Documentation, Release 2.2.5

“Building actor systems is fun but debugging them can be difficult, you mostly end up browsing through many
log files on several machines to find out what’s going on. I’m sure you have browsed through logs and thought,
“Hey, where did that message go?”, “Why did this message cause that effect” or “Why did this actor never get a
message?”

This is where the Spider pattern comes in.”

The pattern is described Discovering Message Flows in Actor System with the Spider Pattern.

7.10 Scheduling Periodic Messages

This pattern describes how to schedule periodic messages to yourself in two different ways.

The first way is to set up periodic message scheduling in the constructor of the actor, and cancel that scheduled
sending in postStop or else we might have multiple registered message sends to the same actor.

Note: With this approach the scheduled periodic message send will be restarted with the actor on restarts. This
also means that the time period that elapses between two tick messages during a restart may drift off based on
when you restart the scheduled message sends relative to the time that the last message was sent, and how long
the initial delay is. Worst case scenario is interval plus initialDelay.

class ScheduleInConstructor extends Actor {
import context.dispatcher
val tick =
context.system.scheduler.schedule(500 millis, 1000 millis, self, "tick")

override def postStop() = tick.cancel()

def receive = {
case "tick" ⇒
// do something useful here

}
}

The second variant sets up an initial one shot message send in the preStart method of the actor, and the
then the actor when it receives this message sets up a new one shot message send. You also have to override
postRestart so we don’t call preStart and schedule the initial message send again.

Note: With this approach we won’t fill up the mailbox with tick messages if the actor is under pressure, but only
schedule a new tick message when we have seen the previous one.

class ScheduleInReceive extends Actor {
import context._

override def preStart() =
system.scheduler.scheduleOnce(500 millis, self, "tick")

// override postRestart so we don't call preStart and schedule a new message
override def postRestart(reason: Throwable) = {}

def receive = {
case "tick" ⇒
// send another periodic tick after the specified delay
system.scheduler.scheduleOnce(1000 millis, self, "tick")
// do something useful here

}
}

7.10. Scheduling Periodic Messages 303

http://letitcrash.com/post/30585282971/discovering-message-flows-in-actor-systems-with-the

Akka Scala Documentation, Release 2.2.5

7.11 Template Pattern

Contributed by: N. N.

This is an especially nice pattern, since it does even come with some empty example code:

class ScalaTemplate {
println("Hello, Template!")
// uninteresting stuff ...

}

Note: Spread the word: this is the easiest way to get famous!

Please keep this pattern at the end of this file.

7.11. Template Pattern 304

CHAPTER

EIGHT

EXPERIMENTAL MODULES

The following modules of Akka are marked as experimental, which means that they are in early access mode,
which also means that they are not covered by commercial support. The purpose of releasing them early, as
experimental, is to make them easily available and improve based on feedback, or even discover that the module
wasn’t useful.

An experimental module doesn’t have to obey the rule of staying binary compatible between micro releases.
Breaking API changes may be introduced in minor releases without notice as we refine and simplify based on
your feedback. An experimental module may be dropped in minor releases without prior deprecation.

8.1 Multi Node Testing

Note: This module is experimental. This document describes how to use the features implemented so far. More
features are coming in Akka Coltrane. Track progress of the Coltrane milestone in Assembla.

8.1.1 Multi Node Testing Concepts

When we talk about multi node testing in Akka we mean the process of running coordinated tests on multiple
actor systems in different JVMs. The multi node testing kit consist of three main parts.

• The Test Conductor. that coordinates and controls the nodes under test.

• The Multi Node Spec. that is a convenience wrapper for starting the TestConductor and letting all
nodes connect to it.

• The SbtMultiJvm Plugin. that starts tests in multiple JVMs possibly on multiple machines.

8.1.2 The Test Conductor

The basis for the multi node testing is the TestConductor. It is an Akka Extension that plugs in to the network
stack and it is used to coordinate the nodes participating in the test and provides several features including:

• Node Address Lookup: Finding out the full path to another test node (No need to share configuration
between test nodes)

• Node Barrier Coordination: Waiting for other nodes at named barriers.

• Network Failure Injection: Throttling traffic, dropping packets, unplugging and plugging nodes back in.

This is a schematic overview of the test conductor.

305

http://www.assembla.com/spaces/akka/milestones/418132-coltrane

Akka Scala Documentation, Release 2.2.5

The test conductor server is responsible for coordinating barriers and sending commands to the test conductor
clients that act upon them, e.g. throttling network traffic to/from another client. More information on the possible
operations is availible in the akka.remote.testconductor.Conductor API documentation.

8.1.3 The Multi Node Spec

The Multi Node Spec consists of two parts. The MultiNodeConfig that is responsible for common con-
figuration and enumerating and naming the nodes under test. The MultiNodeSpec that contains a number
of convenience functions for making the test nodes interact with each other. More information on the possible
operations is available in the akka.remote.testkit.MultiNodeSpec API documentation.

The setup of the MultiNodeSpec is configured through java system properties that you set on all JVMs that’s
going to run a node under test. These can easily be set on the JVM command line with -Dproperty=value.

These are the available properties:

• multinode.max-nodes

The maximum number of nodes that a test can have.

• multinode.host

The host name or IP for this node. Must be resolvable using InetAddress.getByName.

• multinode.port

The port number for this node. Defaults to 0 which will use a random port.

• multinode.server-host

The host name or IP for the server node. Must be resolvable using InetAddress.getByName.

• multinode.server-port

The port number for the server node. Defaults to 4711.

• multinode.index

The index of this node in the sequence of roles defined for the test. The index 0 is special and that
machine will be the server. All failure injection and throttling must be done from this node.

8.1. Multi Node Testing 306

Akka Scala Documentation, Release 2.2.5

8.1.4 The SbtMultiJvm Plugin

The SbtMultiJvm Plugin has been updated to be able to run multi node tests, by automatically generating the
relevant multinode.* properties. This means that you can easily run multi node tests on a single machine
without any special configuration by just running them as normal multi-jvm tests. These tests can then be run
distributed over multiple machines without any changes simply by using the multi-node additions to the plugin.

Multi Node Specific Additions

The plugin also has a number of new multi-node-* sbt tasks and settings to support run-
ning tests on multiple machines. The necessary test classes and dependencies are packaged
for distribution to other machines with SbtAssembly into a jar file with a name on the format
<projectName>_<scalaVersion>-<projectVersion>-multi-jvm-assembly.jar

Note: To be able to distribute and kick off the tests on multiple machines, it is assumed that both host and target
systems are POSIX like systems with ssh and rsync available.

These are the available sbt multi-node settings:

• multiNodeHosts

A sequence of hosts to use for running the test, on the form user@host:java where host is the
only required part. Will override settings from file.

• multiNodeHostsFileName

A file to use for reading in the hosts to use for running the test. One per line on the same format as
above. Defaults to multi-node-test.hosts in the base project directory.

• multiNodeTargetDirName

A name for the directory on the target machine, where to copy the jar file. Defaults to
multi-node-test in the base directory of the ssh user used to rsync the jar file.

• multiNodeJavaName

The name of the default Java executable on the target machines. Defaults to java.

Here are some examples of how you define hosts:

• localhost

The current user on localhost using the default java.

• user1@host1

User user1 on host host1 with the default java.

• user2@host2:/usr/lib/jvm/java-7-openjdk-amd64/bin/java

User user2 on host host2 using java 7.

• host3:/usr/lib/jvm/java-6-openjdk-amd64/bin/java

The current user on host host3 using java 6.

Running the Multi Node Tests

To run all the multi node test in multi-node mode (i.e. distributing the jar files and kicking off the tests remotely)
from inside sbt, use the multi-node-test task:

multi-node-test

To run all of them in multi-jvm mode (i.e. all JVMs on the local machine) do:

8.1. Multi Node Testing 307

https://github.com/sbt/sbt-assembly

Akka Scala Documentation, Release 2.2.5

multi-jvm:test

To run individual tests use the multi-node-test-only task:

multi-node-test-only your.MultiNodeTest

To run individual tests in the multi-jvm mode do:

multi-jvm:test-only your.MultiNodeTest

More than one test name can be listed to run multiple specific tests. Tab completion in sbt makes it easy to
complete the test names.

8.1.5 Preparing Your Project for Multi Node Testing

The multi node testing kit is a separate jar file. Make sure that you have the following dependency in your project:

"com.typesafe.akka" %% "akka-multi-node-testkit" % "2.2.5"

If you are using the latest nightly build you should pick a timestamped Akka version from
http://repo.typesafe.com/typesafe/snapshots/com/typesafe/akka/akka-multi-node-testkit_2.10/. We recommend
against using SNAPSHOT in order to obtain stable builds.

8.1.6 A Multi Node Testing Example

First we need some scaffolding to hook up the MultiNodeSpec with your favorite test framework. Lets define
a trait STMultiNodeSpec that uses ScalaTest to start and stop MultiNodeSpec.

package sample.multinode

import org.scalatest.{ BeforeAndAfterAll, WordSpec }
import org.scalatest.matchers.MustMatchers
import akka.remote.testkit.MultiNodeSpecCallbacks

/**
* Hooks up MultiNodeSpec with ScalaTest

*/
trait STMultiNodeSpec extends MultiNodeSpecCallbacks

with WordSpec with MustMatchers with BeforeAndAfterAll {

override def beforeAll() = multiNodeSpecBeforeAll()

override def afterAll() = multiNodeSpecAfterAll()
}

Then we need to define a configuration. Lets use two nodes "node1 and "node2" and call it
MultiNodeSampleConfig.

package sample.multinode
import akka.remote.testkit.MultiNodeConfig

object MultiNodeSampleConfig extends MultiNodeConfig {
val node1 = role("node1")
val node2 = role("node2")

}

And then finally to the node test code. That starts the two nodes, and demonstrates a barrier, and a remote actor
message send/receive.

package sample.multinode
import akka.remote.testkit.MultiNodeSpec

8.1. Multi Node Testing 308

http://repo.typesafe.com/typesafe/snapshots/com/typesafe/akka/akka-multi-node-testkit_2.10/

Akka Scala Documentation, Release 2.2.5

import akka.testkit.ImplicitSender
import akka.actor.{Props, Actor}

class MultiNodeSampleSpecMultiJvmNode1 extends MultiNodeSample
class MultiNodeSampleSpecMultiJvmNode2 extends MultiNodeSample

class MultiNodeSample extends MultiNodeSpec(MultiNodeSampleConfig)
with STMultiNodeSpec with ImplicitSender {

import MultiNodeSampleConfig._

def initialParticipants = roles.size

"A MultiNodeSample" must {

"wait for all nodes to enter a barrier" in {
enterBarrier("startup")

}

"send to and receive from a remote node" in {
runOn(node1) {

enterBarrier("deployed")
val ponger = system.actorFor(node(node2) / "user" / "ponger")
ponger ! "ping"
expectMsg("pong")

}

runOn(node2) {
system.actorOf(Props(new Actor {
def receive = {

case "ping" => sender ! "pong"
}

}), "ponger")
enterBarrier("deployed")

}

enterBarrier("finished")
}

}
}

8.1.7 Things to Keep in Mind

There are a couple of things to keep in mind when writing multi node tests or else your tests might behave in
surprising ways.

• Don’t issue a shutdown of the first node. The first node is the controller and if it shuts down your test will
break.

• To be able to use blackhole, passThrough, and throttle you must activate the failure injector and
throttler transport adapters by specifying testTransport(on = true) in your MultiNodeConfig.

• Throttling, shutdown and other failure injections can only be done from the first node, which again is the
controller.

• Don’t ask for the address of a node using node(address) after the node has been shut down. Grab the
address before shutting down the node.

• Don’t use MultiNodeSpec methods like address lookup, barrier entry et.c. from other threads than the main
test thread. This also means that you shouldn’t use them from inside an actor, a future, or a scheduled task.

Another reason for marking a module as experimental is that it’s too early to tell if the module has a maintainer
that can take the responsibility of the module over time. These modules live in the akka-contrib subproject:

8.1. Multi Node Testing 309

Akka Scala Documentation, Release 2.2.5

8.2 External Contributions

This subproject provides a home to modules contributed by external developers which may or may not move into
the officially supported code base over time. The conditions under which this transition can occur include:

• there must be enough interest in the module to warrant inclusion in the standard distribution,

• the module must be actively maintained and

• code quality must be good enough to allow efficient maintenance by the Akka core development team

If a contributions turns out to not “take off” it may be removed again at a later time.

8.2.1 Caveat Emptor

A module in this subproject doesn’t have to obey the rule of staying binary compatible between minor releases.
Breaking API changes may be introduced in minor releases without notice as we refine and simplify based on
your feedback. A module may be dropped in any release without prior deprecation. The Typesafe subscription
does not cover support for these modules.

8.2.2 The Current List of Modules

Reliable Proxy Pattern

Looking at Message Delivery Guarantees one might come to the conclusion that Akka actors are made for blue-
sky scenarios: sending messages is the only way for actors to communicate, and then that is not even guaranteed
to work. Is the whole paradigm built on sand? Of course the answer is an emphatic “No!”.

A local message send—within the same JVM instance—is not likely to fail, and if it does the reason was one of

• it was meant to fail (due to consciously choosing a bounded mailbox, which upon overflow will have to
drop messages)

• or it failed due to a catastrophic VM error, e.g. an OutOfMemoryError, a memory access violation
(“segmentation fault”, GPF, etc.), JVM bug—or someone calling System.exit().

In all of these cases, the actor was very likely not in a position to process the message anyway, so this part of the
non-guarantee is not problematic.

It is a lot more likely for an unintended message delivery failure to occur when a message send crosses JVM
boundaries, i.e. an intermediate unreliable network is involved. If someone unplugs an ethernet cable, or a power
failure shuts down a router, messages will be lost while the actors would be able to process them just fine.

Note: This does not mean that message send semantics are different between local and remote operations, it just
means that in practice there is a difference between how good the “best effort” is.

8.2. External Contributions 310

Akka Scala Documentation, Release 2.2.5

Introducing the Reliable Proxy

To bridge the disparity between “local” and “remote” sends is the goal of this pattern. When sending from A to
B must be as reliable as in-JVM, regardless of the deployment, then you can interject a reliable tunnel and send
through that instead. The tunnel consists of two end-points, where the ingress point P (the “proxy”) is a child of
A and the egress point E is a child of P, deployed onto the same network node where B lives. Messages sent to
P will be wrapped in an envelope, tagged with a sequence number and sent to E, who verifies that the received
envelope has the right sequence number (the next expected one) and forwards the contained message to B. When
B receives this message, the sender will be a reference to the sender of the original message to P. Reliability is
added by E replying to orderly received messages with an ACK, so that P can tick those messages off its resend
list. If ACKs do not come in a timely fashion, P will try to resend until successful.

Exactly what does it guarantee?

Sending via a ReliableProxy makes the message send exactly as reliable as if the represented target were to
live within the same JVM, provided that the remote actor system does not terminate. In effect, both ends (i.e. JVM
and actor system) must be considered as one when evaluating the reliability of this communication channel. The
benefit is that the network in-between is taken out of that equation.

When the target actor terminates, the proxy will terminate as well (on the terms of deathwatch-java / Lifecycle
Monitoring aka DeathWatch).

How to use it

Since this implementation does not offer much in the way of configuration, simply instantiate a proxy wrapping
some target reference. From Java it looks like this:

import akka.contrib.pattern.ReliableProxy;

final ActorRef proxy = getContext().actorOf(
Props.create(ReliableProxy.class, target, Duration.create(100, "millis")));

public void onReceive(Object msg) {
if ("hello".equals(msg)) {
proxy.tell("world!", getSelf());

}
}

And from Scala like this:

8.2. External Contributions 311

Akka Scala Documentation, Release 2.2.5

import akka.contrib.pattern.ReliableProxy

system.actorSelection(node(remote) / "user" / "echo") ! Identify("echo")
target = expectMsgType[ActorIdentity].ref.get
proxy = system.actorOf(Props(classOf[ReliableProxy], target, 100.millis), "proxy")
proxy ! "hello"

Since the ReliableProxy actor is an FSM, it also offers the capability to subscribe to state transitions. If
you need to know when all enqueued messages have been received by the remote end-point (and consequently
been forwarded to the target), you can subscribe to the FSM notifications and observe a transition from state
ReliableProxy.Active to state ReliableProxy.Idle.

final ActorRef proxy = getContext().actorOf(Props.create(ReliableProxy.class, target,
Duration.create(100, "millis")));

ActorRef client = null;
{

proxy.tell(new FSM.SubscribeTransitionCallBack(getSelf()), getSelf());
}

public void onReceive(Object msg) {
if ("hello".equals(msg)) {
proxy.tell("world!", getSelf());
client = getSender();

} else if (msg instanceof FSM.CurrentState<?>) {
// get initial state

} else if (msg instanceof FSM.Transition<?>) {
@SuppressWarnings("unchecked")
final FSM.Transition<ReliableProxy.State> transition =

(FSM.Transition<ReliableProxy.State>) msg;
assert transition.fsmRef().equals(proxy);
if (transition.to().equals(ReliableProxy.idle())) {

client.tell("done", getSelf());
}

}
}

From Scala it would look like so:

val proxy = context.actorOf(Props(classOf[ReliableProxy], target, 100.millis))
proxy ! FSM.SubscribeTransitionCallBack(self)

var client: ActorRef = _

def receive = {
case "go" ⇒ proxy ! 42; client = sender
case FSM.CurrentState(`proxy`, initial) ⇒
case FSM.Transition(`proxy`, from, to) ⇒ if (to == ReliableProxy.Idle)
client ! "done"

}

The Actor Contract

Message it Processes

• FSM.SubscribeTransitionCallBack and FSM.UnsubscribeTransitionCallBack, see
FSM

• internal messages declared within ReliableProxy, not for external use

• any other message is transferred through the reliable tunnel and forwarded to the designated target actor

Messages it Sends

8.2. External Contributions 312

Akka Scala Documentation, Release 2.2.5

• FSM.CurrentState and FSM.Transition, see FSM

Exceptions it Escalates

• no specific exception types

• any exception encountered by either the local or remote end-point are escalated (only fatal VM errors)

Arguments it Takes

• target is the ActorRef to which the tunnel shall reliably deliver messages, B in the above illustration.

• retryAfter is the timeout for receiving ACK messages from the remote end-point; once it fires, all outstanding
message sends will be retried.

Throttling Actor Messages

Introduction

Suppose you are writing an application that makes HTTP requests to an external web service and that this web
service has a restriction in place: you may not make more than 10 requests in 1 minute. You will get blocked or
need to pay if you don’t stay under this limit. In such a scenario you will want to employ a message throttler.

This extension module provides a simple implementation of a throttling actor, the TimerBasedThrottler.

How to use it

You can use a TimerBasedThrottler as follows. From Java it looks like this:

// A simple actor that prints whatever it receives
ActorRef printer = system.actorOf(Props.create(Printer.class));
// The throttler for this example, setting the rate
ActorRef throttler = system.actorOf(Props.create(TimerBasedThrottler.class,

new Throttler.Rate(3, Duration.create(1, TimeUnit.SECONDS))));
// Set the target
throttler.tell(new Throttler.SetTarget(printer), null);
// These three messages will be sent to the target immediately
throttler.tell("1", null);
throttler.tell("2", null);
throttler.tell("3", null);
// These two will wait until a second has passed
throttler.tell("4", null);
throttler.tell("5", null);

//A simple actor that prints whatever it receives
public class Printer extends UntypedActor {

@Override
public void onReceive(Object msg) {
System.out.println(msg);

}
}

And from Scala like this:

// A simple actor that prints whatever it receives
val printer = system.actorOf(Props(new Actor {

def receive = {
case x ⇒ println(x)

}
}))

8.2. External Contributions 313

Akka Scala Documentation, Release 2.2.5

// The throttler for this example, setting the rate
val throttler = system.actorOf(Props(classOf[TimerBasedThrottler],

3 msgsPer 1.second))
// Set the target
throttler ! SetTarget(Some(printer))
// These three messages will be sent to the target immediately
throttler ! "1"
throttler ! "2"
throttler ! "3"
// These two will wait until a second has passed
throttler ! "4"
throttler ! "5"

Please refer to the JavaDoc/ScalaDoc documentation for the details.

The guarantees

TimerBasedThrottler uses a timer internally. When the throttler’s rate is 3 msg/s, for example, the throttler
will start a timer that triggers every second and each time will give the throttler exactly three “vouchers”; each
voucher gives the throttler a right to deliver a message. In this way, at most 3 messages will be sent out by the
throttler in each interval.

It should be noted that such timer-based throttlers provide relatively weak guarantees:

• Only start times are taken into account. This may be a problem if, for example, the throttler is used to
throttle requests to an external web service. If a web request takes very long on the server then the rate
observed on the server may be higher.

• A timer-based throttler only makes guarantees for the intervals of its own timer. In our example, no more
than 3 messages are delivered within such intervals. Other intervals on the timeline, however, may contain
more calls.

The two cases are illustrated in the two figures below, each showing a timeline and three intervals of the timer. The
message delivery times chosen by the throttler are indicated by dots, and as you can see, each interval contains
at most 3 point, so the throttler works correctly. Still, there is in each example an interval (the red one) that is
problematic. In the first scenario, this is because the delivery times are merely the start times of longer requests
(indicated by the four bars above the timeline that start at the dots), so that the server observes four requests during
the red interval. In the second scenario, the messages are centered around one of the points in time where the timer
triggers, causing the red interval to contain too many messages.

For some application scenarios, the guarantees provided by a timer-based throttler might be too weak. Charles
Cordingley’s blog post discusses a throttler with stronger guarantees (it solves problem 2 from above). Future
versions of this module may feature throttlers with better guarantees.

8.2. External Contributions 314

http://www.cordinc.com/blog/2010/04/java-multichannel-asynchronous.html

Akka Scala Documentation, Release 2.2.5

Java Logging (JUL)

This extension module provides a logging backend which uses the java.util.logging (j.u.l) API to do the endpoint
logging for akka.event.Logging.

Provided with this module is an implementation of akka.event.LoggingAdapter which is independent of any Ac-
torSystem being in place. This means that j.u.l can be used as the backend, via the Akka Logging API, for both
Actor and non-Actor codebases.

To enable j.u.l as the akka.event.Logging backend, use the following Akka config:

loggers = [”akka.contrib.jul.JavaLogger”]

To access the akka.event.Logging API from non-Actor code, mix in akka.contrib.jul.JavaLogging.

This module is preferred over SLF4J with its JDK14 backend, due to integration issues resulting in the incorrect
handling of threadId, className and methodName.

This extension module was contributed by Sam Halliday.

Mailbox with Explicit Acknowledgement

When an Akka actor is processing a message and an exception occurs, the normal behavior is for the actor to drop
that message, and then continue with the next message after it has been restarted. This is in some cases not the
desired solution, e.g. when using failure and supervision to manage a connection to an unreliable resource; the
actor could after the restart go into a buffering mode (i.e. change its behavior) and retry the real processing later,
when the unreliable resource is back online.

One way to do this is by sending all messages through the supervisor and buffering them there, acknowledging
successful processing in the child; another way is to build an explicit acknowledgement mechanism into the
mailbox. The idea with the latter is that a message is reprocessed in case of failure until the mailbox is told that
processing was successful.

The pattern is implemented here. A demonstration of how to use it (although for brevity not a perfect example) is
the following:

class MyActor extends Actor {
def receive = {
case msg ⇒

println(msg)
doStuff(msg) // may fail
PeekMailboxExtension.ack()

}

// business logic elided ...
}

object MyApp extends App {
val system = ActorSystem("MySystem", ConfigFactory.parseString("""
peek-dispatcher {

mailbox-type = "akka.contrib.mailbox.PeekMailboxType"
max-tries = 2

}
"""))

val myActor = system.actorOf(Props[MyActor].withDispatcher("peek-dispatcher"),
name = "myActor")

myActor ! "Hello"
myActor ! "World"
myActor ! PoisonPill

}

8.2. External Contributions 315

http://github.com/akka/akka/tree/v2.2.5/akka-contrib/src/main/scala/akka/contrib/mailbox/PeekMailbox.scala

Akka Scala Documentation, Release 2.2.5

Running this application (try it in the Akka sources by saying sbt akka-contrib/test:run) may produce
the following output (note the processing of “World” on lines 2 and 16):

Hello
World
[ERROR] [12/17/2012 16:28:36.581] [MySystem-peek-dispatcher-5] [akka://MySystem/user/myActor] DONTWANNA
java.lang.Exception: DONTWANNA

at akka.contrib.mailbox.MyActor.doStuff(PeekMailbox.scala:105)
at akka.contrib.mailbox.MyActor$$anonfun$receive$1.applyOrElse(PeekMailbox.scala:98)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:425)
at akka.actor.ActorCell.invoke(ActorCell.scala:386)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:230)
at akka.dispatch.Mailbox.run(Mailbox.scala:212)
at akka.dispatch.ForkJoinExecutorConfigurator$MailboxExecutionTask.exec(AbstractDispatcher.scala:502)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:262)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:975)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1478)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)

World

Normally one would want to make processing idempotent (i.e. it does not matter if a message is processed twice)
or context.become a different behavior upon restart; the above example included the println(msg) call
just to demonstrate the re-processing.

Cluster Singleton Pattern

For some use cases it is convenient and sometimes also mandatory to ensure that you have exactly one actor of a
certain type running somewhere in the cluster.

Some examples:

• single point of responsibility for certain cluster-wide consistent decisions, or coordination of actions across
the cluster system

• single entry point to an external system

• single master, many workers

• centralized naming service, or routing logic

Using a singleton should not be the first design choice. It has several drawbacks, such as single-point of bottleneck.
Single-point of failure is also a relevant concern, but for some cases this feature takes care of that by making sure
that another singleton instance will eventually be started.

The cluster singleton pattern is implemented by akka.contrib.pattern.ClusterSingletonManager.
It manages singleton actor instance among all cluster nodes or a group of nodes tagged with a specific role.
ClusterSingletonManager is an actor that is supposed to be started on all nodes, or all nodes with
specified role, in the cluster. The actual singleton actor is started by the ClusterSingletonManager on the
oldest node by creating a child actor from supplied Props. ClusterSingletonManager makes sure that at
most one singleton instance is running at any point in time.

The singleton actor is always running on the oldest member, which can be determined by
Member#isOlderThan. This can change when removing members. A graceful hand over can nor-
mally be performed when current oldest node is leaving the cluster. Be aware that there is a short time period
when there is no active singleton during the hand-over process.

The cluster failure detector will notice when oldest node becomes unreachable due to things like JVM crash, hard
shut down, or network failure. Then a new oldest node will take over and a new singleton actor is created. For
these failure scenarios there will not be a graceful hand-over, but more than one active singletons is prevented by
all reasonable means. Some corner cases are eventually resolved by configurable timeouts.

You access the singleton actor with actorSelection using the names you have specified when creating the
ClusterSingletonManager. You can subscribe to akka.cluster.ClusterEvent.MemberEvent and sort

8.2. External Contributions 316

Akka Scala Documentation, Release 2.2.5

the members by age (Member#isOlderThan) to keep track of oldest member. Alternatively the singleton actor
may broadcast its existence when it is started.

An Example

Assume that we need one single entry point to an external system. An actor that receives messages from a JMS
queue with the strict requirement that only one JMS consumer must exist to be make sure that the messages are
processed in order. That is perhaps not how one would like to design things, but a typical real-world scenario
when integrating with external systems.

On each node in the cluster you need to start the ClusterSingletonManager and supply the Props of the
singleton actor, in this case the JMS queue consumer.

In Scala:

system.actorOf(ClusterSingletonManager.props(
singletonProps = handOverData ⇒
Props(classOf[Consumer], handOverData, queue, testActor),

singletonName = "consumer",
terminationMessage = End,
role = Some("worker")),
name = "singleton")

Here we limit the singleton to nodes tagged with the "worker" role, but all nodes, independent of role, can be
used by specifying None as role parameter.

The corresponding Java API for the singeltonProps function is
akka.contrib.pattern.ClusterSingletonPropsFactory. The Java API takes a plain String for
the role parameter and null means that all nodes, independent of role, are used.

In Java:

system.actorOf(
ClusterSingletonManager.defaultProps("consumer", new End(), "worker",
new ClusterSingletonPropsFactory() {

@Override
public Props create(Object handOverData) {

return Props.create(Consumer.class, handOverData, queue, testActor);
}

}), "singleton");

Note: The singletonProps/singletonPropsFactory is invoked when creating the singleton actor and
it must not use members that are not thread safe, e.g. mutable state in enclosing actor.

Here we use an application specific terminationMessage to be able to close the resources before actually
stopping the singleton actor. Note that PoisonPill is a perfectly fine terminationMessage if you only
need to stop the actor.

Here is how the singleton actor handles the terminationMessage in this example.

case End ⇒
queue ! UnregisterConsumer

case UnregistrationOk ⇒
// reply to ClusterSingletonManager with hand over data,
// which will be passed as parameter to new consumer singleton
context.parent ! current
context stop self

Note that you can send back current state to the ClusterSingletonManager before terminating. This mes-
sage will be sent over to the ClusterSingletonManager at the new oldest node and it will be passed to the
singletonProps factory when creating the new singleton instance.

8.2. External Contributions 317

Akka Scala Documentation, Release 2.2.5

With the names given above the path of singleton actor can be constructed by subscribing to MemberEvent
cluster event and sort the members by age to keep track of oldest member.

In Scala:

class ConsumerProxy extends Actor {

// subscribe to MemberEvent, re-subscribe when restart
override def preStart(): Unit =
Cluster(context.system).subscribe(self, classOf[MemberEvent])

override def postStop(): Unit =
Cluster(context.system).unsubscribe(self)

val role = "worker"
// sort by age, oldest first
val ageOrdering = Ordering.fromLessThan[Member] { (a, b) ⇒ a.isOlderThan(b) }
var membersByAge: immutable.SortedSet[Member] =
immutable.SortedSet.empty(ageOrdering)

def receive = {
case state: CurrentClusterState ⇒
membersByAge = immutable.SortedSet.empty(ageOrdering) ++ state.members.collect {

case m if m.hasRole(role) ⇒ m
}

case MemberUp(m) ⇒ if (m.hasRole(role)) membersByAge += m
case MemberRemoved(m, _) ⇒ if (m.hasRole(role)) membersByAge -= m
case other ⇒ consumer foreach { _.tell(other, sender) }

}

def consumer: Option[ActorSelection] =
membersByAge.headOption map (m ⇒ context.actorSelection(
RootActorPath(m.address) / "user" / "singleton" / "consumer"))

}

In Java:

public class ConsumerProxy extends UntypedActor {

final Cluster cluster = Cluster.get(getContext().system());

final Comparator<Member> ageComparator = new Comparator<Member>() {
public int compare(Member a, Member b) {

if (a.isOlderThan(b))
return -1;

else if (b.isOlderThan(a))
return 1;

else
return 0;

}
};
final SortedSet<Member> membersByAge = new TreeSet<Member>(ageComparator);

final String role = "worker";

//subscribe to cluster changes
@Override
public void preStart() {
cluster.subscribe(getSelf(), MemberEvent.class);

}

//re-subscribe when restart
@Override
public void postStop() {
cluster.unsubscribe(getSelf());

8.2. External Contributions 318

Akka Scala Documentation, Release 2.2.5

}

@Override
public void onReceive(Object message) {
if (message instanceof CurrentClusterState) {

CurrentClusterState state = (CurrentClusterState) message;
List<Member> members = new ArrayList<Member>();
for (Member m : state.getMembers()) {

if (m.hasRole(role))
members.add(m);

}
membersByAge.clear();
membersByAge.addAll(members);

} else if (message instanceof MemberUp) {
Member m = ((MemberUp) message).member();
if (m.hasRole(role))

membersByAge.add(m);

} else if (message instanceof MemberRemoved) {
Member m = ((MemberUp) message).member();
if (m.hasRole(role))

membersByAge.remove(m);

} else if (message instanceof MemberEvent) {
// not interesting

} else if (!membersByAge.isEmpty()) {
currentMaster().tell(message, getSender());

}
}

ActorSelection currentMaster() {
return getContext().actorSelection(membersByAge.first().address() +

"/user/singleton/statsService");
}

}

The checks of role can be omitted if you don’t limit the singleton to the group of members tagged with a specific
role.

Note that the hand-over might still be in progress and the singleton actor might not be started yet when you receive
the member event.

A nice alternative to the above proxy is to use Distributed Publish Subscribe in Cluster. Let the singleton actor
register itself to the mediator with DistributedPubSubMediator.Put message when it is started. Send
messages to the singleton actor via the mediator with DistributedPubSubMediator.SendToAll.

Note: The singleton pattern will be simplified, perhaps provided out-of-the-box, when the cluster handles auto-
matic actor partitioning.

Distributed Publish Subscribe in Cluster

How do I send a message to an actor without knowing which node it is running on?

How do I send messages to all actors in the cluster that have registered interest in a named topic?

This pattern provides a mediator actor, akka.contrib.pattern.DistributedPubSubMediator, that
manages a registry of actor references and replicates the entries to peer actors among all cluster nodes or a group
of nodes tagged with a specific role.

8.2. External Contributions 319

Akka Scala Documentation, Release 2.2.5

The DistributedPubSubMediator is supposed to be started on all nodes, or all nodes with specified role, in the
cluster. The mediator can be started with the DistributedPubSubExtension or as an ordinary actor.

Changes are only performed in the own part of the registry and those changes are versioned. Deltas are dissemi-
nated in a scalable way to other nodes with a gossip protocol. The registry is eventually consistent, i.e. changes
are not immediately visible at other nodes, but typically they will be fully replicated to all other nodes after a few
seconds.

You can send messages via the mediator on any node to registered actors on any other node. There is three modes
of message delivery.

1. DistributedPubSubMediator.Send

The message will be delivered to one recipient with a matching path, if any such exists in the registry. If several
entries match the path the message will be delivered to one random destination. The sender of the message can
specify that local affinity is preferred, i.e. the message is sent to an actor in the same local actor system as the used
mediator actor, if any such exists, otherwise random to any other matching entry. A typical usage of this mode
is private chat to one other user in an instant messaging application. It can also be used for distributing tasks to
workers, like a random router.

2. DistributedPubSubMediator.SendToAll

The message will be delivered to all recipients with a matching path. Actors with the same path, without address
information, can be registered on different nodes. On each node there can only be one such actor, since the path
is unique within one local actor system. Typical usage of this mode is to broadcast messages to all replicas with
the same path, e.g. 3 actors on different nodes that all perform the same actions, for redundancy. You can also
optionally specify a property (allButSelf) deciding if the message should be sent to a matching path on the
self node or not.

3. DistributedPubSubMediator.Publish

Actors may be registered to a named topic instead of path. This enables many subscribers on each node. The
message will be delivered to all subscribers of the topic. For efficiency the message is sent over the wire only once
per node (that has a matching topic), and then delivered to all subscribers of the local topic representation. This is
the true pub/sub mode. A typical usage of this mode is a chat room in an instant messaging application.

You register actors to the local mediator with DistributedPubSubMediator.Put or
DistributedPubSubMediator.Subscribe. Put is used together with Send and SendToAll
message delivery modes. The ActorRef in Put must belong to the same local actor system as the mediator.
Subscribe is used together with Publish. Actors are automatically removed from the registry when they
are terminated, or you can explicitly remove entries with DistributedPubSubMediator.Remove or
DistributedPubSubMediator.Unsubscribe.

Successful Subscribe and Unsubscribe is acknowledged with DistributedPubSubMediator.SubscribeAck
and DistributedPubSubMediator.UnsubscribeAck replies.

A Small Example in Java

A subscriber actor:

public class Subscriber extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

public Subscriber() {
ActorRef mediator =

DistributedPubSubExtension.get(getContext().system()).mediator();
// subscribe to the topic named "content"
mediator.tell(new DistributedPubSubMediator.Subscribe("content", getSelf()),

getSelf());
}

public void onReceive(Object msg) {
if (msg instanceof String)

8.2. External Contributions 320

Akka Scala Documentation, Release 2.2.5

log.info("Got: {}", msg);
else if (msg instanceof DistributedPubSubMediator.SubscribeAck)

log.info("subscribing");
else

unhandled(msg);
}

}

Subscriber actors can be started on several nodes in the cluster, and all will receive messages published to the
“content” topic.

system.actorOf(Props.create(Subscriber.class), "subscriber1");
//another node
system.actorOf(Props.create(Subscriber.class), "subscriber2");
system.actorOf(Props.create(Subscriber.class), "subscriber3");

A simple actor that publishes to this “content” topic:

public class Publisher extends UntypedActor {

// activate the extension
ActorRef mediator =
DistributedPubSubExtension.get(getContext().system()).mediator();

public void onReceive(Object msg) {
if (msg instanceof String) {

String in = (String) msg;
String out = in.toUpperCase();
mediator.tell(new DistributedPubSubMediator.Publish("content", out),

getSelf());
} else {

unhandled(msg);
}

}
}

It can publish messages to the topic from anywhere in the cluster:

//somewhere else
ActorRef publisher = system.actorOf(Props.create(Publisher.class), "publisher");
// after a while the subscriptions are replicated
publisher.tell("hello", null);

A Small Example in Scala

A subscriber actor:

class Subscriber extends Actor with ActorLogging {
import DistributedPubSubMediator.{ Subscribe, SubscribeAck }
val mediator = DistributedPubSubExtension(context.system).mediator
// subscribe to the topic named "content"
mediator ! Subscribe("content", self)

def receive = {
case SubscribeAck(Subscribe("content", `self`)) ⇒

context become ready
}

def ready: Actor.Receive = {
case s: String ⇒
log.info("Got {}", s)

8.2. External Contributions 321

Akka Scala Documentation, Release 2.2.5

}
}

Subscriber actors can be started on several nodes in the cluster, and all will receive messages published to the
“content” topic.

runOn(first) {
system.actorOf(Props[Subscriber], "subscriber1")

}
runOn(second) {

system.actorOf(Props[Subscriber], "subscriber2")
system.actorOf(Props[Subscriber], "subscriber3")

}

A simple actor that publishes to this “content” topic:

class Publisher extends Actor {
import DistributedPubSubMediator.Publish
// activate the extension
val mediator = DistributedPubSubExtension(context.system).mediator

def receive = {
case in: String ⇒

val out = in.toUpperCase
mediator ! Publish("content", out)

}
}

It can publish messages to the topic from anywhere in the cluster:

runOn(third) {
val publisher = system.actorOf(Props[Publisher], "publisher")
later()
// after a while the subscriptions are replicated
publisher ! "hello"

}

DistributedPubSubExtension

In the example above the mediator is started and accessed with the
akka.contrib.pattern.DistributedPubSubExtension. That is convenient and perfectly
fine in most cases, but it can be good to know that it is possible to start the mediator actor as an ordinary actor and
you can have several different mediators at the same time to be able to divide a large number of actors/topics to
different mediators. For example you might want to use different cluster roles for different mediators.

The DistributedPubSubExtension can be configured with the following properties:

Settings for the DistributedPubSubExtension
akka.contrib.cluster.pub-sub {

Actor name of the mediator actor, /user/distributedPubSubMediator
name = distributedPubSubMediator

Start the mediator on members tagged with this role.
All members are used if undefined or empty.
role = ""

How often the DistributedPubSubMediator should send out gossip information
gossip-interval = 1s

Removed entries are pruned after this duration
removed-time-to-live = 120s

}

8.2. External Contributions 322

Akka Scala Documentation, Release 2.2.5

It is recommended to load the extension when the actor system is started by defining it in akka.extensions
configuration property. Otherwise it will be activated when first used and then it takes a while for it to be populated.

akka.extensions = ["akka.contrib.pattern.DistributedPubSubExtension"]

Cluster Client

An actor system that is not part of the cluster can communicate with actors somewhere in the cluster via this
ClusterClient. The client can of course be part of another cluster. It only needs to know the location of one
(or more) nodes to use as initial contact points. It will establish a connection to a ClusterReceptionist
somewhere in the cluster. It will monitor the connection to the receptionist and establish a new connection
if the link goes down. When looking for a new receptionist it uses fresh contact points retrieved from pre-
vious establishment, or periodically refreshed contacts, i.e. not necessarily the initial contact points. Also,
note it’s necessary to change akka.actor.provider from akka.actor.LocalActorRefProvider
to akka.remote.RemoteActorRefProvider or akka.cluster.ClusterActorRefProvider
when using the cluster client.

The receptionist is supposed to be started on all nodes, or all nodes with specified role, in the cluster. The
receptionist can be started with the ClusterReceptionistExtension or as an ordinary actor.

You can send messages via the ClusterClient to any actor in the cluster that is regis-
tered in the DistributedPubSubMediator used by the ClusterReceptionist. The
ClusterReceptionistExtension provides methods for registration of actors that should be reach-
able from the client. Messages are wrapped in ClusterClient.Send, ClusterClient.SendToAll or
ClusterClient.Publish.

1. ClusterClient.Send

The message will be delivered to one recipient with a matching path, if any such exists. If several entries match
the path the message will be delivered to one random destination. The sender of the message can specify that local
affinity is preferred, i.e. the message is sent to an actor in the same local actor system as the used receptionist
actor, if any such exists, otherwise random to any other matching entry.

2. ClusterClient.SendToAll

The message will be delivered to all recipients with a matching path.

3. ClusterClient.Publish

The message will be delivered to all recipients Actors that have been registered as subscribers to the named topic.

Response messages from the destination actor are tunneled via the receptionist to avoid inbound connections from
other cluster nodes to the client, i.e. the sender, as seen by the destination actor, is not the client itself. The
sender of the response messages, as seen by the client, is preserved as the original sender, so the client can
choose to send subsequent messages directly to the actor in the cluster.

An Example

On the cluster nodes first start the receptionist. Note, it is recommended to load the extension when the actor
system is started by defining it in the akka.extensions configuration property:

akka.extensions = ["akka.contrib.pattern.ClusterReceptionistExtension"]

Next, register the actors that should be available for the client.

runOn(host1) {
val serviceA = system.actorOf(Props[Service], "serviceA")
ClusterReceptionistExtension(system).registerService(serviceA)

}

runOn(host2, host3) {
val serviceB = system.actorOf(Props[Service], "serviceB")

8.2. External Contributions 323

Akka Scala Documentation, Release 2.2.5

ClusterReceptionistExtension(system).registerService(serviceB)
}

On the client you create the ClusterClient actor and use it as a gateway for sending messages to the actors
identified by their path (without address information) somewhere in the cluster.

runOn(client) {
val c = system.actorOf(ClusterClient.props(initialContacts))
c ! ClusterClient.Send("/user/serviceA", "hello", localAffinity = true)
c ! ClusterClient.SendToAll("/user/serviceB", "hi")

}

The initialContacts parameter is a Set[ActorSelection], which can be created like this:

val initialContacts = Set(
system.actorSelection("akka.tcp://OtherSys@host1:2552/user/receptionist"),
system.actorSelection("akka.tcp://OtherSys@host2:2552/user/receptionist"))

You will probably define the address information of the initial contact points in configuration or system property.

ClusterReceptionistExtension

In the example above the receptionist is started and accessed with the
akka.contrib.pattern.ClusterReceptionistExtension. That is convenient and
perfectly fine in most cases, but it can be good to know that it is possible to start the
akka.contrib.pattern.ClusterReceptionist actor as an ordinary actor and you can have
several different receptionists at the same time, serving different types of clients.

The ClusterReceptionistExtension can be configured with the following properties:

Settings for the ClusterReceptionistExtension
akka.contrib.cluster.receptionist {

Actor name of the ClusterReceptionist actor, /user/receptionist
name = receptionist

Start the receptionist on members tagged with this role.
All members are used if undefined or empty.
role = ""

The receptionist will send this number of contact points to the client
number-of-contacts = 3

The actor that tunnel response messages to the client will be stopped
after this time of inactivity.
response-tunnel-receive-timeout = 30s

}

Note that the ClusterReceptionistExtension uses the DistributedPubSubExtension, which is
described in Distributed Publish Subscribe in Cluster.

It is recommended to load the extension when the actor system is started by defining it in the akka.extensions
configuration property:

akka.extensions = ["akka.contrib.pattern.ClusterReceptionistExtension"]

Aggregator Pattern

The aggregator pattern supports writing actors that aggregate data from multiple other actors and updates its state
based on those responses. It is even harder to optionally aggregate more data based on the runtime state of the
actor or take certain actions (sending another message and get another response) based on two or more previous
responses.

8.2. External Contributions 324

Akka Scala Documentation, Release 2.2.5

A common thought is to use the ask pattern to request information from other actors. However, ask creates another
actor specifically for the ask. We cannot use a callback from the future to update the state as the thread executing
the callback is not defined. This will likely close-over the current actor.

The aggregator pattern solves such scenarios. It makes sure we’re acting from the same actor in the scope of the
actor receive.

Introduction

The aggregator pattern allows match patterns to be dynamically added to and removed from an actor from inside
the message handling logic. All match patterns are called from the receive loop and run in the thread handling
the incoming message. These dynamically added patterns and logic can safely read and/or modify this actor’s
mutable state without risking integrity or concurrency issues.

Usage

To use the aggregator pattern, you need to extend the Aggregator trait. The trait takes care of receive and
actors extending this trait should not override receive. The trait provides the expect, expectOnce, and
unexpect calls. The expect and expectOnce calls return a handle that can be used for later de-registration
by passing the handle to unexpect.

expect is often used for standing matches such as catching error messages or timeouts.

expect {
case TimedOut ⇒ collectBalances(force = true)

}

expectOnce is used for matching the initial message as well as other requested messages

expectOnce {
case GetCustomerAccountBalances(id, types) ⇒
new AccountAggregator(sender, id, types)

case _ ⇒
sender ! CantUnderstand
context.stop(self)

}

def fetchCheckingAccountsBalance() {
context.actorOf(Props[CheckingAccountProxy]) ! GetAccountBalances(id)
expectOnce {
case CheckingAccountBalances(balances) ⇒

results += (Checking -> balances)
collectBalances()

}
}

unexpect can be used for expecting multiple responses until a timeout or when the logic dictates such an
expect no longer applies.

val handle = expect {
case Response(name, value) ⇒
values += value
if (values.size > 3) processList()

case TimedOut ⇒ processList()
}

def processList() {
unexpect(handle)

if (values.size > 0) {
context.actorSelection("/user/evaluator") ! values.toList

8.2. External Contributions 325

Akka Scala Documentation, Release 2.2.5

expectOnce {
case EvaluationResults(name, eval) ⇒ processFinal(eval)

}
} else processFinal(List.empty[Int])

}

As the name eludes, expect keeps the partial function matching any received messages until unexpect is
called or the actor terminates, whichever comes first. On the other hand, expectOnce removes the partial
function once a match has been established.

It is a common pattern to register the initial expectOnce from the construction of the actor to accept the initial
message. Once that message is received, the actor starts doing all aggregations and sends the response back to the
original requester. The aggregator should terminate after the response is sent (or timed out). A different original
request should use a different actor instance.

As you can see, aggregator actors are generally stateful, short lived actors.

Sample Use Case - AccountBalanceRetriever

This example below shows a typical and intended use of the aggregator pattern.

import scala.collection._
import scala.concurrent.duration._
import scala.math.BigDecimal.int2bigDecimal

import akka.actor._
/**
* Sample and test code for the aggregator patter.

* This is based on Jamie Allen's tutorial at

* http://jaxenter.com/tutorial-asynchronous-programming-with-akka-actors-46220.html

*/

sealed trait AccountType
case object Checking extends AccountType
case object Savings extends AccountType
case object MoneyMarket extends AccountType

case class GetCustomerAccountBalances(id: Long, accountTypes: Set[AccountType])
case class GetAccountBalances(id: Long)

case class AccountBalances(accountType: AccountType,
balance: Option[List[(Long, BigDecimal)]])

case class CheckingAccountBalances(balances: Option[List[(Long, BigDecimal)]])
case class SavingsAccountBalances(balances: Option[List[(Long, BigDecimal)]])
case class MoneyMarketAccountBalances(balances: Option[List[(Long, BigDecimal)]])

case object TimedOut
case object CantUnderstand

class SavingsAccountProxy extends Actor {
def receive = {
case GetAccountBalances(id: Long) ⇒

sender ! SavingsAccountBalances(Some(List((1, 150000), (2, 29000))))
}

}
class CheckingAccountProxy extends Actor {

def receive = {
case GetAccountBalances(id: Long) ⇒
sender ! CheckingAccountBalances(Some(List((3, 15000))))

}
}

8.2. External Contributions 326

Akka Scala Documentation, Release 2.2.5

class MoneyMarketAccountProxy extends Actor {
def receive = {
case GetAccountBalances(id: Long) ⇒

sender ! MoneyMarketAccountBalances(None)
}

}

class AccountBalanceRetriever extends Actor with Aggregator {

import context._

expectOnce {
case GetCustomerAccountBalances(id, types) ⇒
new AccountAggregator(sender, id, types)

case _ ⇒
sender ! CantUnderstand
context.stop(self)

}

class AccountAggregator(originalSender: ActorRef,
id: Long, types: Set[AccountType]) {

val results =
mutable.ArrayBuffer.empty[(AccountType, Option[List[(Long, BigDecimal)]])]

if (types.size > 0)
types foreach {

case Checking ⇒ fetchCheckingAccountsBalance()
case Savings ⇒ fetchSavingsAccountsBalance()
case MoneyMarket ⇒ fetchMoneyMarketAccountsBalance()

}
else collectBalances() // Empty type list yields empty response

context.system.scheduler.scheduleOnce(1 second, self, TimedOut)
expect {

case TimedOut ⇒ collectBalances(force = true)
}

def fetchCheckingAccountsBalance() {
context.actorOf(Props[CheckingAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case CheckingAccountBalances(balances) ⇒
results += (Checking -> balances)
collectBalances()

}
}

def fetchSavingsAccountsBalance() {
context.actorOf(Props[SavingsAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case SavingsAccountBalances(balances) ⇒
results += (Savings -> balances)
collectBalances()

}
}

def fetchMoneyMarketAccountsBalance() {
context.actorOf(Props[MoneyMarketAccountProxy]) ! GetAccountBalances(id)
expectOnce {

case MoneyMarketAccountBalances(balances) ⇒
results += (MoneyMarket -> balances)
collectBalances()

}

8.2. External Contributions 327

Akka Scala Documentation, Release 2.2.5

}

def collectBalances(force: Boolean = false) {
if (results.size == types.size || force) {

originalSender ! results.toList // Make sure it becomes immutable
context.stop(self)

}
}

}
}

Sample Use Case - Multiple Response Aggregation and Chaining

A shorter example showing aggregating responses and chaining further requests.

case class InitialRequest(name: String)
case class Request(name: String)
case class Response(name: String, value: String)
case class EvaluationResults(name: String, eval: List[Int])
case class FinalResponse(qualifiedValues: List[String])

/**
* An actor sample demonstrating use of unexpect and chaining.

* This is just an example and not a complete test case.

*/
class ChainingSample extends Actor with Aggregator {

expectOnce {
case InitialRequest(name) ⇒ new MultipleResponseHandler(sender, name)

}

class MultipleResponseHandler(originalSender: ActorRef, propName: String) {

import context.dispatcher
import collection.mutable.ArrayBuffer

val values = ArrayBuffer.empty[String]

context.actorSelection("/user/request_proxies") ! Request(propName)
context.system.scheduler.scheduleOnce(50 milliseconds, self, TimedOut)

val handle = expect {
case Response(name, value) ⇒

values += value
if (values.size > 3) processList()

case TimedOut ⇒ processList()
}

def processList() {
unexpect(handle)

if (values.size > 0) {
context.actorSelection("/user/evaluator") ! values.toList
expectOnce {
case EvaluationResults(name, eval) ⇒ processFinal(eval)

}
} else processFinal(List.empty[Int])

}

def processFinal(eval: List[Int]) {
// Select only the entries coming back from eval

8.2. External Contributions 328

Akka Scala Documentation, Release 2.2.5

originalSender ! FinalResponse(eval map values)
context.stop(self)

}
}

}

Pitfalls

• The current implementation does not match the sender of the message. This is designed to work with
ActorSelection as well as ActorRef. Without the sender, there is a chance a received message
can be matched by more than one partial function. The partial function that was registered via expect
or expectOnce first (chronologically) and is not yet de-registered by unexpect takes precedence in
this case. Developers should make sure the messages can be uniquely matched or the wrong logic can be
executed for a certain message.

• The sender referenced in any expect or expectOnce logic refers to the sender of that particular
message and not the sender of the original message. The original sender still needs to be saved so a final
response can be sent back.

• context.become is not supported when extending the Aggregator trait.

• We strongly recommend against overriding receive. If your use case really dictates, you may do so with
extreme caution. Always provide a pattern match handling aggregator messages among your receive
pattern matches, as follows:

case msg if handleMessage(msg) ⇒ // noop
// side effects of handleMessage does the actual match

Sorry, there is not yet a Java implementation of the aggregator pattern available.

8.2.3 Suggested Way of Using these Contributions

Since the Akka team does not restrict updates to this subproject even during otherwise binary compatible releases,
and modules may be removed without deprecation, it is suggested to copy the source files into your own code
base, changing the package name. This way you can choose when to update or which fixes to include (to keep
binary compatibility if needed) and later releases of Akka do not potentially break your application.

8.2.4 Suggested Format of Contributions

Each contribution should be a self-contained unit, consisting of one source file or one exclusively used package,
without dependencies to other modules in this subproject; it may depend on everything else in the Akka distri-
bution, though. This ensures that contributions may be moved into the standard distribution individually. The
module shall be within a subpackage of akka.contrib.

Each module must be accompanied by a test suite which verifies that the provided features work, possibly
complemented by integration and unit tests. The tests should follow the Developer Guidelines and go into the
src/test/scala or src/test/java directories (with package name matching the module which is being
tested). As an example, if the module were called akka.contrib.pattern.ReliableProxy, then the
test suite should be called akka.contrib.pattern.ReliableProxySpec.

Each module must also have proper documentation in reStructured Text format. The documentation should be a
single <module>.rst file in the akka-contrib/docs directory, including a link from index.rst (this
file).

8.2. External Contributions 329

http://sphinx.pocoo.org/rest.html

CHAPTER

NINE

INFORMATION FOR AKKA DEVELOPERS

9.1 Building Akka

This page describes how to build and run Akka from the latest source code.

9.1.1 Get the Source Code

Akka uses Git and is hosted at Github.

You first need Git installed on your machine. You can then clone the source repository from
http://github.com/akka/akka.

For example:

git clone git://github.com/akka/akka.git

If you have already cloned the repository previously then you can update the code with git pull:

git pull origin master

9.1.2 sbt - Simple Build Tool

Akka is using the excellent sbt build system. So the first thing you have to do is to download and install sbt. You
can read more about how to do that in the sbt setup documentation.

The sbt commands that you’ll need to build Akka are all included below. If you want to find out more about sbt
and using it for your own projects do read the sbt documentation.

The Akka sbt build file is project/AkkaBuild.scala.

9.1.3 Building Akka

First make sure that you are in the akka code directory:

cd akka

Building

To compile all the Akka core modules use the compile command:

sbt compile

You can run all tests with the test command:

sbt test

If compiling and testing are successful then you have everything working for the latest Akka development version.

330

http://git-scm.com
http://github.com
http://github.com/akka/akka
https://github.com/harrah/xsbt
https://github.com/harrah/xsbt/wiki/Setup
https://github.com/harrah/xsbt/wiki

Akka Scala Documentation, Release 2.2.5

Parallel Execution

By default the tests are executed sequentially. They can be executed in parallel to reduce build times, if hardware
can handle the increased memory and cpu usage. Add the following system property to sbt launch script to activate
parallel execution:

-Dakka.parallelExecution=true

Long Running and Time Sensitive Tests

By default are the long running tests (mainly cluster tests) and time sensitive tests (dependent on the performance
of the machine it is running on) disabled. You can enable them by adding one of the flags:

-Dakka.test.tags.include=long-running
-Dakka.test.tags.include=timing

Or if you need to enable them both:

-Dakka.test.tags.include=long-running,timing

Publish to Local Ivy Repository

If you want to deploy the artifacts to your local Ivy repository (for example, to use from an sbt project) use the
publish-local command:

sbt publish-local

Note: Akka generates class diagrams for the API documentation using ScalaDoc. This needs the dot command
from the Graphviz software package to be installed to avoid errors. You can disable the diagram generation by
adding the flag -Dakka.scaladoc.diagrams=false

sbt Interactive Mode

Note that in the examples above we are calling sbt compile and sbt test and so on, but sbt also has an
interactive mode. If you just run sbt you enter the interactive sbt prompt and can enter the commands directly.
This saves starting up a new JVM instance for each command and can be much faster and more convenient.

For example, building Akka as above is more commonly done like this:

% sbt
[info] Set current project to default (in build file:/.../akka/project/plugins/)
[info] Set current project to akka (in build file:/.../akka/)
> compile
...
> test
...

sbt Batch Mode

It’s also possible to combine commands in a single call. For example, testing, and publishing Akka to the local
Ivy repository can be done with:

sbt test publish-local

9.1. Building Akka 331

Akka Scala Documentation, Release 2.2.5

9.1.4 Dependencies

You can look at the Ivy dependency resolution information that is cre-
ated on sbt update and found in ~/.ivy2/cache. For example, the
~/.ivy2/cache/com.typesafe.akka-akka-remote-compile.xml file contains the resolu-
tion information for the akka-remote module compile dependencies. If you open this file in a web browser you
will get an easy to navigate view of dependencies.

9.2 Multi JVM Testing

Supports running applications (objects with main methods) and ScalaTest tests in multiple JVMs at the same time.
Useful for integration testing where multiple systems communicate with each other.

9.2.1 Setup

The multi-JVM testing is an sbt plugin that you can find at http://github.com/typesafehub/sbt-multi-jvm.

You can add it as a plugin by adding the following to your project/plugins.sbt:

addSbtPlugin("com.typesafe.sbt" % "sbt-multi-jvm" % "0.3.8")

You can then add multi-JVM testing to project/Build.scala by including the MultiJvm settings and con-
fig. Please note that MultiJvm test sources are located in src/multi-jvm/..., and not in src/test/....

Here is an example Build.scala file for sbt 0.12 that uses the MultiJvm plugin:

import sbt._
import Keys._
import com.typesafe.sbt.SbtMultiJvm
import com.typesafe.sbt.SbtMultiJvm.MultiJvmKeys.{ MultiJvm }

object ExampleBuild extends Build {

lazy val buildSettings = Defaults.defaultSettings ++ multiJvmSettings ++ Seq(
organization := "example",
version := "1.0",
scalaVersion := "2.10.2",
// make sure that the artifacts don't have the scala version in the name
crossPaths := false

)

lazy val example = Project(
id = "example",
base = file("."),
settings = buildSettings ++

Seq(libraryDependencies ++= Dependencies.example)
) configs(MultiJvm)

lazy val multiJvmSettings = SbtMultiJvm.multiJvmSettings ++ Seq(
// make sure that MultiJvm test are compiled by the default test compilation
compile in MultiJvm <<= (compile in MultiJvm) triggeredBy (compile in Test),
// disable parallel tests
parallelExecution in Test := false,
// make sure that MultiJvm tests are executed by the default test target
executeTests in Test <<=

((executeTests in Test), (executeTests in MultiJvm)) map {
case ((_, testResults), (_, multiJvmResults)) =>
val results = testResults ++ multiJvmResults
(Tests.overall(results.values), results)

}

9.2. Multi JVM Testing 332

http://github.com/typesafehub/sbt-multi-jvm

Akka Scala Documentation, Release 2.2.5

)

object Dependencies {
val example = Seq(

// ---- application dependencies ----
"com.typesafe.akka" %% "akka-actor" % "2.2.5" ,
"com.typesafe.akka" %% "akka-remote" % "2.2.5" ,

// ---- test dependencies ----
"com.typesafe.akka" %% "akka-testkit" % "2.2.5" %

"test" ,
"com.typesafe.akka" %% "akka-multi-node-testkit" % "2.2.5" %

"test" ,
"org.scalatest" %% "scalatest" % "1.9.1" % "test",
"junit" % "junit" % "4.5" % "test"

)
}

}

If you are using sbt 0.13 the multiJvmSettings in the Build.scala file looks like this instead:

lazy val multiJvmSettings = SbtMultiJvm.multiJvmSettings ++ Seq(
// make sure that MultiJvm test are compiled by the default test compilation
compile in MultiJvm <<= (compile in MultiJvm) triggeredBy (compile in Test),
// disable parallel tests
parallelExecution in Test := false,
// make sure that MultiJvm tests are executed by the default test target
executeTests in Test <<=
((executeTests in Test), (executeTests in MultiJvm)) map {

case ((testResults), (multiJvmResults)) =>
val overall =
if (testResults.overall.id < multiJvmResults.overall.id)

multiJvmResults.overall
else

testResults.overall
Tests.Output(overall,
testResults.events ++ multiJvmResults.events,
testResults.summaries ++ multiJvmResults.summaries)

}
)

You can specify JVM options for the forked JVMs:

jvmOptions in MultiJvm := Seq("-Xmx256M")

9.2.2 Running tests

The multi-JVM tasks are similar to the normal tasks: test, test-only, and run, but are under the
multi-jvm configuration.

So in Akka, to run all the multi-JVM tests in the akka-remote project use (at the sbt prompt):

akka-remote-tests/multi-jvm:test

Or one can change to the akka-remote-tests project first, and then run the tests:

project akka-remote-tests
multi-jvm:test

To run individual tests use test-only:

multi-jvm:test-only akka.remote.RandomRoutedRemoteActor

9.2. Multi JVM Testing 333

Akka Scala Documentation, Release 2.2.5

More than one test name can be listed to run multiple specific tests. Tab-completion in sbt makes it easy to
complete the test names.

It’s also possible to specify JVM options with test-only by including those options after the test names and
--. For example:

multi-jvm:test-only akka.remote.RandomRoutedRemoteActor -- -Dsome.option=something

9.2.3 Creating application tests

The tests are discovered, and combined, through a naming convention. MultiJvm test sources are located in
src/multi-jvm/.... A test is named with the following pattern:

{TestName}MultiJvm{NodeName}

That is, each test has MultiJvm in the middle of its name. The part before it groups together tests/applications
under a single TestName that will run together. The part after, the NodeName, is a distinguishing name for each
forked JVM.

So to create a 3-node test called Sample, you can create three applications like the following:

package sample

object SampleMultiJvmNode1 {
def main(args: Array[String]) {
println("Hello from node 1")

}
}

object SampleMultiJvmNode2 {
def main(args: Array[String]) {
println("Hello from node 2")

}
}

object SampleMultiJvmNode3 {
def main(args: Array[String]) {
println("Hello from node 3")

}
}

When you call multi-jvm:run sample.Sample at the sbt prompt, three JVMs will be spawned, one for
each node. It will look like this:

> multi-jvm:run sample.Sample
...
[info] Starting JVM-Node1 for sample.SampleMultiJvmNode1
[info] Starting JVM-Node2 for sample.SampleMultiJvmNode2
[info] Starting JVM-Node3 for sample.SampleMultiJvmNode3
[JVM-Node1] Hello from node 1
[JVM-Node2] Hello from node 2
[JVM-Node3] Hello from node 3
[success] Total time: ...

9.2.4 Changing Defaults

You can chenge the name of the multi-JVM test source directory by adding the following configuration to your
project:

unmanagedSourceDirectories in MultiJvm <<=
Seq(baseDirectory(_ / "src/some_directory_here")).join

9.2. Multi JVM Testing 334

Akka Scala Documentation, Release 2.2.5

You can change what the MultiJvm identifier is. For example, to change it to ClusterTest use the
multiJvmMarker setting:

multiJvmMarker in MultiJvm := "ClusterTest"

Your tests should now be named {TestName}ClusterTest{NodeName}.

9.2.5 Configuration of the JVM instances

You can define specific JVM options for each of the spawned JVMs. You do that by creating a file named after
the node in the test with suffix .opts and put them in the same directory as the test.

For example, to feed the JVM options -Dakka.remote.port=9991 to the SampleMultiJvmNode1 let’s
create three *.opts files and add the options to them.

SampleMultiJvmNode1.opts:

-Dakka.remote.port=9991

SampleMultiJvmNode2.opts:

-Dakka.remote.port=9992

SampleMultiJvmNode3.opts:

-Dakka.remote.port=9993

9.2.6 ScalaTest

There is also support for creating ScalaTest tests rather than applications. To do this use the same naming conven-
tion as above, but create ScalaTest suites rather than objects with main methods. You need to have ScalaTest on
the classpath. Here is a similar example to the one above but using ScalaTest:

package sample

import org.scalatest.WordSpec
import org.scalatest.matchers.MustMatchers

class SpecMultiJvmNode1 extends WordSpec with MustMatchers {
"A node" should {
"be able to say hello" in {

val message = "Hello from node 1"
message must be("Hello from node 1")

}
}

}

class SpecMultiJvmNode2 extends WordSpec with MustMatchers {
"A node" should {
"be able to say hello" in {

val message = "Hello from node 2"
message must be("Hello from node 2")

}
}

}

To run just these tests you would call multi-jvm:test-only sample.Spec at the sbt prompt.

9.2. Multi JVM Testing 335

Akka Scala Documentation, Release 2.2.5

9.2.7 Multi Node Additions

There has also been some additions made to the SbtMultiJvm plugin to accomodate the experimental module
multi node testing, described in that section.

9.3 I/O Layer Design

The akka.io package has been developed in collaboration between the Akka and spray.io teams. Its design
incorporates the experiences with the spray-io module along with improvements that were jointly developed
for more general consumption as an actor-based service.

9.3.1 Requirements

In order to form a general and extensible IO layer basis for a wide range of applications, with Akka remoting and
spray HTTP being the initial ones, the following requirements were established as key drivers for the design:

• scalability to millions of concurrent connections

• lowest possible latency in getting data from an input channel into the target actor’s mailbox

• maximal throughput

• optional back-pressure in both directions (i.e. throttling local senders as well as allowing local readers to
throttle remote senders, where allowed by the protocol)

• a purely actor-based API with immutable data representation

• extensibility for integrating new transports by way of a very lean SPI; the goal is to not force I/O mechanisms
into a lowest common denominator but instead allow completely protocol-specific user-level APIs.

9.3.2 Basic Architecture

Each transport implementation will be made available as a separate Akka extension, offering an ActorRef
representing the initial point of contact for client code. This “manager” accepts requests for establishing a com-
munications channel (e.g. connect or listen on a TCP socket). Each communications channel is represented by
one dedicated actor, which is exposed to client code for all interaction with this channel over its entire lifetime.

The central element of the implementation is the transport-specific “selector” actor; in the case of TCP this would
wrap a java.nio.channels.Selector. The channel actors register their interest in readability or writabil-
ity of their channel by sending corresponding messages to their assigned selector actor. However, the actual
channel reading and writing is performed by the channel actors themselves, which frees the selector actors from
time-consuming tasks and thereby ensures low latency. The selector actor’s only responsibility is the management
of the underlying selector’s key set and the actual select operation, which is the only operation to typically block.

The assignment of channels to selectors is performed by the manager actor and remains unchanged for the entire
lifetime of a channel. Thereby the management actor “stripes” new channels across one or more selector actors
based on some implementation-specific distribution logic. This logic may be delegated (in part) to the selectors
actors, which could, for example, choose to reject the assignment of a new channel when they consider themselves
to be at capacity.

The manager actor creates (and therefore supervises) the selector actors, which in turn create and supervise their
channel actors. The actor hierarchy of one single transport implementation therefore consists of three distinct
actor levels, with the management actor at the top-, the channel actors at the leaf- and the selector actors at the
mid-level.

Back-pressure for output is enabled by allowing the user to specify within its Write messages whether it wants
to receive an acknowledgement for enqueuing that write to the O/S kernel. Back-pressure for input is enabled
by sending the channel actor a message which temporarily disables read interest for the channel until reading is
re-enabled with a corresponding resume command. In the case of transports with flow control—like TCP—the

9.3. I/O Layer Design 336

http://spray.io

Akka Scala Documentation, Release 2.2.5

act of not consuming data at the receiving end (thereby causing them to remain in the kernels read buffers) is
propagated back to the sender, linking these two mechanisms across the network.

9.3.3 Design Benefits

Staying within the actor model for the whole implementation allows us to remove the need for explicit thread
handling logic, and it also means that there are no locks involved (besides those which are part of the underlying
transport library). Writing only actor code results in a cleaner implementation, while Akka’s efficient actor mes-
saging does not impose a high tax for this benefit. In fact the event-based nature of I/O maps so well to the actor
model that we expect clear performance and especially scalability benefits over traditional solutions with explicit
thread management and synchronization.

Another benefit of supervision hierarchies is that clean-up of resources comes naturally: shutting down a selector
actor will automatically clean up all channel actors, allowing proper closing of the channels and sending the
appropriate messages to user-level client actors. DeathWatch allows the channel actors to notice the demise of
their user-level handler actors and terminate in an orderly fashion in that case as well; this naturally reduces the
chances of leaking open channels.

The choice of using ActorRef for exposing all functionality entails that these references can be distributed or
delegated freely and in general handled as the user sees fit, including the use of remoting and life-cycle monitoring
(just to name two).

9.3.4 How to go about Adding a New Transport

The best start is to study the TCP reference implementation to get a good grip on the basic working principle and
then design an implementation, which is similar in spirit, but adapted to the new protocol in question. There are
vast differences between I/O mechanisms (e.g. compare file I/O to a message broker) and the goal of this I/O layer
is explicitly not to shoehorn all of them into a uniform API, which is why only the basic architecture ideas are
documented here.

9.4 Developer Guidelines

Note: First read The Akka Contributor Guidelines .

9.4.1 Code Style

The Akka code style follows the Scala Style Guide . The only exception is the style of block comments:

/**
* Style mandated by "Scala Style Guide"

*/

/**
* Style adopted in the Akka codebase

*/

Akka is using Scalariform to format the source code as part of the build. So just hack away and then run sbt
compile and it will reformat the code according to Akka standards.

9.4.2 Process

• Make sure you have signed the Akka CLA, if not, sign it online.

• Pick a ticket, if there is no ticket for your work then create one first.

9.4. Developer Guidelines 337

https://github.com/akka/akka/blob/master/CONTRIBUTING.md
http://docs.scala-lang.org/style/
http://www.typesafe.com/contribute/cla

Akka Scala Documentation, Release 2.2.5

• Start working in a feature branch. Name it something like wip-<ticket number>-<descriptive
name>-<your username>.

• When you are done, create a GitHub Pull-Request towards the targeted branch and email the Akka Mailing
List that you want it reviewed

• When there’s consensus on the review, someone from the Akka Core Team will merge it.

9.4.3 Commit messages

Please follow these guidelines when creating public commits and writing commit messages.

1. If your work spans multiple local commits (for example; if you do safe point commits while working in a
topic branch or work in a branch for long time doing merges/rebases etc.) then please do not commit it all
but rewrite the history by squashing the commits into a single big commit which you write a good commit
message for (like discussed below). Here is a great article for how to do that: http://sandofsky.com/blog/git-
workflow.html. Every commit should be able to be used in isolation, cherry picked etc.

2. First line should be a descriptive sentence what the commit is doing. It should be possible to fully understand
what the commit does by just reading this single line. It is not ok to only list the ticket number, type “minor
fix” or similar. Include reference to ticket number, prefixed with #, at the end of the first line. If the commit
is a small fix, then you are done. If not, go to 3.

3. Following the single line description should be a blank line followed by an enumerated list with the details
of the commit.

Example:

Completed replication over BookKeeper based transaction log. Fixes #XXX

* Details 1

* Details 2

* Details 3

9.4.4 Testing

All code that is checked in should have tests. All testing is done with ScalaTest and ScalaCheck.

• Name tests as Test.scala if they do not depend on any external stuff. That keeps surefire happy.

• Name tests as Spec.scala if they have external dependencies.

There is a testing standard that should be followed: Ticket001Spec

Actor TestKit

There is a useful test kit for testing actors: akka.util.TestKit. It enables assertions concerning replies received and
their timing, there is more documentation in the Testing Actor Systems module.

Multi-JVM Testing

Included in the example is an sbt trait for multi-JVM testing which will fork JVMs for multi-node testing. There
is support for running applications (objects with main methods) and running ScalaTest tests.

NetworkFailureTest

You can use the ‘NetworkFailureTest’ trait to test network failure.

9.4. Developer Guidelines 338

http://sandofsky.com/blog/git-workflow.html
http://sandofsky.com/blog/git-workflow.html
https://github.com/akka/akka/blob/master/akka-actor-tests/src/test/scala/akka/ticket/Ticket001Spec.scala
http://github.com/akka/akka/tree/v2.2.5/akka-testkit/src/main/scala/akka/testkit/TestKit.scala

Akka Scala Documentation, Release 2.2.5

9.5 Documentation Guidelines

The Akka documentation uses reStructuredText as its markup language and is built using Sphinx.

9.5.1 Sphinx

For more details see The Sphinx Documentation

9.5.2 reStructuredText

For more details see The reST Quickref

Sections

Section headings are very flexible in reST. We use the following convention in the Akka documentation:

• # (over and under) for module headings

• = for sections

• - for subsections

• ^ for subsubsections

• ~ for subsubsubsections

Cross-referencing

Sections that may be cross-referenced across the documentation should be marked with a reference. To
mark a section use .. _ref-name: before the section heading. The section can then be linked with
:ref:‘ref-name‘. These are unique references across the entire documentation.

For example:

.. _akka-module:

#############
Akka Module

#############

This is the module documentation.

.. _akka-section:

Akka Section
============

Akka Subsection

Here is a reference to "akka section": :ref:`akka-section` which will have the
name "Akka Section".

9.5.3 Build the documentation

First install Sphinx. See below.

9.5. Documentation Guidelines 339

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org
http://sphinx.pocoo.org/contents.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx.pocoo.org

Akka Scala Documentation, Release 2.2.5

Building

For the html version of the docs:

sbt sphinx:generate-html

open <project-dir>/akka-docs/target/sphinx/html/index.html

For the pdf version of the docs:

sbt sphinx:generate-pdf

open <project-dir>/akka-docs/target/sphinx/latex/AkkaJava.pdf
or
open <project-dir>/akka-docs/target/sphinx/latex/AkkaScala.pdf

Installing Sphinx on OS X

Install Homebrew

Install Python and pip:

brew install python
/usr/local/share/python/easy_install pip

Add the Homebrew Python path to your $PATH:

/usr/local/Cellar/python/2.7.1/bin

More information in case of trouble: https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python

Install sphinx:

pip install sphinx

Add sphinx_build to your $PATH:

/usr/local/share/python

Install BasicTeX package from: http://www.tug.org/mactex/morepackages.html

Add texlive bin to $PATH:

/usr/local/texlive/2012basic/bin/universal-darwin

Add missing tex packages:

sudo tlmgr update --self
sudo tlmgr install titlesec
sudo tlmgr install framed
sudo tlmgr install threeparttable
sudo tlmgr install wrapfig
sudo tlmgr install helvetic
sudo tlmgr install courier

9.5. Documentation Guidelines 340

https://github.com/mxcl/homebrew
https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python
http://www.tug.org/mactex/morepackages.html

Akka Scala Documentation, Release 2.2.5

9.6 Team

Name Role
Jonas Bonér Founder, Despot, Committer
Viktor Klang Honorary Member
Roland Kuhn Project Lead
Patrik Nordwall Core Team
Björn Antonsson Core Team
Endre Varga Core Team
Mathias Doenitz Committer
Johannes Rudolph Committer
Raymond Roestenburg Committer
Piotr Gabryanczyk Committer
Helena Edelson Committer
Henrik Engström Alumnus
Peter Vlugter Alumnus
Martin Krasser Alumnus
Derek Williams Alumnus
Debasish Ghosh Alumnus
Ross McDonald Alumnus
Eckhart Hertzler Alumnus
Mikael Högqvist Alumnus
Tim Perrett Alumnus
Jeanfrancois Arcand Alumnus
Jan Van Besien Alumnus
Michael Kober Alumnus
Peter Veentjer Alumnus
Irmo Manie Alumnus
Heiko Seeberger Alumnus
Hiram Chirino Alumnus
Scott Clasen Alumnus

9.6. Team 341

CHAPTER

TEN

PROJECT INFORMATION

10.1 Migration Guides

10.1.1 Migration Guide 1.3.x to 2.0.x

Migration from 1.3.x to 2.0.x is described in the documentation of 2.0.

10.1.2 Migration Guide 2.0.x to 2.1.x

Migration from 2.0.x to 2.1.x is described in the documentation of 2.1.

10.1.3 Migration Guide 2.1.x to 2.2.x

The 2.2 release contains several structural changes that require some simple, mechanical source-level changes in
client code.

When migrating from 1.3.x to 2.1.x you should first follow the instructions for migrating 1.3.x to 2.0.x and then
2.0.x to 2.1.x.

Deprecated Closure-Taking Props

Props instances used to contain a closure which produces an Actor instance when invoked. This approach is
flawed in that closures are usually created in-line and thus carry a reference to their enclosing object; this is not
well known among programmers, in particular it can be surprising that innocent-looking actor creation should
not be serializable, e.g. if the enclosing class is an actor. Another issue which came up often during reviews is
that these actor creators inadvertedly close over the Actor’s this reference for calling methods on it, which is
inherently unsafe.

Another reason for changing the underlying implementation is that Props now carries information about which
class of actor will be created, allowing the extraction of mailbox type requirements (e.g. when using the Stash)
before trying to create the actor. Being based on the actor class and a list of constructor arguments also allows these
arguments to be serialized according to the configured serializer bindings instead of mandating Java serialization
(which was used previously).

What changes for Java?

A new method Props.create has been introduced with two overloads:

Props.create(MyActor.class, arg1, arg2, ...);
// or
Props.create(new MyActorCreator(args ...));

342

http://doc.akka.io/docs/akka/2.0.5/project/migration-guide-1.3.x-2.0.x.html
http://doc.akka.io/docs/akka/2.1.2/project/migration-guide-2.0.x-2.1.x.html

Akka Scala Documentation, Release 2.2.5

In the first case the existence of a constructor signature matching the supplied arguments is verified at
Props construction time. In the second case it is verified that MyActorCreator (which must be a
akka.japi.Creator<? extends Actor>) is a static class. In both cases failure is signaled by throwing
a IllegalArgumentException.

The constructors of Props have been deprecated to facilitate migration.

The withCreator methods have been deprecated. The functionality is available by using
Props.create(...).withDeploy(oldProps.deploy());.

UntypedActorFactory has been deprecated in favor of the more precisely typed Creator.

What changes for Scala?

The case class signature of Props has been changed to only contain a Deploy, a Class[_] and an immutable
Seq[Any] (the constructor arguments for the class). The old factory and extractor methods have been deprecated.

Properly serializable Props can now be created for actors which take constructor arguments by using
Props(classOf[MyActor], arg1, arg2, ...). In a future update—possibly within the 2.2.x
timeframe—we plan to introduce a macro which will transform the by-name argument to Props(new
MyActor(...)) into a call to the former.

The withCreator methods have been deprecated. The functionality is available by using
Props(...).withDeploy(oldProps.deploy).

Immutable everywhere

Akka has in 2.2 been refactored to require scala.collection.immutable data structures as much as
possible, this leads to fewer bugs and more opportunity for sharing data safely.

Search Replace with
akka.japi.Util.arrayToSeq akka.japi.Util.immutableSeq

If you need to convert from Java to scala.collection.immutable.Seq or
scala.collection.immutable.Iterable you should use akka.japi.Util.immutableSeq(...),
and if you need to convert from Scala you can simply switch to using immutable collections yourself or use the
to[immutable.<collection-type>] method.

ActorContext & ActorRefFactory Dispatcher

The return type of ActorContext‘s and ActorRefFactory‘s dispatcher-method now returns
ExecutionContext instead of MessageDispatcher.

Removed Fallback to Default Dispatcher

If deploying an actor with a specific dispatcher, e.g. Props(...).withDispatcher("d"), then it would
previously fall back to akka.actor.default-dispatcher if no configuration section for d could be
found.

This was beneficial for preparing later deployment choices during development by grouping actors on dispatcher
IDs but not immediately configuring those. Akka 2.2 introduces the possibility to add dispatcher configuration to
the akka.actor.deployment section, making this unnecessary.

The fallback was removed because in many cases its application was neither intended nor noticed.

10.1. Migration Guides 343

Akka Scala Documentation, Release 2.2.5

Changed Configuration Section for Dispatcher & Mailbox

The mailbox configuration defaults moved from akka.actor.default-dispatcher to
akka.actor.default-mailbox. You will not have to change anything unless your configuration
overrides a setting in the default dispatcher section.

The mailbox-type now requires a fully-qualified class name for the mailbox to use. The special words
bounded and unbounded are retained for a migration period throughout the 2.2 series.

API changes to FSM and TestFSMRef

The timerActive_? method has been deprecated in both the FSM trait and the TestFSMRef class. You
should now use the isTimerActive method instead. The old method will remain throughout 2.2.x. It will be
removed in Akka 2.3.

ThreadPoolConfigBuilder

akka.dispatch.ThreadPoolConfigBuilder companion object has been removed, and with
it the conf_? method that was essentially only a type-inferencer aid for creation of op-
tional transformations on ThreadPoolConfigBuilder. Instead use: option.map(o => (t:
ThreadPoolConfigBuilder) => t.op(o)).

Scheduler

Akka’s Scheduler has been augmented to also include a sender when scheduling to send messages, this
should work Out-Of-The-Box for Scala users, but for Java Users you will need to manually provide the sender
– as usual use null to designate “no sender” which will behave just as before the change.

ZeroMQ ByteString

akka.zeromq.Frame and the use of Seq[Byte] in the API has been removed and is replaced by
akka.util.ByteString.

ZMQMessage.firstFrameAsString has been removed, please use ZMQMessage.frames or
ZMQMessage.frame(int) to access the frames.

Brand new Agents

Akka’s Agent has been rewritten to improve the API and to remove the need to manually close an Agent. It’s
also now an abstract class with the potential for subtyping and has a new factory method allowing Java to correctly
infer the type of the Agent. The Java API has also been harmonized so both Java and Scala call the same methods.

10.1. Migration Guides 344

Akka Scala Documentation, Release 2.2.5

Old Java API New Java API
new Agent<type>(value, actorSystem) Agent.create(value,

executionContext)
agent.update(newValue) agent.send(newValue)
agent.future(Timeout) agent.future()
agent.await(Timeout) Await.result(agent.future(),

Timeout)
agent.send(Function) agent.send(Mapper)
agent.sendOff(Function,
ExecutionContext)

agent.sendOff(Mapper,
ExecutionContext)

agent.alter(Function, Timeout) agent.alter(Mapper)
agent.alterOff(Function, Timeout,
ExecutionContext)

agent.alter(Mapper,
ExecutionContext)

agent.map(Function) agent.map(Mapper)
agent.flatMap(Function) agent.flatMap(Mapper)
agent.foreach(Procedure) agent.foreach(Foreach)
agent.suspend() No replacement, pointless feature
agent.resume() No replacement, pointless feature
agent.close() No replacement, not needed in new

implementation

Old Scala API New Scala API
Agent[T](value)(implicit ActorSystem) Agent[T](value)(implicit

ExecutionContext)
agent.update(newValue) agent.send(newValue)
agent.alterOff(Function1)(Timeout,
ExecutionContext)

agent.alterOff(Function1)(ExecutionContext)

agent.await(Timeout) Await.result(agent.future,
Timeout)

agent.future(Timeout) agent.future
agent.suspend() No replacement, pointless feature
agent.resume() No replacement, pointless feature
agent.close() No replacement, not needed in new

implementation

event-handlers renamed to loggers

If you have defined custom event handlers (loggers) in your configuration you need to change
akka.event-handlers to akka.loggers and akka.event-handler-startup-timeout to
akka.logger-startup-timeout.

The SLF4J logger has been renamed from akka.event.slf4j.Slf4jEventHandler to
akka.event.slf4j.Slf4jLogger.

The java.util.logging logger has been renamed from akka.contrib.jul.JavaLoggingEventHandler
to akka.contrib.jul.JavaLogger.

Remoting

The remoting subsystem of Akka has been replaced in favor of a more flexible, pluggable driver based imple-
mentation. This has required some changes to the configuration sections of akka.remote, the format of Akka
remote addresses and the Akka protocol itself.

The internal communication protocol of Akka has been evolved into a completely standalone entity, not tied to any
particular transport. This change has the effect that Akka 2.2 remoting is no longer able to directly communicate
with older versions.

The akka.remote.transport configuration key has been removed as the remoting system itself is no longer
replaceable. Custom transports are now pluggable via the akka.remote.enabled-transpotrs key (see

10.1. Migration Guides 345

Akka Scala Documentation, Release 2.2.5

the akka.remote.Transport SPI and the documentation of remoting for more detail on drivers). The trans-
port loaded by default is a Netty based TCP driver similar in functionality to the default remoting in Akka 2.1.

Transports are now fully pluggable through drivers, therefore transport specific settings like listening ports
now live in the namespace of their driver configuration. In particular TCP related settings are now under
akka.remote.netty.tcp.

As a result of being able to replace the transport protocol, it is now necessary to in-
clude the protocol information in Akka URLs for remote addresses. Therefore a remote ad-
dress of akka://remote-sys@remotehost:2552/user/actor has to be changed to
akka.tcp://remote-sys@remotehost:2552/user/actor if the remote system uses
TCP as transport. If the other system uses SSL on top of TCP, the correct address would be
akka.ssl.tcp://remote-sys@remotehost:2552/user/actor.

Remote lifecycle events have been changed to a more coarse-grained, simplified model. All remoting events
are subclasses of akka.remote.RemotingLifecycle. Events related to the lifecycle of associations (for-
merly called connections) be it inbound or outbound are subclasses of akka.remote.AssociationEvent
(which is in turn a subclass of RemotingLifecycle). The direction of the association (inbound or outbound)
triggering an AssociationEvent is available via the inbound boolean field of the event.

Note: The change in terminology from “Connection” to “Association” reflects the fact that the remoting sub-
system may use connectionless transports, but an association similar to transport layer connections is maintained
between endpoints by the Akka protocol.

New configuration settings are also available, see the remoting documentation for more detail: Remoting

Use actorSelection instead of actorFor

actorFor is deprecated in favor of actorSelection because actor references acquired with actorFor
behave differently for local and remote actors. In the case of a local actor reference, the named actor needs to exist
before the lookup, or else the acquired reference will be an EmptyLocalActorRef. This will be true even if
an actor with that exact path is created after acquiring the actor reference. For remote actor references acquired
with actorFor the behaviour is different and sending messages to such a reference will under the hood look up the
actor by path on the remote system for every message send.

Messages can be sent via the ActorSelection and the path of the ActorSelection is looked up when
delivering each message. If the selection does not match any actors the message will be dropped.

To acquire an ActorRef for an ActorSelection you need to send a message to the selection and use the
sender reference of the reply from the actor. There is a built-in Identify message that all Actors will under-
stand and automatically reply to with a ActorIdentity message containing the ActorRef.

You can also acquire an ActorRef for an ActorSelection with the resolveOne method of the
ActorSelection. It returns a Future of the matching ActorRef if such an actor exists. It is completed
with failure [[akka.actor.ActorNotFound]] if no such actor exists or the identification didn’t complete within the
supplied timeout.

Read more about actorSelection in docs for Java or docs for Scala.

ActorRef equality and sending to remote actors

Sending messages to an ActorRef must have the same semantics no matter if the target actor is located on
a remote host or in the same ActorSystem in the same JVM. This was not always the case. For example
when the target actor is terminated and created again under the same path. Sending to local references of the
previous incarnation of the actor will not be delivered to the new incarnation, but that was the case for remote
references. The reason was that the target actor was looked up by its path on every message delivery and the path
didn’t distinguish between the two incarnations of the actor. This has been fixed, and messages sent to a remote
reference that points to a terminated actor will not be delivered to a new actor with the same path.

Equality of ActorRef has been changed to match the intention that an ActorRef corresponds to the target
actor instance. Two actor references are compared equal when they have the same path and point to the same actor

10.1. Migration Guides 346

Akka Scala Documentation, Release 2.2.5

incarnation. A reference pointing to a terminated actor does not compare equal to a reference pointing to another
(re-created) actor with the same path. Note that a restart of an actor caused by a failure still means that it’s the
same actor incarnation, i.e. a restart is not visible for the consumer of the ActorRef.

Equality in 2.1 was only based on the path of the ActorRef. If you need to keep track of actor references in
a collection and do not care about the exact actor incarnation you can use the ActorPath as key, because the
identifier of the target actor is not taken into account when comparing actor paths.

Remote actor references acquired with actorFor do not include the full information about the underlying actor
identity and therefore such references do not compare equal to references acquired with actorOf, sender,
or context.self. Because of this actorFor is deprecated, as explained in Use actorSelection instead of
actorFor.

Note that when a parent actor is restarted its children are by default stopped and re-created, i.e. the child after the
restart will be a different incarnation than the child before the restart. This has always been the case, but in some
situations you might not have noticed, e.g. when comparing such actor references or sending messages to remote
deployed children of a restarted parent.

This may also have implications if you compare the ActorRef received in a Terminated message with an
expected ActorRef.

The following will not match:

val ref = context.actorFor("akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName")

def receive = {
case Terminated(`ref`) => // ...

}

Instead, use actorSelection followed by identify request, and watch the verified actor reference:

val selection = context.actorSelection(
"akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName")

selection ! Identify(None)
var ref: ActorRef = _

def receive = {
case ActorIdentity(_, Some(actorRef)) =>
ref = actorRef
context watch ref

case ActorIdentity(_, None) => // not alive
case Terminated(r) if r == ref => // ...

}

Use watch instead of isTerminated

ActorRef.isTerminated is deprecated in favor of ActorContext.watch because isTerminated
behaves differently for local and remote actors.

DeathWatch Semantics are Simplified

DeathPactException is now Fatal

Previously an unhandled Terminated message which led to a DeathPactException to the thrown would
be answered with a Restart directive by the default supervisor strategy. This is not intuitive given the name of
the exception and the Erlang linking feature by which it was inspired. The default strategy has thus be changed to
return Stop in this case.

It can be argued that previously the actor would likely run into a restart loop because watching a terminated actor
would lead to a DeathPactException immediately again.

10.1. Migration Guides 347

Akka Scala Documentation, Release 2.2.5

Unwatching now Prevents Reception of Terminated

Previously calling ActorContext.unwatch would unregister lifecycle monitoring interest, but if the tar-
get actor had terminated already the Terminated message had already been enqueued and would be re-
ceived later—possibly leading to a DeathPactException. This behavior has been modified such that the
Terminated message will be silently discarded if unwatch is called before processing the Terminated
message. Therefore the following is now safe:

context.stop(target)
context.unwatch(target)

Dispatcher and Mailbox Implementation Changes

This point is only relevant if you have implemented a custom mailbox or dispatcher and want to mi-
grate that to Akka 2.2. The constructor signature of MessageDispatcher has changed, it now takes a
MessageDispatcherConfigurator instead of DispatcherPrerequisites. Its createMailbox
method now receives one more argument of type MailboxType, which is the mailbox type determined by the
ActorRefProvider for the actor based on its deployment. The DispatcherPrerequisites now in-
clude a Mailboxes instance which can be used for resolving mailbox references. The constructor signatures of
the built-in dispatcher implementation have been adapted accordingly. The traits describing mailbox semantics
have been separated from the implementation traits.

gracefulStop Pattern Changed

The gracefulStop pattern was refactored to not need an implicit ActorSystem anymore.

The gracefulStop pattern now supports customized stop messages to be sent instead of PoisonPill.

10.2 Issue Tracking

Akka is using Assembla as its issue tracking system.

10.2.1 Browsing

Tickets

You can find the Akka tickets here

Roadmaps

The roadmap for each Akka milestone is here

10.2.2 Creating tickets

In order to create tickets you need to do the following:

Register here then log in

Then you also need to become a “Watcher” of the Akka space.

Link to create a new ticket

Thanks a lot for reporting bugs and suggesting features. Please include the versions of Scala and Akka and relevant
configuration files.

10.2. Issue Tracking 348

http://www.assembla.com/spaces/akka/tickets
https://docs.google.com/document/d/18W9-fKs55wiFNjXL9q50PYOnR7-nnsImzJqHOPPbM4E/pub
https://www.assembla.com/user/signup
https://www.assembla.com/spaces/akka/tickets/new

Akka Scala Documentation, Release 2.2.5

10.3 Licenses

10.3.1 Akka License

This software is licensed under the Apache 2 license, quoted below.

Copyright 2009-2013 Typesafe Inc. <http://www.typesafe.com>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

10.3.2 Akka Committer License Agreement

All committers have signed this CLA. It can be signed online.

10.3.3 Licenses for Dependency Libraries

Each dependency and its license can be seen in the project build file (the comment on the side of each dependency):
https://github.com/akka/akka/blob/master/project/AkkaBuild.scala#L497

10.4 Sponsors

10.4.1 Typesafe

Typesafe is the company behind the Akka Project, Scala Programming Language, Play Web Framework, Scala
IDE, Simple Build Tool and many other open source projects. It also provides the Typesafe Stack, a full-featured
development stack consisting of AKka, Play and Scala. Learn more at typesafe.com.

10.4.2 YourKit

YourKit is kindly supporting open source projects with its full-featured Java Profiler.

YourKit, LLC is the creator of innovative and intelligent tools for profiling Java and .NET applications. Take a
look at YourKit’s leading software products: YourKit Java Profiler and YourKit .NET Profiler

10.5 Project

10.5.1 Commercial Support

Commercial support is provided by Typesafe. Akka is now part of the Typesafe Stack.

10.3. Licenses 349

http://www.typesafe.com/contribute/current-cla
http://www.typesafe.com/contribute/cla
https://github.com/akka/akka/blob/master/project/AkkaBuild.scala#L497
http://typesafe.com
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp
http://typesafe.com
http://typesafe.com/stack

Akka Scala Documentation, Release 2.2.5

10.5.2 Mailing List

Akka User Google Group

Akka Developer Google Group

10.5.3 Downloads

http://typesafe.com/stack/downloads/akka/

10.5.4 Source Code

Akka uses Git and is hosted at Github.

• Akka: clone the Akka repository from http://github.com/akka/akka

10.5.5 Releases Repository

All Akka releases are published via Sonatype to Maven Central, see search.maven.org

10.5.6 Snapshots Repository

Nightly builds are available in http://repo.akka.io/snapshots/ as both SNAPSHOT and timestamped versions.

For timestamped versions, pick a timestamp from http://repo.akka.io/snapshots/com/typesafe/akka/akka-
actor_2.10/. All Akka modules that belong to the same build have the same timestamp.

sbt definition of snapshot repository

Make sure that you add the repository to the sbt resolvers:

resolvers += "Typesafe Snapshots" at "http://repo.akka.io/snapshots/"

Define the library dependencies with the timestamp as version. For example:

libraryDependencies += "com.typesafe.akka" % "akka-remote_2.10" %
"2.1-20121016-001042"

maven definition of snapshot repository

Make sure that you add the repository to the maven repositories in pom.xml:

<repositories>
<repository>
<id>akka-snapshots</id>
<name>Akka Snapshots</name>
<url>http://repo.akka.io/snapshots/</url>
<layout>default</layout>

</repository>
</repositories>

Define the library dependencies with the timestamp as version. For example:

10.5. Project 350

http://groups.google.com/group/akka-user
http://groups.google.com/group/akka-dev
http://typesafe.com/stack/downloads/akka/
http://github.com
http://github.com/akka/akka
http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22com.typesafe.akka%22
http://repo.akka.io/snapshots/
http://repo.akka.io/snapshots/com/typesafe/akka/akka-actor_2.10/
http://repo.akka.io/snapshots/com/typesafe/akka/akka-actor_2.10/

Akka Scala Documentation, Release 2.2.5

<dependencies>
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-remote_2.10</artifactId>
<version>2.1-20121016-001042</version>

</dependency>
</dependencies>

10.5. Project 351

CHAPTER

ELEVEN

ADDITIONAL INFORMATION

11.1 Books

• Akka in Action, by Raymond Roestenburg and Rob Bakker, Manning Publications Co., ISBN:
9781617291012, est fall 2013

• Akka Concurrency, by Derek Wyatt, artima developer, ISBN: 0981531660, est April 2013

• Akka Essentials, by Munish K. Gupta, PACKT Publishing, ISBN: 1849518289, October 2012

11.2 Here is a list of recipes for all things Akka

• Martin Krassers Akka Event Sourcing example

11.3 Other Language Bindings

11.3.1 JRuby

Read more here: https://github.com/iconara/mikka.

11.3.2 Groovy/Groovy++

Read more here: https://gist.github.com/620439.

11.3.3 Clojure

Read more here: http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/.

11.4 Akka in OSGi

11.4.1 Configuring the OSGi Framework

To use Akka in an OSGi environment, the org.osgi.framework.bootdelegation property must be set
to always delegate the sun.misc package to the boot classloader instead of resolving it through the normal OSGi
class space.

352

http://www.manning.com/roestenburg/
http://www.artima.com/shop/akka_concurrency
http://www.packtpub.com/akka-java-applications-essentials/book
https://github.com/krasserm/eventsourcing-example
https://github.com/iconara/mikka
https://gist.github.com/620439
http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/

Akka Scala Documentation, Release 2.2.5

11.4.2 Activator

To bootstrap Akka inside an OSGi environment, you can use the akka.osgi.AkkaSystemActivator class to conve-
niently set up the ActorSystem.

import akka.actor.{ Props, ActorSystem }
import org.osgi.framework.BundleContext
import akka.osgi.ActorSystemActivator

class Activator extends ActorSystemActivator {

def configure(context: BundleContext, system: ActorSystem) {
// optionally register the ActorSystem in the OSGi Service Registry
registerService(context, system)

val someActor = system.actorOf(Props[SomeActor], name = "someName")
someActor ! SomeMessage

}

}

11.4.3 Blueprint

For the Apache Aries Blueprint implementation, there’s also a namespace handler available. The namespace URI
is http://akka.io/xmlns/blueprint/v1.0.0 and it can be used to set up an ActorSystem.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:akka="http://akka.io/xmlns/blueprint/v1.0.0">

<akka:actor-system name="BlueprintSystem" />

<akka:actor-system name="BlueprintSystemWithConfig">
<akka:config>

some.config {
key=value

}
</akka:config>

</akka:actor-system>
</blueprint>

11.5 Incomplete List of HTTP Frameworks

11.5.1 Play

The Play framework is built using Akka, and is well suited for building both full web applications as well as REST
services.

11.5.2 Spray

The Spray toolkit is built using Akka, and is a minimalistic HTTP/REST layer.

11.5.3 Akka Mist

If you are using Akka Mist (Akka’s old HTTP/REST module) with Akka 1.x and wish to upgrade to 2.x there is
now a port of Akka Mist to Akka 2.x. You can find it here.

11.5. Incomplete List of HTTP Frameworks 353

http://akka.io/xmlns/blueprint/v1.0.0
http://www.playframework.com
http://spray.io
https://github.com/thenewmotion/akka-http

Akka Scala Documentation, Release 2.2.5

11.5.4 Other Alternatives

There are a bunch of other alternatives for using Akka with HTTP/REST. You can find some of them among the
Community Projects.

11.5. Incomplete List of HTTP Frameworks 354

http://akka.io/community

	Introduction
	What is Akka?
	Why Akka?
	Getting Started
	The Obligatory Hello World
	Use-case and Deployment Scenarios
	Examples of use-cases for Akka

	General
	Terminology, Concepts
	Actor Systems
	What is an Actor?
	Supervision and Monitoring
	Actor References, Paths and Addresses
	Location Transparency
	Akka and the Java Memory Model
	Message Delivery Guarantees
	Configuration

	Actors
	Actors
	Typed Channels (EXPERIMENTAL)
	Typed Actors
	Fault Tolerance
	Dispatchers
	Mailboxes
	Routing
	FSM
	Testing Actor Systems

	Futures and Agents
	Futures
	Dataflow Concurrency
	Software Transactional Memory
	Agents
	Transactors

	Networking
	Cluster Specification
	Cluster Usage
	Remoting
	Serialization
	I/O
	Encoding and decoding binary data
	Using TCP
	Using UDP
	ZeroMQ
	Camel

	Utilities
	Event Bus
	Logging
	Scheduler
	Duration
	Circuit Breaker
	Akka Extensions
	Durable Mailboxes
	Microkernel

	HowTo: Common Patterns
	Throttling Messages
	Balancing Workload Across Nodes
	Work Pulling Pattern to throttle and distribute work, and prevent mailbox overflow
	Ordered Termination
	Akka AMQP Proxies
	Shutdown Patterns in Akka 2
	Distributed (in-memory) graph processing with Akka
	Case Study: An Auto-Updating Cache Using Actors
	Discovering message flows in actor systems with the Spider Pattern
	Scheduling Periodic Messages
	Template Pattern

	Experimental Modules
	Multi Node Testing
	External Contributions

	Information for Akka Developers
	Building Akka
	Multi JVM Testing
	I/O Layer Design
	Developer Guidelines
	Documentation Guidelines
	Team

	Project Information
	Migration Guides
	Issue Tracking
	Licenses
	Sponsors
	Project

	Additional Information
	Books
	Here is a list of recipes for all things Akka
	Other Language Bindings
	Akka in OSGi
	Incomplete List of HTTP Frameworks

