Packages

object Flow

Source
Flow.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Flow
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apply[T]: Flow[T, T, NotUsed]

    Returns a Flow which outputs all its inputs.

  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def fromFunction[A, B](f: (A) ⇒ B): Flow[A, B, NotUsed]

    Creates a [Flow] which will use the given function to transform its inputs to outputs.

    Creates a [Flow] which will use the given function to transform its inputs to outputs. It is equivalent to Flow[T].map(f)

  11. def fromGraph[I, O, M](g: Graph[FlowShape[I, O], M]): Flow[I, O, M]

    A graph with the shape of a flow logically is a flow, this method makes it so also in type.

  12. def fromProcessor[I, O](processorFactory: () ⇒ Processor[I, O]): Flow[I, O, NotUsed]

    Creates a Flow from a Reactive Streams org.reactivestreams.Processor

  13. def fromProcessorMat[I, O, M](processorFactory: () ⇒ (Processor[I, O], M)): Flow[I, O, M]

    Creates a Flow from a Reactive Streams org.reactivestreams.Processor and returns a materialized value.

  14. def fromSinkAndSource[I, O](sink: Graph[SinkShape[I], _], source: Graph[SourceShape[O], _]): Flow[I, O, NotUsed]

    Creates a Flow from a Sink and a Source where the Flow's input will be sent to the Sink and the Flow's output will come from the Source.

  15. def fromSinkAndSourceMat[I, O, M1, M2, M](sink: Graph[SinkShape[I], M1], source: Graph[SourceShape[O], M2])(combine: (M1, M2) ⇒ M): Flow[I, O, M]

    Creates a Flow from a Sink and a Source where the Flow's input will be sent to the Sink and the Flow's output will come from the Source.

    Creates a Flow from a Sink and a Source where the Flow's input will be sent to the Sink and the Flow's output will come from the Source.

    The combine function is used to compose the materialized values of the sink and source into the materialized value of the resulting Flow.

  16. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  20. final def notify(): Unit
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  22. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  23. def toString(): String
    Definition Classes
    AnyRef → Any
  24. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped